- 26 Aug, 2017 2 commits
-
-
Laura Abbott authored
commit 861ce4a3 upstream. '__vmalloc_start_set' currently only gets set in initmem_init() when !CONFIG_NEED_MULTIPLE_NODES. This breaks detection of vmalloc address with virt_addr_valid() with CONFIG_NEED_MULTIPLE_NODES=y, causing a kernel crash: [mm/usercopy] 517e1fbe : kernel BUG at arch/x86/mm/physaddr.c:78! Set '__vmalloc_start_set' appropriately for that case as well. Reported-by:
kbuild test robot <fengguang.wu@intel.com> Signed-off-by:
Laura Abbott <labbott@redhat.com> Reviewed-by:
Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: dc16ecf7 ("x86-32: use specific __vmalloc_start_set flag in __virt_addr_valid") Link: http://lkml.kernel.org/r/1494278596-30373-1-git-send-email-labbott@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org> Signed-off-by:
Ben Hutchings <ben@decadent.org.uk>
-
Andy Lutomirski authored
commit dbd68d8e upstream. flush_tlb_page() passes a bogus range to flush_tlb_others() and expects the latter to fix it up. native_flush_tlb_others() has the fixup but Xen's version doesn't. Move the fixup to flush_tlb_others(). AFAICS the only real effect is that, without this fix, Xen would flush everything instead of just the one page on remote vCPUs in when flush_tlb_page() was called. Signed-off-by:
Andy Lutomirski <luto@kernel.org> Reviewed-by:
Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Nadav Amit <namit@vmware.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: e7b52ffd ("x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range") Link: http://lkml.kernel.org/r/10ed0e4dfea64daef10b87fb85df1746999b4dba.1492844372.git.luto@kernel.org Signed-off-by:
Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.16: the special case was handled in flush_tlb_func(), not native_flush_tlb_others()] Signed-off-by:
Ben Hutchings <ben@decadent.org.uk>
-
- 18 Jul, 2017 1 commit
-
-
Kees Cook authored
commit a4866aa8 upstream. Under CONFIG_STRICT_DEVMEM, reading System RAM through /dev/mem is disallowed. However, on x86, the first 1MB was always allowed for BIOS and similar things, regardless of it actually being System RAM. It was possible for heap to end up getting allocated in low 1MB RAM, and then read by things like x86info or dd, which would trip hardened usercopy: usercopy: kernel memory exposure attempt detected from ffff880000090000 (dma-kmalloc-256) (4096 bytes) This changes the x86 exception for the low 1MB by reading back zeros for System RAM areas instead of blindly allowing them. More work is needed to extend this to mmap, but currently mmap doesn't go through usercopy, so hardened usercopy won't Oops the kernel. Reported-by:
Tommi Rantala <tommi.t.rantala@nokia.com> Tested-by:
Tommi Rantala <tommi.t.rantala@nokia.com> Signed-off-by:
Kees Cook <keescook@chromium.org> [bwh: Backported to 3.16: adjust context] Signed-off-by:
Ben Hutchings <ben@decadent.org.uk>
-
- 02 Jul, 2017 1 commit
-
-
Hugh Dickins authored
commit 1be7107f upstream. Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by:
Oleg Nesterov <oleg@redhat.com> Original-patch-by:
Michal Hocko <mhocko@suse.com> Signed-off-by:
Hugh Dickins <hughd@google.com> Acked-by:
Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> [Hugh Dickins: Backported to 3.16] Signed-off-by:
Ben Hutchings <ben@decadent.org.uk>
-
- 30 Apr, 2016 2 commits
-
-
Hector Marco-Gisbert authored
commit 8b8addf8 upstream. Currently on i386 and on X86_64 when emulating X86_32 in legacy mode, only the stack and the executable are randomized but not other mmapped files (libraries, vDSO, etc.). This patch enables randomization for the libraries, vDSO and mmap requests on i386 and in X86_32 in legacy mode. By default on i386 there are 8 bits for the randomization of the libraries, vDSO and mmaps which only uses 1MB of VA. This patch preserves the original randomness, using 1MB of VA out of 3GB or 4GB. We think that 1MB out of 3GB is not a big cost for having the ASLR. The first obvious security benefit is that all objects are randomized (not only the stack and the executable) in legacy mode which highly increases the ASLR effectiveness, otherwise the attackers may use these non-randomized areas. But also sensitive setuid/setgid applications are more secure because currently, attackers can disable the randomization of these applications by setting the ulimit stack to "unlimited". This is a very old and widely known trick to disable the ASLR in i386 which has been allowed for too long. Another trick used to disable the ASLR was to set the ADDR_NO_RANDOMIZE personality flag, but fortunately this doesn't work on setuid/setgid applications because there is security checks which clear Security-relevant flags. This patch always randomizes the mmap_legacy_base address, removing the possibility to disable the ASLR by setting the stack to "unlimited". Signed-off-by:
