- 27 Aug, 2015 28 commits
-
-
Rafael J. Wysocki authored
[ Upstream commit cdbbeb69 ] commit b064a8fa upstream. Commit 73f7d1ca "ACPI / init: Run acpi_early_init() before timekeeping_init()" moved the ACPI subsystem initialization, including the ACPI mode enabling, to an earlier point in the initialization sequence, to allow the timekeeping subsystem use ACPI early. Unfortunately, that resulted in boot regressions on some systems and the early ACPI initialization was moved toward its original position in the kernel initialization code by commit c4e1acbb "ACPI / init: Invoke early ACPI initialization later". However, that turns out to be insufficient, as boot is still broken on the Tyan S8812 mainboard. To fix that issue, split the ACPI early initialization code into two pieces so the majority of it still located in acpi_early_init() and the part switching over the platform into the ACPI mode goes into a new function, acpi_subsystem_init(), executed at the original early ACPI initialization spot. That fixes the Tyan S8812 boot problem, but still allows ACPI tables to be loaded earlier which is useful to the EFI code in efi_enter_virtual_mode(). Link: https://bugzilla.kernel.org/show_bug.cgi?id=97141 Fixes: 73f7d1ca "ACPI / init: Run acpi_early_init() before timekeeping_init()" Reported-and-tested-by: Marius Tolzmann <tolzmann@molgen.mpg.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lee, Chun-Yi <jlee@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jeff Layton authored
[ Upstream commit 1ccdd6c6 ] commit 8fcd461d upstream. Currently, preprocess_stateid_op calls nfs4_check_olstateid which verifies that the open stateid corresponds to the current filehandle in the call by calling nfs4_check_fh. If the stateid is a NFS4_DELEG_STID however, then no such check is done. This could cause incorrect enforcement of permissions, because the nfsd_permission() call in nfs4_check_file uses current the current filehandle, but any subsequent IO operation will use the file descriptor in the stateid. Move the call to nfs4_check_fh into nfs4_check_file instead so that it can be done for all stateid types. Signed-off-by: Jeff Layton <jeff.layton@primarydata.com> [bfields: moved fh check to avoid NULL deref in special stateid case] Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christoph Hellwig authored
[ Upstream commit 3b5c2aed ] commit a0649b2d upstream. Split out two self contained helpers to make the function more readable. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: J. Bruce Fields <bfields@redhat.com> Cc: Jeff Layton <jlayton@poochiereds.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Paolo Bonzini authored
[ Upstream commit ce40cd3f ] Malicious (or egregiously buggy) userspace can trigger it, but it should never happen in normal operation. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Amanieu d'Antras authored
[ Upstream commit 3c00cb5e ] This function can leak kernel stack data when the user siginfo_t has a positive si_code value. The top 16 bits of si_code descibe which fields in the siginfo_t union are active, but they are treated inconsistently between copy_siginfo_from_user32, copy_siginfo_to_user32 and copy_siginfo_to_user. copy_siginfo_from_user32 is called from rt_sigqueueinfo and rt_tgsigqueueinfo in which the user has full control overthe top 16 bits of si_code. This fixes the following information leaks: x86: 8 bytes leaked when sending a signal from a 32-bit process to itself. This leak grows to 16 bytes if the process uses x32. (si_code = __SI_CHLD) x86: 100 bytes leaked when sending a signal from a 32-bit process to a 64-bit process. (si_code = -1) sparc: 4 bytes leaked when sending a signal from a 32-bit process to a 64-bit process. (si_code = any) parsic and s390 have similar bugs, but they are not vulnerable because rt_[tg]sigqueueinfo have checks that prevent sending a positive si_code to a different process. These bugs are also fixed for consistency. Signed-off-by: Amanieu d'Antras <amanieu@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Amanieu d'Antras authored
[ Upstream commit c08a75d9 ] commit 26135022 upstream. This function may copy the si_addr_lsb, si_lower and si_upper fields to user mode when they haven't been initialized, which can leak kernel stack data to user mode. Just checking the value of si_code is insufficient because the same si_code value is shared between multiple signals. This is solved by checking the value of si_signo in addition to si_code. Signed-off-by: Amanieu d'Antras <amanieu@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Amanieu d'Antras authored
[ Upstream commit 3ead7c52 ] This function may copy the si_addr_lsb field to user mode when it hasn't been initialized, which can leak kernel stack data to user mode. Just checking the value of si_code is insufficient because the same si_code value is shared between multiple signals. This is solved by checking the value of si_signo in addition to si_code. Signed-off-by: Amanieu d'Antras <amanieu@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Michal Hocko authored
