NdbOperationSearch.cpp 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Copyright (C) 2003 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */


/******************************************************************************
Name:          NdbOperationSearch.C
Include:
Link:
Author:        UABMNST Mona Natterkvist UAB/B/SD                         
Date:          970829
Version:       0.1
Description:   Interface between TIS and NDB
Documentation:
Adjust:  971022  UABMNST   First version.
	 971206  UABRONM
 *****************************************************************************/
#include "API.hpp"

#include <NdbOperation.hpp>
#include "NdbApiSignal.hpp"
#include <NdbConnection.hpp>
#include <Ndb.hpp>
#include "NdbImpl.hpp"
#include <NdbOut.hpp>

#include <AttributeHeader.hpp>
#include <signaldata/TcKeyReq.hpp>
#include "NdbDictionaryImpl.hpp"

/******************************************************************************
CondIdType equal(const char* anAttrName, char* aValue, Uint32 aVarKeylen);

Return Value    Return 0 : Equal was successful.
                Return -1: In all other case. 
Parameters:     anAttrName : Attribute name for search condition..
                aValue : Referense to the search value.
		aVariableKeylen : The length of key in bytes  
Remark:         Defines search condition with equality anAttrName.
******************************************************************************/
int
NdbOperation::equal_impl(const NdbColumnImpl* tAttrInfo, 
                         const char* aValuePassed, 
                         Uint32 aVariableKeyLen)
{
  register Uint32 tAttrId;
  
  Uint32 tData;
  Uint32 tKeyInfoPosition;
  const char* aValue = aValuePassed;
  Uint32 tempData[1024];

  if ((theStatus == OperationDefined) &&
      (aValue != NULL) &&
      (tAttrInfo != NULL )) {
/******************************************************************************
 *	Start by checking that the attribute is a tuple key. 
 *      This value is also the word order in the tuple key of this 
 *      tuple key attribute. 
 *      Then check that this tuple key has not already been defined. 
 *      Finally check if all tuple key attributes have been defined. If
 *	this is true then set Operation state to tuple key defined.
 *****************************************************************************/
    tAttrId = tAttrInfo->m_attrId;
    tKeyInfoPosition = tAttrInfo->m_keyInfoPos;
    Uint32 i = 0;
    if (tAttrInfo->m_pk) {
      Uint32 tKeyDefined = theTupleKeyDefined[0][2];
      Uint32 tKeyAttrId = theTupleKeyDefined[0][0];
      do {
	if (tKeyDefined == false) {
	  goto keyEntryFound;
	} else {
	  if (tKeyAttrId != tAttrId) {
	    /******************************************************************
	     * We read the key defined variable in advance. 
	     * It could potentially read outside its area when 
	     * i = MAXNROFTUPLEKEY - 1, 
	     * it is not a problem as long as the variable 
	     * theTupleKeyDefined is defined
	     * in the middle of the object. 
	     * Reading wrong data and not using it causes no problems.
	     *****************************************************************/
	    i++;
	    tKeyAttrId = theTupleKeyDefined[i][0];
	    tKeyDefined = theTupleKeyDefined[i][2];
	    continue;
	  } else {
	    goto equal_error2;
	  }//if
	}//if
104
      } while (i < NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
      goto equal_error2;
    } else {
      goto equal_error1;
    }
    /*************************************************************************
     *	Now it is time to retrieve the tuple key data from the pointer supplied
     *      by the application. 
     *      We have to retrieve the size of the attribute in words and bits.
     *************************************************************************/
  keyEntryFound:
    theTupleKeyDefined[i][0] = tAttrId;
    theTupleKeyDefined[i][1] = tKeyInfoPosition; 
    theTupleKeyDefined[i][2] = true;

    Uint32 sizeInBytes = tAttrInfo->m_attrSize * tAttrInfo->m_arraySize;
    Uint32 bitsInLastWord = 8 * (sizeInBytes & 3) ;
    Uint32 totalSizeInWords = (sizeInBytes + 3)/4; // Inc. bits in last word
    Uint32 sizeInWords = sizeInBytes / 4;          // Exc. bits in last word
    
    if (true){ //tArraySize != 0) {
      Uint32 tTupKeyLen = theTupKeyLen;
      