Hector Marco-Gisbert <hecmargi@upv.es> Acked-by:
Ismael Ripoll Ripoll <iripoll@upv.es> Acked-by:
Kees Cook <keescook@chromium.org> Acked-by:
Arjan van de Ven <arjan@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/1457639460-5242-1-git-send-email-hecmargi@upv.es Signed-off-by:
Ingo Molnar <mingo@kernel.org> Signed-off-by:
Ben Hutchings <ben@decadent.org.uk>
-
Kees Cook authored
commit 82168140 upstream. In preparation for splitting out ET_DYN ASLR, this refactors the use of mmap_rnd() to be used similarly to arm, and extracts the checking of PF_RANDOMIZE. Signed-off-by:
Kees Cook <keescook@chromium.org> Reviewed-by:
Ingo Molnar <mingo@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by:
Ben Hutchings <ben@decadent.org.uk>
-
- 17 Feb, 2016 1 commit
-
-
Matt Fleming authored
commit 74256377 upstream. There are a couple of nasty truncation bugs lurking in the pageattr code that can be triggered when mapping EFI regions, e.g. when we pass a cpa->pgd pointer. Because cpa->numpages is a 32-bit value, shifting left by PAGE_SHIFT will truncate the resultant address to 32-bits. Viorel-Cătălin managed to trigger this bug on his Dell machine that provides a ~5GB EFI region which requires 1236992 pages to be mapped. When calling populate_pud() the end of the region gets calculated incorrectly in the following buggy expression, end = start + (cpa->numpages << PAGE_SHIFT); And only 188416 pages are mapped. Next, populate_pud() gets invoked for a second time because of the loop in __change_page_attr_set_clr(), only this time no pages get mapped because shifting the remaining number of pages (1048576) by PAGE_SHIFT is zero. At which point the loop in __change_page_attr_set_clr() spins forever because we fail to map progress. Hitting this bug depends very much on the virtual address we pick to map the large region at and how many pages we map on the initial run through the loop. This explains why this issue was only recently hit with the introduction of commit a5caa209 ("x86/efi: Fix boot crash by mapping EFI memmap entries bottom-up at runtime, instead of top-down") It's interesting to note that safe uses of cpa->numpages do exist in the pageattr code. If instead of shifting ->numpages we multiply by PAGE_SIZE, no truncation occurs because PAGE_SIZE is a UL value, and so the result is unsigned long. To avoid surprises when users try to convert very large cpa->numpages values to addresses, change the data type from 'int' to 'unsigned long', thereby making it suitable for shifting by PAGE_SHIFT without any type casting. The alternative would be to make liberal use of casting, but that is far more likely to cause problems in the future when someone adds more code and fails to cast properly; this bug was difficult enough to track down in the first place. Reported-and-tested-by:
Viorel-Cătălin Răpițeanu <rapiteanu.catalin@gmail.com> Acked-by:
Borislav Petkov <bp@alien8.de> Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by:
Matt Fleming <matt@codeblueprint.co.uk> Link: https://bugzilla.kernel.org/show_bug.cgi?id=110131 Link: http://lkml.kernel.org/r/1454067370-10374-1-git-send-email-matt@codeblueprint.co.uk Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 02 Feb, 2016 1 commit
-
-
Andy Lutomirski authored
commit 71b3c126 upstream. When switch_mm() activates a new PGD, it also sets a bit that tells other CPUs that the PGD is in use so that TLB flush IPIs will be sent. In order for that to work correctly, the bit needs to be visible prior to loading the PGD and therefore starting to fill the local TLB. Document all the barriers that make this work correctly and add a couple that were missing. Signed-off-by:
Andy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Signed-off-by:
Ingo Molnar <mingo@kernel.org> [ luis: backported to 3.16: - dropped N/A comment in flush_tlb_mm_range() - adjusted context ] Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 28 Oct, 2015 1 commit