[ Upstream commit ecf5fc6e ] Nikolay has reported a hang when a memcg reclaim got stuck with the following backtrace: PID: 18308 TASK: ffff883d7c9b0a30 CPU: 1 COMMAND: "rsync" #0 __schedule at ffffffff815ab152 #1 schedule at ffffffff815ab76e #2 schedule_timeout at ffffffff815ae5e5 #3 io_schedule_timeout at ffffffff815aad6a #4 bit_wait_io at ffffffff815abfc6 #5 __wait_on_bit at ffffffff815abda5 #6 wait_on_page_bit at ffffffff8111fd4f #7 shrink_page_list at ffffffff81135445 #8 shrink_inactive_list at ffffffff81135845 #9 shrink_lruvec at ffffffff81135ead #10 shrink_zone at ffffffff811360c3 #11 shrink_zones at ffffffff81136eff #12 do_try_to_free_pages at ffffffff8113712f #13 try_to_free_mem_cgroup_pages at ffffffff811372be #14 try_charge at ffffffff81189423 #15 mem_cgroup_try_charge at ffffffff8118c6f5 #16 __add_to_page_cache_locked at ffffffff8112137d #17 add_to_page_cache_lru at ffffffff81121618 #18 pagecache_get_page at ffffffff8112170b #19 grow_dev_page at ffffffff811c8297 #20 __getblk_slow at ffffffff811c91d6 #21 __getblk_gfp at ffffffff811c92c1 #22 ext4_ext_grow_indepth at ffffffff8124565c #23 ext4_ext_create_new_leaf at ffffffff81246ca8 #24 ext4_ext_insert_extent at ffffffff81246f09 #25 ext4_ext_map_blocks at ffffffff8124a848 #26 ext4_map_blocks at ffffffff8121a5b7 #27 mpage_map_one_extent at ffffffff8121b1fa #28 mpage_map_and_submit_extent at ffffffff8121f07b #29 ext4_writepages at ffffffff8121f6d5 #30 do_writepages at ffffffff8112c490 #31 __filemap_fdatawrite_range at ffffffff81120199 #32 filemap_flush at ffffffff8112041c #33 ext4_alloc_da_blocks at ffffffff81219da1 #34 ext4_rename at ffffffff81229b91 #35 ext4_rename2 at ffffffff81229e32 #36 vfs_rename at ffffffff811a08a5 #37 SYSC_renameat2 at ffffffff811a3ffc #38 sys_renameat2 at ffffffff811a408e #39 sys_rename at ffffffff8119e51e #40 system_call_fastpath at ffffffff815afa89 Dave Chinner has properly pointed out that this is a deadlock in the reclaim code because ext4 doesn't submit pages which are marked by PG_writeback right away. The heuristic was introduced by commit e62e384e ("memcg: prevent OOM with too many dirty pages") and it was applied only when may_enter_fs was specified. The code has been changed by c3b94f44 ("memcg: further prevent OOM with too many dirty pages") which has removed the __GFP_FS restriction with a reasoning that we do not get into the fs code. But this is not sufficient apparently because the fs doesn't necessarily submit pages marked PG_writeback for IO right away. ext4_bio_write_page calls io_submit_add_bh but that doesn't necessarily submit the bio. Instead it tries to map more pages into the bio and mpage_map_one_extent might trigger memcg charge which might end up waiting on a page which is marked PG_writeback but hasn't been submitted yet so we would end up waiting for something that never finishes. Fix this issue by replacing __GFP_IO by may_enter_fs check (for case 2) before we go to wait on the writeback. The page fault path, which is the only path that triggers memcg oom killer since 3.12, shouldn't require GFP_NOFS and so we shouldn't reintroduce the premature OOM killer issue which was originally addressed by the heuristic. As per David Chinner the xfs is doing similar thing since 2.6.15 already so ext4 is not the only affected filesystem. Moreover he notes: : For example: IO completion might require unwritten extent conversion : which executes filesystem transactions and GFP_NOFS allocations. The : writeback flag on the pages can not be cleared until unwritten : extent conversion completes. Hence memory reclaim cannot wait on : page writeback to complete in GFP_NOFS context because it is not : safe to do so, memcg reclaim or otherwise. Cc: stable@vger.kernel.org # 3.9+ [tytso@mit.edu: corrected the control flow] Fixes: c3b94f44 ("memcg: further prevent OOM with too many dirty pages") Reported-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Scott Wood authored
[ Upstream commit 5f867db6 ] Commit 66507c7b ("mtd: nand: Add support to use nand_base poi databuf as bounce buffer") added a flag NAND_USE_BOUNCE_BUFFER using the same bit value as the existing NAND_BUSWIDTH_AUTO. Cc: Kamal Dasu <kdasu.kdev@gmail.com> Fixes: 66507c7b ("mtd: nand: Add support to use nand_base poi databuf as bounce buffer") Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Pieter Hollants authored
[ Upstream commit 6da3700c ] Added the USB IDs 0x413c:0x81b1 for the "Dell Wireless 5809e Gobi(TM) 4G LTE Mobile Broadband Card", a Dell-branded Sierra Wireless EM7305 LTE card in M.2 form factor, used eg. in Dell's Latitude E7540 Notebook series. "lsusb -v" output for this device: Bus 002 Device 003: ID 413c:81b1 Dell Computer Corp. Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 0 bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x413c Dell Computer Corp. idProduct 0x81b1 bcdDevice 0.06 iManufacturer 1 Sierra Wireless, Incorporated iProduct 2 Dell Wireless 5809e Gobi
™ 4G LTE Mobile Broadband Card iSerial 3 bNumConfigurations 2 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 204 bNumInterfaces 4 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 500mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 2 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 0 iInterface 0 ** UNRECOGNIZED: 05 24 00 10 01 ** UNRECOGNIZED: 05 24 01 00 00 ** UNRECOGNIZED: 04 24 02 02 ** UNRECOGNIZED: 05 24 06 00 00 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x000c 1x 12 bytes bInterval 9 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x02 EP 2 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 3 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 0 iInterface 0 ** UNRECOGNIZED: 05 24 00 10 01 ** UNRECOGNIZED: 05 24 01 00 00 ** UNRECOGNIZED: 04 24 02 02 ** UNRECOGNIZED: 05 24 06 00 00 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x85 EP 5 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x000c 1x 12 bytes bInterval 9 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x84 EP 4 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x03 EP 3 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 8 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x87 EP 7 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x000a 1x 10 bytes bInterval 9 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x86 EP 6 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x04 EP 4 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 ** UNRECOGNIZED: 2c ff 42 49 53 54 00 01 07 f5 40 f6 00 00 00 00 01 f7 c4 09 02 f8 c4 09 03 f9 88 13 04 fa 10 27 05 fb 10 27 06 fc c4 09 07 fd c4 09 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 95 bNumInterfaces 2 bConfigurationValue 2 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 500mA Interface Association: bLength 8 bDescriptorType 11 bFirstInterface 12 bInterfaceCount 2 bFunctionClass 2 Communications bFunctionSubClass 14 bFunctionProtocol 