-
-
Stephen Smalley authored
commit ab76f7b4 upstream. Unused space between the end of __ex_table and the start of rodata can be left W+x in the kernel page tables. Extend the setting of the NX bit to cover this gap by starting from text_end rather than rodata_start. Before: ---[ High Kernel Mapping ]--- 0xffffffff80000000-0xffffffff81000000 16M pmd 0xffffffff81000000-0xffffffff81600000 6M ro PSE GLB x pmd 0xffffffff81600000-0xffffffff81754000 1360K ro GLB x pte 0xffffffff81754000-0xffffffff81800000 688K RW GLB x pte 0xffffffff81800000-0xffffffff81a00000 2M ro PSE GLB NX pmd 0xffffffff81a00000-0xffffffff81b3b000 1260K ro GLB NX pte 0xffffffff81b3b000-0xffffffff82000000 4884K RW GLB NX pte 0xffffffff82000000-0xffffffff82200000 2M RW PSE GLB NX pmd 0xffffffff82200000-0xffffffffa0000000 478M pmd After: ---[ High Kernel Mapping ]--- 0xffffffff80000000-0xffffffff81000000 16M pmd 0xffffffff81000000-0xffffffff81600000 6M ro PSE GLB x pmd 0xffffffff81600000-0xffffffff81754000 1360K ro GLB x pte 0xffffffff81754000-0xffffffff81800000 688K RW GLB NX pte 0xffffffff81800000-0xffffffff81a00000 2M ro PSE GLB NX pmd 0xffffffff81a00000-0xffffffff81b3b000 1260K ro GLB NX pte 0xffffffff81b3b000-0xffffffff82000000 4884K RW GLB NX pte 0xffffffff82000000-0xffffffff82200000 2M RW PSE GLB NX pmd 0xffffffff82200000-0xffffffffa0000000 478M pmd Signed-off-by:
Stephen Smalley <sds@tycho.nsa.gov> Acked-by:
Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1443704662-3138-1-git-send-email-sds@tycho.nsa.gov Signed-off-by:
Ingo Molnar <mingo@kernel.org> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 30 Sep, 2015 1 commit
-
-
Minfei Huang authored
commit 9962eea9 upstream. The variable pmd_idx is not initialized for the first iteration of the for loop. Assign the proper value which indexes the start address. Fixes: 719272c4 'x86, mm: only call early_ioremap_page_table_range_init() once' Signed-off-by:
Minfei Huang <mnfhuang@gmail.com> Cc: tony.luck@intel.com Cc: wangnan0@huawei.com Cc: david.vrabel@citrix.com Reviewed-by: yinghai@kernel.org Link: http://lkml.kernel.org/r/1436703522-29552-1-git-send-email-mhuang@redhat.com Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 02 Mar, 2015 2 commits
-
-
Hector Marco-Gisbert authored
commit 4e7c22d4 upstream. The issue is that the stack for processes is not properly randomized on 64 bit architectures due to an integer overflow. The affected function is randomize_stack_top() in file "fs/binfmt_elf.c": static unsigned long randomize_stack_top(unsigned long stack_top) { unsigned int random_variable = 0; if ((current->flags & PF_RANDOMIZE) && !(current->personality & ADDR_NO_RANDOMIZE)) { random_variable = get_random_int() & STACK_RND_MASK; random_variable <<= PAGE_SHIFT; } return PAGE_ALIGN(stack_top) + random_variable; return PAGE_ALIGN(stack_top) - random_variable; } Note that, it declares the "random_variable" variable as "unsigned int". Since the result of the shifting operation between STACK_RND_MASK (which is 0x3fffff on x86_64, 22 bits) and PAGE_SHIFT (which is 12 on x86_64): random_variable <<= PAGE_SHIFT; then the two leftmost bits are dropped when storing the result in the "random_variable". This variable shall be at least 34 bits long to hold the (22+12) result. These two dropped bits have an impact on the entropy of process stack. Concretely, the total stack entropy is reduced by four: from 2^28 to 2^30 (One fourth of expected entropy). This patch restores back the entropy by correcting the types involved in the operations in the functions randomize_stack_top() and stack_maxrandom_size(). The successful fix can be tested with: $ for i in `seq 1 10`; do cat /proc/self/maps | grep stack; done 7ffeda566000-7ffeda587000 rw-p 00000000 00:00 0 [stack] 7fff5a332000-7fff5a353000 rw-p 00000000 00:00 0 [stack] 7ffcdb7a1000-7ffcdb7c2000 rw-p 00000000 00:00 0 [stack] 7ffd5e2c4000-7ffd5e2e5000 rw-p 00000000 00:00 0 [stack] ... Once corrected, the leading bytes should be between 7ffc and 7fff, rather than always being 7fff. Signed-off-by:
Hector Marco-Gisbert <hecmargi@upv.es> Signed-off-by:
Ismael Ripoll <iripoll@upv.es> [ Rebased, fixed 80 char bugs, cleaned up commit message, added test example and CVE ] Signed-off-by:
Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Fixes: CVE-2015-1593 Link: http://lkml.kernel.org/r/20150214173350.GA18393@www.outflux.net Signed-off-by:
Borislav Petkov <bp@suse.de> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
Naoya Horiguchi authored
commit cbef8478 upstream. Migrating hugepages and hwpoisoned hugepages are considered as non-present hugepages, and they are referenced via migration entries and hwpoison entries in their page table slots. This behavior causes race condition because pmd_huge() doesn't tell non-huge pages from migrating/hwpoisoned hugepages. follow_page_mask() is one example where the kernel would call follow_page_pte() for such hugepage while this function is supposed to handle only normal pages. To avoid this, this patch makes pmd_huge() return true when pmd_none() is true *and* pmd_present() is false. We don't have to worry about mixing up non-present pmd entry with normal pmd (pointing to leaf level pte entry) because pmd_present() is true in normal pmd. The same race condition could happen in (x86-specific) gup_pmd_range(), where this patch simply adds pmd_present() check instead of pmd_huge(). This is because gup_pmd_range() is fast path. If we have non-present hugepage in this function, we will go into gup_huge_pmd(), then return 0 at flag mask check, and finally fall back to the slow path. Fixes: 290408d4 ("hugetlb: hugepage migration core") Signed-off-by:
Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 16 Feb, 2015 1 commit
-
-
Linus Torvalds authored
commit 7fb08eca upstream. This replaces four copies in various stages of mm_fault_error() handling with just a single one. It will also allow for more natural placement of the unlocking after some further cleanup. Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 04 Feb, 2015 1 commit
-
-
Linus Torvalds authored
commit 33692f27 upstream. The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by:
Takashi Iwai <tiwai@suse.de> Tested-by:
Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> [ luis: backported to 3.16: - file renamed: arch/powerpc/mm/copro_fault.c -> arch/powerpc/platforms/cell/spu_fault.c - dropped changes to arch/nios2/mm/fault.c ] Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 01 Dec, 2014 1 commit
-
-
Kees Cook authored
commit 45e2a9d4 upstream. When setting up permissions on kernel memory at boot, the end of the PMD that was split from bss remained executable. It should be NX like the rest. This performs a PMD alignment instead of a PAGE alignment to get the correct span of memory. Before: ---[ High Kernel Mapping ]--- ... 0xffffffff8202d000-0xffffffff82200000 1868K RW GLB NX pte 0xffffffff82200000-0xffffffff82c00000 10M RW PSE GLB NX pmd 0xffffffff82c00000-0xffffffff82df5000 2004K RW GLB NX pte 0xffffffff82df5000-0xffffffff82e00000 44K RW GLB x pte 0xffffffff82e00000-0xffffffffc0000000 978M pmd After: ---[ High Kernel Mapping ]--- ... 0xffffffff8202d000-0xffffffff82200000 1868K RW GLB NX pte 0xffffffff82200000-0xffffffff82e00000 12M RW PSE GLB NX pmd 0xffffffff82e00000-0xffffffffc0000000 978M pmd [ tglx: Changed it to roundup(_brk_end, PMD_SIZE) and added a comment. We really should unmap the reminder along with the holes caused by init,initdata etc. but thats a different issue ] Signed-off-by:
Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Wang Nan <wangnan0@huawei.com> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/20141114194737.GA3091@www.outflux.net Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 13 Nov, 2014 1 commit
-
-
Dexuan Cui authored
commit d1cd1210 upstream. pte_pfn() returns a PFN of long (32 bits in 32-PAE), so "long << PAGE_SHIFT" will overflow for PFNs above 4GB. Due to this issue, some Linux 32-PAE distros, running as guests on Hyper-V, with 5GB memory assigned, can't load the netvsc driver successfully and hence the synthetic network device can't work (we can use the kernel parameter mem=3000M to work around the issue). Cast pte_pfn() to phys_addr_t before shifting. Fixes: "commit d7656534 : x86, mm: Create slow_virt_to_phys()" Signed-off-by:
Dexuan Cui <decui@microsoft.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: gregkh@linuxfoundation.org Cc: linux-mm@kvack.org Cc: olaf@aepfle.de Cc: apw@canonical.com Cc: jasowang@redhat.com Cc: dave.hansen@intel.com Cc: riel@redhat.com Link: http://lkml.kernel.org/r/1414580017-27444-1-git-send-email-decui@microsoft.com Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Luis Henriques <luis.henriques@canonical.com>