0 iFunction 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 12 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 2 Communications bInterfaceSubClass 14 bInterfaceProtocol 0 iInterface 0 CDC Header: bcdCDC 1.10 CDC Union: bMasterInterface 12 bSlaveInterface 13 CDC MBIM: bcdMBIMVersion 1.00 wMaxControlMessage 4096 bNumberFilters 32 bMaxFilterSize 128 wMaxSegmentSize 1500 bmNetworkCapabilities 0x20 8-byte ntb input size CDC MBIM Extended: bcdMBIMExtendedVersion 1.00 bMaxOutstandingCommandMessages 64 wMTU 1500 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 9 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 13 bAlternateSetting 0 bNumEndpoints 0 bInterfaceClass 10 CDC Data bInterfaceSubClass 0 bInterfaceProtocol 2 iInterface 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 13 bAlternateSetting 1 bNumEndpoints 2 bInterfaceClass 10 CDC Data bInterfaceSubClass 0 bInterfaceProtocol 2 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 0 bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 2 Device Status: 0x0000 (Bus Powered) Signed-off-by: Pieter Hollants <pieter@hollants.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> -
Reinhard Speyerer authored
[ Upstream commit 653cdc13 ] Tests with a Sierra Wireless MC7355 have shown that 1199:9041 devices also require the option_send_setup() code to be used on the USB interface for the AT port to make unsolicited response codes work correctly. Move these devices from the qcserial driver to the option driver like it has been done for the 1199:68c0 devices in commit d80c0d14 ("USB: qcserial/option: make AT URCs work for Sierra Wireless MC73xx"). Signed-off-by: Reinhard Speyerer <rspmn@arcor.de> Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Peter Chen authored
[ Upstream commit c41b7767 ] The p_interval should be less if the 'bInterval' at the descriptor is larger, eg, if 'bInterval' is 5 for HS, the p_interval should be 8000 / 16 = 500. It fixes the patch 9bb87f16 ("usb: gadget: f_uac2: send reasonably sized packets") Cc: <stable@vger.kernel.org> # v3.18+ Fixes: 9bb87f16 ("usb: gadget: f_uac2: send reasonably sized packets") Acked-by: Daniel Mack <zonque@gmail.com> Signed-off-by: Peter Chen <peter.chen@freescale.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
NeilBrown authored
[ Upstream commit 423f04d6 ] raid1_end_read_request() assumes that the In_sync bits are consistent with the ->degaded count. raid1_spare_active updates the In_sync bit before the ->degraded count and so exposes an inconsistency, as does error() So extend the spinlock in raid1_spare_active() and error() to hide those inconsistencies. This should probably be part of Commit: 34cab6f4 ("md/raid1: fix test for 'was read error from last working device'.") as it addresses the same issue. It fixes the same bug and should go to -stable for same reasons. Fixes: 76073054 ("md/raid1: clean up read_balance.") Cc: stable@vger.kernel.org (v3.0+) Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Michael S. Tsirkin authored
[ Upstream commit c9ddbac9 ] 09a2c73d ("PCI: Remove unused PCI_MSIX_FLAGS_BIRMASK definition") removed PCI_MSIX_FLAGS_BIRMASK from an exported header because it was unused in the kernel. But that breaks user programs that were using it (QEMU in particular). Restore the PCI_MSIX_FLAGS_BIRMASK definition. [bhelgaas: changelog] Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> CC: stable@vger.kernel.org # v3.13+ Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kinglong Mee authored
[ Upstream commit c7e6f051 ] commit c2227a39 upstream. On an absent filesystem (one served by another server), we need to be able to handle requests for certain attributest (like fs_locations, so the client can find out which server does have the filesystem), but others we can't. We forgot to take that into account when adding another attribute bitmask work for the SECURITY_LABEL attribute. There an export entry with the "refer" option can result in: [ 88.414272] kernel BUG at fs/nfsd/nfs4xdr.c:2249! [ 88.414828] invalid opcode: 0000 [#1] SMP [ 88.415368] Modules linked in: rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache nfsd xfs libcrc32c iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi iosf_mbi ppdev btrfs coretemp crct10dif_pclmul crc32_pclmul crc32c_intel xor ghash_clmulni_intel raid6_pq vmw_balloon parport_pc parport i2c_piix4 shpchp vmw_vmci acpi_cpufreq auth_rpcgss nfs_acl lockd grace sunrpc vmwgfx drm_kms_helper ttm drm mptspi mptscsih serio_raw mptbase e1000 scsi_transport_spi ata_generic pata_acpi [last unloaded: nfsd] [ 88.417827] CPU: 0 PID: 2116 Comm: nfsd Not tainted 4.0.7-300.fc22.x86_64 #1 [ 88.418448] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/20/2014 [ 88.419093] task: ffff880079146d50 ti: ffff8800785d8000 task.ti: ffff8800785d8000 [ 88.419729] RIP: 0010:[<ffffffffa04b3c10>] [<ffffffffa04b3c10>] nfsd4_encode_fattr+0x820/0x1f00 [nfsd] [ 88.420376] RSP: 0000:ffff8800785db998 EFLAGS: 00010206 [ 88.421027] RAX: 0000000000000001 RBX: 000000000018091a RCX: ffff88006668b980 [ 88.421676] RDX: 00000000fffef7fc RSI: 0000000000000000 RDI: ffff880078d05000 [ 88.422315] RBP: ffff8800785dbb58 R08: ffff880078d043f8 R09: ffff880078d4a000 [ 88.422968] R10: 0000000000010000 R11: 0000000000000002 R12: 0000000000b0a23a [ 88.423612] R13: ffff880078d05000 R14: ffff880078683100 R15: ffff88006668b980 [ 88.424295] FS: 0000000000000000(0000) GS:ffff88007c600000(0000) knlGS:0000000000000000 [ 88.424944] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 88.425597] CR2: 00007f40bc370f90 CR3: 0000000035af5000 CR4: 00000000001407f0 [ 88.426285] Stack: [ 88.426921] ffff8800785dbaa8 ffffffffa049e4af ffff8800785dba08 ffffffff813298f0 [ 88.427585] ffff880078683300 ffff8800769b0de8 0000089d00000001 0000000087f805e0 [ 88.428228] ffff880000000000 ffff880079434a00 0000000000000000 ffff88006668b980 [ 88.428877] Call Trace: [ 88.429527] [<ffffffffa049e4af>] ? exp_get_by_name+0x7f/0xb0 [nfsd] [ 88.430168] [<ffffffff813298f0>] ? inode_doinit_with_dentry+0x210/0x6a0 [ 88.430807] [<ffffffff8123833e>] ? d_lookup+0x2e/0x60 [ 88.431449] [<ffffffff81236133>] ? dput+0x33/0x230 [ 88.432097] [<ffffffff8123f214>] ? mntput+0x24/0x40 [ 88.432719] [<ffffffff812272b2>] ? path_put+0x22/0x30 [ 88.433340] [<ffffffffa049ac87>] ? nfsd_cross_mnt+0xb7/0x1c0 [nfsd] [ 88.433954] [<ffffffffa04b54e0>] nfsd4_encode_dirent+0x1b0/0x3d0 [nfsd] [ 88.434601] [<ffffffffa04b5330>] ? nfsd4_encode_getattr+0x40/0x40 [nfsd] [ 88.435172] [<ffffffffa049c991>] nfsd_readdir+0x1c1/0x2a0 [nfsd] [ 88.435710] [<ffffffffa049a530>] ? nfsd_direct_splice_actor+0x20/0x20 [nfsd] [ 88.436447] [<ffffffffa04abf30>] nfsd4_encode_readdir+0x120/0x220 [nfsd] [ 88.437011] [<ffffffffa04b58cd>] nfsd4_encode_operation+0x7d/0x190 [nfsd] [ 88.437566] [<ffffffffa04aa6dd>] nfsd4_proc_compound+0x24d/0x6f0 [nfsd] [ 88.438157] [<ffffffffa0496103>] nfsd_dispatch+0xc3/0x220 [nfsd] [ 88.438680] [<ffffffffa006f0cb>] svc_process_common+0x43b/0x690 [sunrpc] [ 88.439192] [<ffffffffa0070493>] svc_process+0x103/0x1b0 [sunrpc] [ 88.439694] [<ffffffffa0495a57>] nfsd+0x117/0x190 [nfsd] [ 88.440194] [<ffffffffa0495940>] ? nfsd_destroy+0x90/0x90 [nfsd] [ 88.440697] [<ffffffff810bb728>] kthread+0xd8/0xf0 [ 88.441260] [<ffffffff810bb650>] ? kthread_worker_fn+0x180/0x180 [ 88.441762] [<ffffffff81789e58>] ret_from_fork+0x58/0x90 [ 88.442322] [<ffffffff810bb650>] ? kthread_worker_fn+0x180/0x180 [ 88.442879] Code: 0f 84 93 05 00 00 83 f8 ea c7 85 a0 fe ff ff 00 00 27 30 0f 84 ba fe ff ff 85 c0 0f 85 a5 fe ff ff e9 e3 f9 ff ff 0f 1f 44 00 00 <0f> 0b 66 0f 1f 44 00 00 be 04 00 00 00 4c 89 ef 4c 89 8d 68 fe [ 88.444052] RIP [<ffffffffa04b3c10>] nfsd4_encode_fattr+0x820/0x1f00 [nfsd] [ 88.444658] RSP <ffff8800785db998> [ 88.445232] ---[ end trace 6cb9d0487d94a29f ]--- Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Joseph Qi authored
[ Upstream commit 209f7512 ] The "BUG_ON(list_empty(&osb->blocked_lock_list))" in ocfs2_downconvert_thread_do_work can be triggered in the following case: ocfs2dc has firstly saved osb->blocked_lock_count to local varibale processed, and then processes the dentry lockres. During the dentry put, it calls iput and then deletes rw, inode and open lockres from blocked list in ocfs2_mark_lockres_freeing. And this causes the variable `processed' to not reflect the number of blocked lockres to be processed, which triggers the BUG. Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marcus Gelderie authored
[ Upstream commit de54b9ac ] A while back, the message queue implementation in the kernel was improved to use btrees to speed up retrieval of messages, in commit d6629859 ("ipc/mqueue: improve performance of send/recv"). That patch introducing the improved kernel handling of message queues (using btrees) has, as a by-product, changed the meaning of the QSIZE field in the pseudo-file created for the queue. Before, this field reflected the size of the user-data in the queue. Since, it also takes kernel data structures into account. For example, if 13 bytes of user data are in the queue, on my machine the file reports a size of 61 bytes. There was some discussion on this topic before (for example https://lkml.org/lkml/2014/10/1/115). Commenting on a th lkml, Michael Kerrisk gave the following background (https://lkml.org/lkml/2015/6/16/74): The pseudofiles in the mqueue filesystem (usually mounted at /dev/mqueue) expose fields with metadata describing a message queue. One of these fields, QSIZE, as originally implemented, showed the total number of bytes of user data in all messages in the message queue, and this feature was documented from the beginning in the mq_overview(7) page. In 3.5, some other (useful) work happened to break the user-space API in a couple of places, including the value exposed via QSIZE, which now includes a measure of kernel overhead bytes for the queue, a figure that renders QSIZE useless for its original purpose, since there's no way to deduce the number of overhead bytes consumed by the implementation. (The other user-space breakage was subsequently fixed.) This patch removes the accounting of kernel data structures in the queue. Reporting the size of these data-structures in the QSIZE field was a breaking change (see Michael's comment above). Without the QSIZE field reporting the total size of user-data in the queue, there is no way to deduce this number. It should be noted that the resource limit RLIMIT_MSGQUEUE is counted against the worst-case size of the queue (in both the old and the new implementation). Therefore, the kernel overhead accounting in QSIZE is not necessary to help the user understand the limitations RLIMIT imposes on the processes. Signed-off-by: Marcus Gelderie <redmnic@gmail.com> Acked-by: Doug Ledford <dledford@redhat.com> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Cc: David Howells <dhowells@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: John Duffy <jb_duffy@btinternet.com> Cc: Arto Bendiken <arto@bendiken.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Pali Rohár authored
[ Upstream commit 25ab1617 ] commit a4b45b25 upstream. CPU fan speed going up and down on Dell Studio XPS 8100 for unknown reasons. Without further debugging on the affected machine, it is not possible to find the problem. Link: https://bugzilla.kernel.org/show_bug.cgi?id=100121Signed-off-by: Pali Rohár <pali.rohar@gmail.com> Tested-by: Jan C Peters <jcpeters89@gmail.com> [groeck: cleaned up description, comments] Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Takashi Sakamoto authored