-
- 04 Jun, 2014 4 commits
-
-
Emil Medve authored
Signed-off-by:
Emil Medve <Emilian.Medve@Freescale.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Yinghai Lu authored
On system with 2TiB ram, current x86_64 have 128M as section size, and one memory_block only include one section. So will have 16400 entries under /sys/devices/system/memory/. Current code try to use block id to find block pointer in /sys for any section, and reuse that block pointer. that finding will take some time even after commit 7c243c71 ("mm: speedup in __early_pfn_to_nid") that will skip the search in that case during booting up. So solution could be increase block size just like SGI UV system did. (harded code to 2g). This patch is trying to probe the block size to make it match mmio remap size. for example, Intel Nehalem later system will have memory range [0, TOML), [4g, TOMH]. If the memory hole is 2g and total is 128g, TOM will be 2g, and TOM2 will be 130g. We could use 2g as block size instead of default 128M. That will reduce number of entries in /sys/devices/system/memory/ On system 6TiB system will reduce boot time by 35 seconds. Signed-off-by:
Yinghai Lu <yinghai@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Mel Gorman authored
_PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting faults on x86. Care is taken such that _PAGE_NUMA is used only in situations where the VMA flags distinguish between NUMA hinting faults and prot_none faults. This decision was x86-specific and conceptually it is difficult requiring special casing to distinguish between PROTNONE and NUMA ptes based on context. Fundamentally, we only need the _PAGE_NUMA bit to tell the difference between an entry that is really unmapped and a page that is protected for NUMA hinting faults as if the PTE is not present then a fault will be trapped. Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset. This patch shrinks the maximum possible swap size and uses the bit to uniquely distinguish between NUMA hinting ptes and swap ptes. Signed-off-by:
Mel Gorman <mgorman@suse.de> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Noonan <steven@uplinklabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently hugepage migration is available for all archs which support pmd-level hugepage, but testing is done only for x86_64 and there're bugs for other archs. So to avoid breaking such archs, this patch limits the availability strictly to x86_64 until developers of other archs get interested in enabling this feature. Simply disabling hugepage migration on non-x86_64 archs is not enough to fix the reported problem where sys_move_pages() hits the BUG_ON() in follow_page(FOLL_GET), so let's fix this by checking if hugepage migration is supported in vma_migratable(). Signed-off-by:
Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by:
Michael Ellerman <mpe@ellerman.id.au> Tested-by:
Michael Ellerman <mpe@ellerman.id.au> Acked-by:
Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 20 May, 2014 2 commits
-
-
Andy Lutomirski authored
This removes the last vestiges of arch_vma_name from x86, replacing it with vm_ops->name. Good riddance. Signed-off-by:
Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/e681cb56096eee5b8b8767093a4f6fb82839f0a4.1400538962.git.luto@amacapital.net Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
Andy Lutomirski authored
Using arch_vma_name to give special mappings a name is awkward. x86 currently implements it by comparing the start address of the vma to the expected address of the vdso. This requires tracking the start address of special mappings and is probably buggy if a special vma is split or moved. Improve _install_special_mapping to just name the vma directly. Use it to give the x86 vvar area a name, which should make CRIU's life easier. As a side effect, the vvar area will show up in core dumps. This could be considered weird and is fixable. [hpa: I say we accept this as-is but be prepared to deal with knocking out the vvars from core dumps if this becomes a problem.] Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by:
Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/276b39b6b645fb11e345457b503f17b83c2c6fd0.1400538962.git.luto@amacapital.net Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