[ Upstream commit 18f5ed36 ] Fireworks uses TSB43CB43(IceLynx-Micro) as its IEC 61883-1/6 interface. This chip includes ARM7 core, and loads and runs program. The firmware is stored in on-board memory and loaded every powering-on from it. Echo Audio ships several versions of firmwares for each model. These firmwares have each quirk and the quirk changes a sequence of packets. As long as I investigated, AudioFire2/AudioFire4/AudioFirePre8 have a quirk to transfer a first packet with 0x02 in its dbc field. This causes ALSA Fireworks driver to detect discontinuity. In this case, firmware version 5.7.0, 5.7.3 and 5.8.0 are used. Payload CIP CIP quadlets header1 header2 02 00050002 90ffffff <- 42 0005000a 90013000 42 00050012 90014400 42 0005001a 90015800 02 0005001a 90ffffff 42 00050022 90019000 42 0005002a 9001a400 42 00050032 9001b800 02 00050032 90ffffff 42 0005003a 9001d000 42 00050042 9001e400 42 0005004a 9001f800 02 0005004a 90ffffff (AudioFire2 with firmware version 5.7.) $ dmesg snd-fireworks fw1.0: Detect discontinuity of CIP: 00 02 These models, AudioFire8 (since Jul 2009 ) and Gibson Robot Interface Pack series uses the same ARM binary as their firmware. Thus, this quirk may be observed among them. This commit adds a new member for AMDTP structure. This member represents the value of dbc field in a first AMDTP packet. Drivers can set it with a preferred value according to model's quirk. Tested-by: Johannes Oertei <johannes.oertel@uni-due.de> Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Dan Carpenter authored
[ Upstream commit 44008f08 ] Smatch complains that we have nested checks for "spdif_present". It turns out the current behavior isn't correct, we should remove the first check and keep the second. Fixes: 1077a024 ('ALSA: hda - Use generic parser for Cirrus codec driver') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Roger Quadros authored
[ Upstream commit 9a258afa ] For hwmods without sysc, _init_mpu_rt_base(oh) won't be called and so _find_mpu_rt_port(oh) will return NULL thus preventing ready state check on those modules after the module is enabled. This can potentially cause a bus access error if the module is accessed before the module is ready. Fix this by unconditionally calling _init_mpu_rt_base() during hwmod _init(). Do ioremap only if we need SYSC access. Eventhough _wait_target_ready() check doesn't really need MPU RT port but just the PRCM registers, we still mandate that the hwmod must have an MPU RT port if ready state check needs to be done. Else it would mean that the module is not accessible by MPU so there is no point in waiting for target to be ready. e.g. this fixes the below DCAN bus access error on AM437x-gp-evm. [ 16.672978] ------------[ cut here ]------------ [ 16.677885] WARNING: CPU: 0 PID: 1580 at drivers/bus/omap_l3_noc.c:147 l3_interrupt_handler+0x234/0x35c() [ 16.687946] 44000000.ocp:L3 Custom Error: MASTER M2 (64-bit) TARGET L4_PER_0 (Read): Data Access in User mode during Functional access [ 16.700654] Modules linked in: xhci_hcd btwilink ti_vpfe dwc3 videobuf2_core ov2659 bluetooth v4l2_common videodev ti_am335x_adc kfifo_buf industrialio c_can_platform videobuf2_dma_contig media snd_soc_tlv320aic3x pixcir_i2c_ts c_can dc [ 16.731144] CPU: 0 PID: 1580 Comm: rpc.statd Not tainted 3.14.26-02561-gf733aa036398 #180 [ 16.739747] Backtrace: [ 16.742336] [<c0011108>] (dump_backtrace) from [<c00112a4>] (show_stack+0x18/0x1c) [ 16.750285] r6:00000093 r5:00000009 r4:eab5b8a8 r3:00000000 [ 16.756252] [<c001128c>] (show_stack) from [<c05a4418>] (dump_stack+0x20/0x28) [ 16.763870] [<c05a43f8>] (dump_stack) from [<c0037120>] (warn_slowpath_common+0x6c/0x8c) [ 16.772408] [<c00370b4>] (warn_slowpath_common) from [<c00371e4>] (warn_slowpath_fmt+0x38/0x40) [ 16.781550] r8:c05d1f90 r7:c0730844 r6:c0730448 r5:80080003 r4:ed0cd210 [ 16.788626] [<c00371b0>] (warn_slowpath_fmt) from [<c027fa94>] (l3_interrupt_handler+0x234/0x35c) [ 16.797968] r3:ed0cd480 r2:c0730508 [ 16.801747] [<c027f860>] (l3_interrupt_handler) from [<c0063758>] (handle_irq_event_percpu+0x54/0x1bc) [ 16.811533] r10:ed005600 r9:c084855b r8:0000002a r7:00000000 r6:00000000 r5:0000002a [ 16.819780] r4:ed0e6d80 [ 16.822453] [<c0063704>] (handle_irq_event_percpu) from [<c00638f0>] (handle_irq_event+0x30/0x40) [ 16.831789] r10:eb2b6938 r9:eb2b6960 r8:bf011420 r7:fa240100 r6:00000000 r5:0000002a [ 16.840052] r4:ed005600 [ 16.842744] [<c00638c0>] (handle_irq_event) from [<c00661d8>] (handle_fasteoi_irq+0x74/0x128) [ 16.851702] r4:ed005600 r3:00000000 [ 16.855479] [<c0066164>] (handle_fasteoi_irq) from [<c0063068>] (generic_handle_irq+0x28/0x38) [ 16.864523] r4:0000002a r3:c0066164 [ 16.868294] [<c0063040>] (generic_handle_irq) from [<c000ef60>] (handle_IRQ+0x38/0x8c) [ 16.876612] r4:c081c640 r3:00000202 [ 16.880380] [<c000ef28>] (handle_IRQ) from [<c00084f0>] (gic_handle_irq+0x30/0x5c) [ 16.888328] r6:eab5ba38 r5:c0804460 r4:fa24010c r3:00000100 [ 16.894303] [<c00084c0>] (gic_handle_irq) from [<c05a8d80>] (__irq_svc+0x40/0x50) [ 16.902193] Exception stack(0xeab5ba38 to 0xeab5ba80) [ 16.907499] ba20: 00000000 00000006 [ 16.916108] ba40: fa1d0000 fa1d0008 ed3d3000 eab5bab4 ed3d3460 c0842af4 bf011420 eb2b6960 [ 16.924716] ba60: eb2b6938 eab5ba8c eab5ba90 eab5ba80 bf035220 bf07702c 600f0013 ffffffff [ 16.933317] r7:eab5ba6c r6:ffffffff r5:600f0013 r4:bf07702c [ 16.939317] [<bf077000>] (c_can_plat_read_reg_aligned_to_16bit [c_can_platform]) from [<bf035220>] (c_can_get_berr_counter+0x38/0x64 [c_can]) [ 16.952696] [<bf0351e8>] (c_can_get_berr_counter [c_can]) from [<bf010294>] (can_fill_info+0x124/0x15c [can_dev]) [ 16.963480] r5:ec8c9740 r4:ed3d3000 [ 16.967253] [<bf010170>] (can_fill_info [can_dev]) from [<c0502fa8>] (rtnl_fill_ifinfo+0x58c/0x8fc) [ 16.976749] r6:ec8c9740 r5:ed3d3000 r4:eb2b6780 [ 16.981613] [<c0502a1c>] (rtnl_fill_ifinfo) from [<c0503408>] (rtnl_dump_ifinfo+0xf0/0x1dc) [ 16.990401] r10:ec8c9740 r9:00000000 r8:00000000 r7:00000000 r6:ebd4d1b4 r5:ed3d3000 [ 16.998671] r4:00000000 [ 17.001342] [<c0503318>] (rtnl_dump_ifinfo) from [<c050e6e4>] (netlink_dump+0xa8/0x1e0) [ 17.009772] r10:00000000 r9:00000000 r8:c0503318 r7:ebf3e6c0 r6:ebd4d1b4 r5:ec8c9740 [ 17.018050] r4:ebd4d000 [ 17.020714] [<c050e63c>] (netlink_dump) from [<c050ec10>] (__netlink_dump_start+0x104/0x154) [ 17.029591] r6:eab5bd34 r5:ec8c9980 r4:ebd4d000 [ 17.034454] [<c050eb0c>] (__netlink_dump_start) from [<c0505604>] (rtnetlink_rcv_msg+0x110/0x1f4) [ 