- 05 May, 2014 3 commits
-
-
Andy Lutomirski authored
This makes the 64-bit and x32 vdsos use the same mechanism as the 32-bit vdso. Most of the churn is deleting all the old fixmap code. Signed-off-by:
Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/8af87023f57f6bb96ec8d17fce3f88018195b49b.1399317206.git.luto@amacapital.net Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
Andy Lutomirski authored
Currently, vdso.so files are prepared and analyzed by a combination of objcopy, nm, some linker script tricks, and some simple ELF parsers in the kernel. Replace all of that with plain C code that runs at build time. All five vdso images now generate .c files that are compiled and linked in to the kernel image. This should cause only one userspace-visible change: the loaded vDSO images are stripped more heavily than they used to be. Everything outside the loadable segment is dropped. In particular, this causes the section table and section name strings to be missing. This should be fine: real dynamic loaders don't load or inspect these tables anyway. The result is roughly equivalent to eu-strip's --strip-sections option. The purpose of this change is to enable the vvar and hpet mappings to be moved to the page following the vDSO load segment. Currently, it is possible for the section table to extend into the page after the load segment, s...
-
Andy Lutomirski authored
The early_ioremap code requires that its buffers not span a PMD boundary. The logic for ensuring that only works if the fixmap is aligned, so assert that it's aligned correctly. To make this work reliably, reserve_top_address needs to be adjusted. Signed-off-by:
Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/e59a5f4362661f75dd4841fa74e1f2448045e245.1399317206.git.luto@amacapital.net Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
- 02 May, 2014 1 commit
-
-
Roland Dreier authored
In __ioremap_caller() (the guts of ioremap), we loop over the range of pfns being remapped and checks each one individually with page_is_ram(). For large ioremaps, this can be very slow. For example, we have a device with a 256 GiB PCI BAR, and ioremapping this BAR can take 20+ seconds -- sometimes long enough to trigger the soft lockup detector! Internally, page_is_ram() calls walk_system_ram_range() on a single page. Instead, we can make a single call to walk_system_ram_range() from __ioremap_caller(), and do our further checks only for any RAM pages that we find. For the common case of MMIO, this saves an enormous amount of work, since the range being ioremapped doesn't intersect system RAM at all. With this change, ioremap on our 256 GiB BAR takes less than 1 second. Signed-off-by:
Roland Dreier <roland@purestorage.com> Link: http://lkml.kernel.org/r/1399054721-1331-1-git-send-email-roland@kernel.org Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
- 30 Apr, 2014 1 commit
-
-
H. Peter Anvin authored
The IRET instruction, when returning to a 16-bit segment, only restores the bottom 16 bits of the user space stack pointer. This causes some 16-bit software to break, but it also leaks kernel state to user space. We have a software workaround for that ("espfix") for the 32-bit kernel, but it relies on a nonzero stack segment base which is not available in 64-bit mode. In checkin: b3b42ac2 x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels we "solved" this by forbidding 16-bit segments on 64-bit kernels, with the logic that 16-bit support is crippled on 64-bit kernels anyway (no V86 support), but it turns out that people are doing stuff like running old Win16 binaries under Wine and expect it to work. This works around this by creating percpu "ministacks", each of which is mapped 2^16 times 64K apart. When we detect that the return SS is on the LDT, we copy the IRET frame to the ministack and use the relevant alias to return to userspace. The ministacks are mapped readonly, so if IRET faults we promote #GP to #DF which is an IST vector and thus has its own stack; we then do the fixup in the #DF handler. (Making #GP an IST exception would make the msr_safe functions unsafe in NMI/MC context, and quite possibly have other effects.) Special thanks to: - Andy Lutomirski, for the suggestion of using very small stack slots and copy (as opposed to map) the IRET frame there, and for the suggestion to mark them readonly and let the fault promote to #DF. - Konrad Wilk for paravirt fixup and testing. - Borislav Petkov for testing help and useful comments. Reported-by:
Brian Gerst <brgerst@gmail.com> Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrew Lutomriski <amluto@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dirk Hohndel <dirk@hohndel.org> Cc: Arjan van de Ven <arjan.van.de.ven@intel.com> Cc: comex <comexk@gmail.com> Cc: Alexander van Heukelum <heukelum@fastmail.fm> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: <stable@vger.kernel.org> # consider after upstream merge
-
- 24 Apr, 2014 1 commit
-
-
Masami Hiramatsu authored
Use NOKPROBE_SYMBOL macro for protecting functions from kprobes instead of __kprobes annotation under arch/x86. This applies nokprobe_inline annotation for some cases, because NOKPROBE_SYMBOL() will inhibit inlining by referring the symbol address. This just folds a bunch of previous NOKPROBE_SYMBOL() cleanup patches for x86 to one patch. Signed-off-by:
Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081814.26341.51656.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp> Cc: Gleb Natapov <gleb@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Lebon <jlebon@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- 16 Apr, 2014 1 commit
-
-
Shaohua Li authored
We use the accessed bit to age a page at page reclaim time, and currently we also flush the TLB when doing so. But in some workloads TLB flush overhead is very heavy. In my simple multithreaded app with a lot of swap to several pcie SSDs, removing the tlb flush gives about 20% ~ 30% swapout speedup. Fortunately just removing the TLB flush is a valid optimization: on x86 CPUs, clearing the accessed bit without a TLB flush doesn't cause data corruption. It could cause incorrect page aging and the (mistaken) reclaim of hot pages, but the chance of that should be relatively low. So as a performance optimization don't flush the TLB when clearing the accessed bit, it will eventually be flushed by a context switch or a VM operation anyway. [ In the rare event of it not getting flushed for a long time the delay shouldn't really matter because there's no real memory pressure for swapout to react to. ] Suggested-by:
Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by:
Shaohua Li <shli@fusionio.com> Acked-by:
Rik van Riel <riel@redhat.com> Acked-by:
Mel Gorman <mgorman@suse.de> Acked-by:
Hugh Dickins <hughd@google.com> Acked-by:
Johannes Weiner <hannes@cmpxchg.org> Cc: linux-mm@kvack.org Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20140408075809.GA1764@kernel.org [ Rewrote the changelog and the code comments. ] Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- 08 Apr, 2014 1 commit
-
-
David Rientjes authored
Kmemcheck should use the preferred interface for parsing command line arguments, kstrto*(), rather than sscanf() itself. Use it appropriately. Signed-off-by:
David Rientjes <rientjes@google.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Acked-by:
Pekka Enberg <penberg@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 07 Apr, 2014 2 commits
-
-
Mark Salter authored
Move x86 over to the generic early ioremap implementation. Signed-off-by:
Mark Salter <msalter@redhat.com> Acked-by:
H. Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Dave Young authored
This patch series takes the common bits from the x86 early ioremap implementation and creates a generic implementation which may be used by other architectures. The early ioremap interfaces are intended for situations where boot code needs to make temporary virtual mappings before the normal ioremap interfaces are available. Typically, this means before paging_init() has run. This patch (of 6): There's a lot of sparse warnings for code like below: void *a = early_memremap(phys_addr, size); early_memremap intend to map kernel memory with ioremap facility, the return pointer should be a kernel ram pointer instead of iomem one. For making the function clearer and supressing sparse warnings this patch do below two things: 1. cast to (__force void *) for the return value of early_memremap 2. add early_memunmap function and pass (__force void __iomem *) to iounmap From Boris: "Ingo told me yesterday, it makes sense too. I'd guess we can try it. FWIW, all callers of early_memremap use the memory they get remapped as normal memory so we should be safe" Signed-off-by:
Dave Young <dyoung@redhat.com> Signed-off-by:
Mark Salter <msalter@redhat.com> Acked-by:
H. Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 13 Mar, 2014 1 commit
-
-
Borislav Petkov authored
It is WBINVD, for INValiDate and not "wbindv". Use caps for instruction names, while at it. Signed-off-by:
Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1394633584-5509-4-git-send-email-bp@alien8.de Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
- 06 Mar, 2014 1 commit
-
-
Peter Zijlstra authored
Building on commit 0ac09f9f ("x86, trace: Fix CR2 corruption when tracing page faults") this patch addresses another few issues: - Now that read_cr2() is lifted into trace_do_page_fault(), we should pass the address to trace_page_fault_entries() to avoid it re-reading a potentially changed cr2. - Put both trace_do_page_fault() and trace_page_fault_entries() under CONFIG_TRACING. - Mark both fault entry functions {,trace_}do_page_fault() as notrace to avoid getting __mcount or other function entry trace callbacks before we've observed CR2. - Mark __do_page_fault() as noinline to guarantee the function tracer does get to see the fault. Cc: <jolsa@redhat.com> Cc: <vincent.weaver@maine.edu> Acked-by:
Steven Rostedt <rostedt@goodmis.org> Signed-off-by:
Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140306145300.GO9987@twins.programming.kicks-ass.net Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
- 05 Mar, 2014 1 commit
-
-
Jiri Olsa authored
The trace_do_page_fault function trigger tracepoint and then handles the actual page fault. This could lead to error if the tracepoint caused page fault. The original cr2 value gets lost and the original page fault handler kills current process with SIGSEGV. This happens if you record page faults with callchain data, the user part of it will cause tracepoint handler to page fault: # perf record -g -e exceptions:page_fault_user ls Fixing this by saving the original cr2 value and using it after tracepoint handler is done. v2: Moving the cr2 read before exception_enter, because it could trigger tracepoint as well. Reported-by:
Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Reported-by:
Vince Weaver <vincent.weaver@maine.edu> Tested-by:
Vince Weaver <vincent.weaver@maine.edu> Acked-by:
Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1402211701380.6395@vincent-weaver-1.um.maine.edu Link: http://lkml.kernel.org/r/20140228160526.GD1133@krava.brq.redhat.com
-
- 04 Mar, 2014 3 commits
-
-
Matt Fleming authored
Now that we have EFI-specific page tables we need to lookup the pgd when dumping those page tables, rather than assuming that swapper_pgdir is the current pgdir. Remove the double underscore prefix, which is usually reserved for static functions. Acked-by:
Borislav Petkov <bp@suse.de> Signed-off-by:
Matt Fleming <matt.fleming@intel.com>
-
Borislav Petkov authored
We will use it in efi so expose it. Signed-off-by:
Borislav Petkov <bp@suse.de> Tested-by:
Toshi Kani <toshi.kani@hp.com> Signed-off-by:
Matt Fleming <matt.fleming@intel.com>
-
Borislav Petkov authored
With reusing the ->trampoline_pgd page table for mapping EFI regions in order to use them after having switched to EFI virtual mode, it is very useful to be able to dump aforementioned page table in dmesg. This adds that functionality through the walk_pgd_level() interface which can be called from somewhere else. The original functionality of dumping to debugfs remains untouched. Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by:
Borislav Petkov <bp@suse.de> Tested-by:
Toshi Kani <toshi.kani@hp.com> Signed-off-by:
Matt Fleming <matt.fleming@intel.com>
-
- 27 Feb, 2014 2 commits
-
-
Ross Zwisler authored
If clflushopt is available on the system, use it instead of clflush in clflush_cache_range. Signed-off-by:
Ross Zwisler <ross.zwisler@linux.intel.com> Link: http://lkml.kernel.org/r/1393441612-19729-3-git-send-email-ross.zwisler@linux.intel.com Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com>
-
H. Peter Anvin authored
The NUMAQ support seems to be unmaintained, remove it. Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: David Rientjes <rientjes@google.com> Acked-by:
Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by:
H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/n/530CFD6C.7040705@zytor.com
-