17.043778] r7:00000000 r6:ec8c9980 r5:00000f40 r4:ebf3e6c0 [ 17.049743] [<c05054f4>] (rtnetlink_rcv_msg) from [<c05108e8>] (netlink_rcv_skb+0xb4/0xc8) [ 17.058449] r8:eab5bdac r7:ec8c9980 r6:c05054f4 r5:ec8c9980 r4:ebf3e6c0 [ 17.065534] [<c0510834>] (netlink_rcv_skb) from [<c0504134>] (rtnetlink_rcv+0x24/0x2c) [ 17.073854] r6:ebd4d000 r5:00000014 r4:ec8c9980 r3:c0504110 [ 17.079846] [<c0504110>] (rtnetlink_rcv) from [<c05102ac>] (netlink_unicast+0x180/0x1ec) [ 17.088363] r4:ed0c6800 r3:c0504110 [ 17.092113] [<c051012c>] (netlink_unicast) from [<c0510670>] (netlink_sendmsg+0x2ac/0x380) [ 17.100813] r10:00000000 r8:00000008 r7:ec8c9980 r6:ebd4d000 r5:eab5be70 r4:eab5bee4 [ 17.109083] [<c05103c4>] (netlink_sendmsg) from [<c04dfdb4>] (sock_sendmsg+0x90/0xb0) [ 17.117305] r10:00000000 r9:eab5a000 r8:becdda3c r7:0000000c r6:ea978400 r5:eab5be70 [ 17.125563] r4:c05103c4 [ 17.128225] [<c04dfd24>] (sock_sendmsg) from [<c04e1c28>] (SyS_sendto+0xb8/0xdc) [ 17.136001] r6:becdda5c r5:00000014 r4:ecd37040 [ 17.140876] [<c04e1b70>] (SyS_sendto) from [<c000e680>] (ret_fast_syscall+0x0/0x30) [ 17.148923] r10:00000000 r8:c000e804 r7:00000122 r6:becdda5c r5:0000000c r4:becdda5c [ 17.157169] ---[ end trace 2b71e15b38f58bad ]--- Fixes: 6423d6df ("ARM: OMAP2+: hwmod: check for module address space during init") Signed-off-by: Roger Quadros <rogerq@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: <stable@vger.kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Denis Carikli authored
[ Upstream commit e053f96b ] Since commit 3d42a379 ("can: flexcan: add 2nd clock to support imx53 and newer") the can driver requires a dt nodes to have a second clock. Add them to imx35 to fix probing the flex can driver on the respective platforms. Signed-off-by: Denis Carikli <denis@eukrea.com> Cc: <stable@vger.kernel.org> Signed-off-by: Shawn Guo <shawnguo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Ilya Dryomov authored
[ Upstream commit 2761713d ] For write/discard obj_requests that involved a copyup method call, the opcode of the first op is CEPH_OSD_OP_CALL and the ->callback is rbd_img_obj_copyup_callback(). The latter frees copyup pages, sets ->xferred and delegates to rbd_img_obj_callback(), the "normal" image object callback, for reporting to block layer and putting refs. rbd_osd_req_callback() however treats CEPH_OSD_OP_CALL as a trivial op, which means obj_request is marked done in rbd_osd_trivial_callback(), *before* ->callback is invoked and rbd_img_obj_copyup_callback() has a chance to run. Marking obj_request done essentially means giving rbd_img_obj_callback() a license to end it at any moment, so if another obj_request from the same img_request is being completed concurrently, rbd_img_obj_end_request() may very well be called on such prematurally marked done request: <obj_request-1/2 reply> handle_reply() rbd_osd_req_callback() rbd_osd_trivial_callback() rbd_obj_request_complete() rbd_img_obj_copyup_callback() rbd_img_obj_callback() <obj_request-2/2 reply> handle_reply() rbd_osd_req_callback() rbd_osd_trivial_callback() for_each_obj_request(obj_request->img_request) { rbd_img_obj_end_request(obj_request-1/2) rbd_img_obj_end_request(obj_request-2/2) <-- } Calling rbd_img_obj_end_request() on such a request leads to trouble, in particular because its ->xfferred is 0. We report 0 to the block layer with blk_update_request(), get back 1 for "this request has more data in flight" and then trip on rbd_assert(more ^ (which == img_request->obj_request_count)); with rhs (which == ...) being 1 because rbd_img_obj_end_request() has been called for both requests and lhs (more) being 1 because we haven't got a chance to set ->xfferred in rbd_img_obj_copyup_callback() yet. To fix this, leverage that rbd wants to call class methods in only two cases: one is a generic method call wrapper (obj_request is standalone) and the other is a copyup (obj_request is part of an img_request). So make a dedicated handler for CEPH_OSD_OP_CALL and directly invoke rbd_img_obj_copyup_callback() from it if obj_request is part of an img_request, similar to how CEPH_OSD_OP_READ handler invokes rbd_img_obj_request_read_callback(). Since rbd_img_obj_copyup_callback() is now being called from the OSD request callback (only), it is renamed to rbd_osd_copyup_callback(). Cc: Alex Elder <elder@linaro.org> Cc: stable@vger.kernel.org # 3.10+, needs backporting for < 3.18 Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Alex Elder <elder@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Herbert Xu authored
[ Upstream commit f898c522 ] This patch removes a bogus BUG_ON in the ablkcipher path that triggers when the destination buffer is different from the source buffer and is scattered. Cc: stable@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Tadeusz Struk authored
[ Upstream commit 7047312d ] commit 6f043b50 upstream. The synchronization method used atomic was bogus. Use a proper synchronization with mutex. Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Martin Schwidefsky authored
[ Upstream commit 17fb874d ] The kthread_run() function can return two different error values but the hwrng core only checks for -ENOMEM. If the other error value -EINTR is returned it is assigned to hwrng_fill and later used on a kthread_stop() call which naturally crashes. Cc: stable@vger.kernel.org Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marek Marczykowski-Górecki authored
[ Upstream commit 30b03d05 ] While gntdev_release() is called the MMU notifier is still registered and can traverse priv->maps list even if no pages are mapped (which is the case -- gntdev_release() is called after all). But gntdev_release() will clear that list, so make sure that only one of those things happens at the same time. Signed-off-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com> Cc: <stable@vger.kernel.org> Signed-off-by: David Vrabel <david.vrabel@citrix.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Vrabel authored
[ Upstream commit 1401c00e ] Unmapping may require sleeping and we unmap while holding priv->lock, so convert it to a mutex. Signed-off-by: David Vrabel <david.vrabel@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
- 22 Aug, 2015 6 commits
-
-
Andy Lutomirski authored
[ Upstream commit aa1acff3 ] The update_va_mapping hypercall can fail if the VA isn't present in the guest's page tables. Under certain loads, this can result in an OOPS when the target address is in unpopulated vmap space. While we're at it, add comments to help explain what's going on. This isn't a great long-term fix. This code should probably be changed to use something like set_memory_ro. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Vrabel <dvrabel@cantab.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: security@kernel.org <security@kernel.org> Cc: <stable@vger.kernel.org> Cc: xen-devel <xen-devel@lists.xen.org> Link: http://lkml.kernel.org/r/0b0e55b995cda11e7829f140b833ef932fcabe3a.1438291540.git.luto@kernel.orgSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lars-Peter Clausen authored
[ Upstream commit d90d0668 ] commit e50b1e06 upstream. The DAPM lock must be held when accessing the DAPM graph status through sysfs or debugfs, otherwise concurrent changes to the graph can result in undefined behaviour. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Axel Lin authored
[ Upstream commit fa8173a3 ] The de-emphasis sampling rate selection is controlled by BIT[3:4] of PCM1681_DEEMPH_CONTROL register. Do proper left shift to set it. Signed-off-by: Axel Lin <axel.lin@ingics.com> Acked-by: Marek Belisko <marek.belisko@streamunlimited.com> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Murali Karicheri authored
[ Upstream commit c1bfa985 ] All of the keystone devices have a separate register to hold post divider value for main pll clock. Currently the fixed-postdiv value used for k2hk/l/e SoCs works by sheer luck as u-boot happens to use a value of 2 for this. Now that we have fixed this in the pll clock driver change the dt bindings for the same. Signed-off-by: Murali Karicheri <m-karicheri2@ti.com> Acked-by: Santosh Shilimkar <ssantosh@kernel.org> Signed-off-by: Olof Johansson <olof@lixom.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Murali Karicheri authored
[ Upstream commit 02fdfd70 ] Main PLL controller has post divider bits in a separate register in pll controller. Use the value from this register instead of fixed divider when available. Signed-off-by: Murali Karicheri <m-karicheri2@ti.com> Signed-off-by: Michael Turquette <mturquette@baylibre.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit 44922150 ] If we have a series of events from userpsace, with %fprs=FPRS_FEF, like follows: ETRAP ETRAP VIS_ENTRY(fprs=0x4) VIS_EXIT RTRAP (kernel FPU restore with fpu_saved=0x4) RTRAP We will not restore the user registers that were clobbered by the FPU using kernel code in the inner-most trap. Traps allocate FPU save slots in the thread struct, and FPU using sequences save the "dirty" FPU registers only. This works at the initial trap level because all of the registers get recorded into the top-level FPU save area, and we'll return to userspace with the FPU disabled so that any FPU use by the user will take an FPU disabled trap wherein we'll load the registers back up properly. But this is not how trap returns from kernel to kernel operate. The simplest fix for this bug is to always save all FPU register state for anything other than the top-most FPU save area. Getting rid of the optimized inner-slot FPU saving code ends up making VISEntryHalf degenerate into plain VISEntry. Longer term we need to do something smarter to reinstate the partial save optimizations. Perhaps the fundament error is having trap entry and exit allocate FPU save slots and restore register state. Instead, the VISEntry et al. calls should be doing that work. This bug is about two decades old. Reported-by: James Y Knight <jyknight@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
- 20 Aug, 2015 2 commits
-
-
Benjamin Randazzo authored
[ Upstream commit 33afeac2 ] commit b6878d9e upstream. In drivers/md/md.c get_bitmap_file() uses kmalloc() for creating a mdu_bitmap_file_t called "file". 5769 file = kmalloc(sizeof(*file), GFP_NOIO); 5770 if (!file) 5771 return -ENOMEM; This structure is copied to user space at the end of the function. 5786 if (err == 0 && 5787 copy_to_user(arg, file, sizeof(*file))) 5788 err = -EFAULT But if bitmap is disabled only the first byte of "file" is initialized with zero, so it's possible to read some bytes (up to 4095) of kernel space memory from user space. This is an information leak. 5775 /* bitmap disabled, zero the first byte and copy out */ 5776 if (!mddev->bitmap_info.file) 5777 file->pathname[0] = '\0'; Signed-off-by: Benjamin Randazzo <benjamin@randazzo.fr> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
NeilBrown authored
[ Upstream commit 56301df6 ] A construct like: if (pm_runtime_suspended(twl->dev)) pm_runtime_get_sync(twl->dev); is against the spirit of the runtime_pm interface as it makes the internal refcounting useless. In this case it is also racy, particularly as 'put_autosuspend' is used to drop a reference. When that happens a timer is started and the device is runtime-suspended after the timeout. If the above code runs in this window, the device will not be found to be suspended so no pm_runtime reference is taken. When the timer expires the device will be suspended, which is against the intention of the code. So be more direct is taking and dropping references. If twl->linkstat is VBUS_VALID or ID_GROUND, then hold a pm_runtime reference, otherwise don't. Define "cable_present()" to test for this condition. Tested-by: Tony Lindgren <tony@atomide.com> Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
- 19 Aug, 2015 4 commits
-
-
Alan Stern authored
[ Upstream commit c93e64e9 ] This patch fixes a bug in the error pathway of usb_add_gadget_udc_release() in udc-core.c. If the udc registration fails, the gadget registration is not fully undone; there's a put_device(&gadget->dev) call but no device_del(). CC: <stable@vger.kernel.org> Acked-by: Peter Chen <peter.chen@freescale.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Dirk Behme authored
[ Upstream commit 74472233 ] Add support for the Sierra Wireless AR8550 device with USB descriptor 0x1199, 0x68AB. It is common with MC879x modules 1199:683c/683d which also are composite devices with 7 interfaces (0..6) and also MDM62xx based as the AR8550. The major difference are only the interface attributes 02/02/01 on interfaces 3 and 4 on the AR8550. They are vendor specific ff/ff/ff on MC879x modules. lsusb reports: Bus 001 Device 004: ID 1199:68ab Sierra Wireless, Inc. Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x1199 Sierra Wireless, Inc. idProduct 0x68ab bcdDevice 0.06 iManufacturer 3 Sierra Wireless, Incorporated iProduct 2 AR8550 iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 198 bNumInterfaces 7 bConfigurationValue 1 iConfiguration 1 Sierra Configuration bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x02 EP 2 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 2 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x03 EP 3 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 3 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 2 Communications bInterfaceSubClass 2 Abstract (modem) bInterfaceProtocol 1 AT-commands (v.25ter) iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x84 EP 4 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 5 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x85 EP 5 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x04 EP 4 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 4 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 2 Communications bInterfaceSubClass 2 Abstract (modem) bInterfaceProtocol 1 AT-commands (v.25ter) iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x86 EP 6 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 5 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x87 EP 7 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x05 EP 5 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 5 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x88 EP 8 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 5 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x89 EP 9 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x06 EP 6 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 6 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 255 Vendor Specific Subclass bInterfaceProtocol 255 Vendor Specific Protocol iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x8a EP 10 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 5 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x8b EP 11 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x07 EP 7 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 32 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0001 Self Powered Signed-off-by: Dirk Behme <dirk.behme@de.bosch.com> Cc: Lars Melin <larsm17@gmail.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Gavin Shan authored
[ Upstream commit ffe5adcb ] When xhci_mem_cleanup() is called, it's possible that the command timer isn't initialized and scheduled. For those cases, to delete the command timer causes soft-lockup as below stack dump shows. The patch avoids deleting the command timer if it's not scheduled with the help of timer_pending(). NMI watchdog: BUG: soft lockup - CPU#40 stuck for 23s! [kworker/40:1:8140] : NIP [c000000000150b30] lock_timer_base.isra.34+0x90/0xa0 LR [c000000000150c24] try_to_del_timer_sync+0x34/0xa0 Call Trace: [c000000f67c975e0] [c0000000015b84f8] mon_ops+0x0/0x8 (unreliable) [c000000f67c97620] [c000000000150c24] try_to_del_timer_sync+0x34/0xa0 [c000000f67c97660] [c000000000150cf0] del_timer_sync+0x60/0x80 [c000000f67c97690] [c00000000070ac0c] xhci_mem_cleanup+0x5c/0x5e0 [c000000f67c97740] [c00000000070c2e8] xhci_mem_init+0x1158/0x13b0 [c000000f67c97860] [c000000000700978] xhci_init+0x88/0x110 [c000000f67c978e0] [c000000000701644] xhci_gen_setup+0x2b4/0x590 [c000000f67c97970] [c0000000006d4410] xhci_pci_setup+0x40/0x190 [c000000f67c979f0] [c0000000006b1af8] usb_add_hcd+0x418/0xba0 [c000000f67c97ab0] [c0000000006cb15c] usb_hcd_pci_probe+0x1dc/0x5c0 [c000000f67c97b50] [c0000000006d3ba4] xhci_pci_probe+0x64/0x1f0 [c000000f67c97ba0] [c0000000004fe9ac] local_pci_probe+0x6c/0x130 [c000000f67c97c30] [c0000000000e5ce8] work_for_cpu_fn+0x38/0x60 [c000000f67c97c60] [c0000000000eacb8] process_one_work+0x198/0x470 [c000000f67c97cf0] [c0000000000eb6ac] worker_thread+0x37c/0x5a0 [c000000f67c97d80] [c0000000000f2730] kthread+0x110/0x130 [c000000f67c97e30] [c000000000009660] ret_from_kernel_thread+0x5c/0x7c Cc: <stable@vger.kernel.org> Reported-by: Priya M. A <priyama2@in.ibm.com> Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Mathias Nyman authored
[ Upstream commit 7895086a ] We need to check that a TRB is part of the current segment before calculating its DMA address. Previously a ring segment didn't use a full memory page, and every new ring segment got a new memory page, so the off by one error in checking the upper bound was never seen. Now that we use a full memory page, 256 TRBs (4096 bytes), the off by one didn't catch the case when a TRB was the first element of the next segment. This is triggered if the virtual memory pages for a ring segment are next to each in increasing order where the ring buffer wraps around and causes errors like: [ 106.398223] xhci_hcd 0000:00:14.0: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 0 comp_code 1 [ 106.398230] xhci_hcd 0000:00:14.0: Looking for event-dma fffd3000 trb-start fffd4fd0 trb-end fffd5000 seg-start fffd4000 seg-end fffd4ff0 The trb-end address is one outside the end-seg address. Cc: <stable@vger.kernel.org> Tested-by: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-