      theTupKeyLen = tTupKeyLen + totalSizeInWords;
      if ((aVariableKeyLen == sizeInBytes) ||
	  (aVariableKeyLen == 0)) {
	;
      } else {
	goto equal_error3;
      }
    }
#if 0
    else {
      /************************************************************************
       * The attribute is a variable array. We need to use the length parameter
       * to know the size of this attribute in the key information and 
       * variable area. A key is however not allowed to be larger than 4 
       * kBytes and this is checked for variable array attributes
       * used as keys.
       ************************************************************************/
      Uint32 tMaxVariableKeyLenInWord = (MAXTUPLEKEYLENOFATTERIBUTEINWORD -
					 tKeyInfoPosition);
      tAttrSizeInBits = aVariableKeyLen << 3;
      tAttrSizeInWords = tAttrSizeInBits >> 5;
      tAttrBitsInLastWord = tAttrSizeInBits - (tAttrSizeInWords << 5);
      tAttrLenInWords = ((tAttrSizeInBits + 31) >> 5);
      if (tAttrLenInWords > tMaxVariableKeyLenInWord) {
	setErrorCodeAbort(4207);
	return -1;
      }//if
      theTupKeyLen = theTupKeyLen + tAttrLenInWords;
    }//if
#endif
    /***************************************************************************
     *	Check if the pointer of the value passed is aligned on a 4 byte 
     *      boundary. If so only assign the pointer to the internal variable 
     *      aValue. If it is not aligned then we start by copying the value to 
     *      tempData and use this as aValue instead.
     *****************************************************************************/
    const int attributeSize = sizeInBytes;
    const int slack = sizeInBytes & 3;
    int tDistrKey = tAttrInfo->m_distributionKey;
    int tDistrGroup = tAttrInfo->m_distributionGroup;
    if ((((UintPtr)aValue & 3) != 0) || (slack != 0)){
      memcpy(&tempData[0], aValue, attributeSize);
      aValue = (char*)&tempData[0];
      if(slack != 0) {
	char * tmp = (char*)&tempData[0];
	memset(&tmp[attributeSize], 0, (4 - slack));
      }//if
    }//if
    OperationType tOpType = theOperationType;
    if ((tDistrKey != 1) && (tDistrGroup != 1)) {
      ;
    } else if (tDistrKey == 1) {
      theDistrKeySize += totalSizeInWords;
      theDistrKeyIndicator = 1;
    } else {
      Uint32 TsizeInBytes = sizeInBytes;
      Uint32 TbyteOrderFix = 0;
      char*   TcharByteOrderFix = (char*)&TbyteOrderFix;
      if (tAttrInfo->m_distributionGroupBits == 8) {
	char tFirstChar = aValue[TsizeInBytes - 2];
	char tSecondChar = aValue[TsizeInBytes - 2];
	TcharByteOrderFix[0] = tFirstChar;
	TcharByteOrderFix[1] = tSecondChar;
	TcharByteOrderFix[2] = 0x30;
	TcharByteOrderFix[3] = 0x30;
	theDistrGroupType = 0;
      } else {
	TbyteOrderFix = ((aValue[TsizeInBytes - 2] - 0x30) * 10) 
	  + (aValue[TsizeInBytes - 1] - 0x30);
	theDistrGroupType = 1;
      }//if
      theDistributionGroup = TbyteOrderFix;
      theDistrGroupIndicator = 1;
    }//if
    /******************************************************************************
     *	If the operation is an insert request and the attribute is stored then
     *      we also set the value in the stored part through putting the 
     *      information in the ATTRINFO signals.
     *****************************************************************************/
    if ((tOpType == InsertRequest) ||
	(tOpType == WriteRequest)) {
      if (!tAttrInfo->m_indexOnly){
	Uint32 ahValue;
	const Uint32 sz = totalSizeInWords;
	AttributeHeader::init(&ahValue, tAttrId, sz);
	insertATTRINFO( ahValue );
	insertATTRINFOloop((Uint32*)aValue, sizeInWords);
	if (bitsInLastWord != 0) {
	  tData = *(Uint32*)(aValue + (sizeInWords << 2));
	  tData = convertEndian(tData);
	  tData = tData & ((1 << bitsInLastWord) - 1);
	  tData = convertEndian(tData);
	  insertATTRINFO( tData );
	}//if
      }//if
    }//if
    
    /***************************************************************************
     *	Store the Key information in the TCKEYREQ and KEYINFO signals. 
     **************************************************************************/
    if (insertKEYINFO(aValue, tKeyInfoPosition, 
		      totalSizeInWords, bitsInLastWord) != -1) {
      /*************************************************************************
       * Add one to number of tuple key attributes defined. 
       * If all have been defined then set the operation state to indicate 
       * that tuple key is defined. 
       * Thereby no more search conditions are allowed in this version.
       ************************************************************************/
      Uint32 tNoKeysDef = theNoOfTupKeyDefined;
      Uint32 tErrorLine = theErrorLine;
      int tNoTableKeys = m_currentTable->m_noOfKeys;
      unsigned char tInterpretInd = theInterpretIndicator;
      tNoKeysDef++;
      theNoOfTupKeyDefined = tNoKeysDef;
      tErrorLine++;
      theErrorLine = tErrorLine;
      if (int(tNoKeysDef) == tNoTableKeys) {
	if (tOpType == UpdateRequest) {
	  if (tInterpretInd == 1) {
	    theStatus = GetValue;
	  } else {
	    theStatus = SetValue;
	  }//if
	  return 0;
	} else if ((tOpType == ReadRequest) || (tOpType == DeleteRequest) ||
		   (tOpType == ReadExclusive)) {
	  theStatus = GetValue;
pekka@mysql.com's avatar
pekka@mysql.com committed
254 255 256 257 258 259 260 261 262 263 264
          // create blob handles automatically
          if (tOpType == DeleteRequest && m_currentTable->m_noOfBlobs != 0) {
            for (unsigned i = 0; i < m_currentTable->m_columns.size(); i++) {
              NdbColumnImpl* c = m_currentTable->m_columns[i];
              assert(c != 0);
              if (c->getBlobType()) {
                if (getBlobHandle(theNdbCon, c) == NULL)
                  return -1;
              }
            }
          }
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	  return 0;
	} else if ((tOpType == InsertRequest) || (tOpType == WriteRequest)) {
	  theStatus = SetValue;
	  return 0;
	} else {
	  setErrorCodeAbort(4005);
	  return -1;
	}//if
      }//if
      return 0;
    } else {
      return -1;
    }//if
  }

  if (aValue == NULL) {
    // NULL value in primary key
    setErrorCodeAbort(4505);
    return -1;
  }//if
  
  if ( tAttrInfo == NULL ) {      
    // Attribute name not found in table
    setErrorCodeAbort(4004);
    return -1;
  }//if

  if (theStatus == GetValue || theStatus == SetValue){
    // All pk's defined
    setErrorCodeAbort(4225);
    return -1;
  }//if
  
  // If we come here, set a general errorcode
  // and exit
  setErrorCodeAbort(4200);
  return -1;

 equal_error1:
  setErrorCodeAbort(4205);
  return -1;

 equal_error2:
  setErrorCodeAbort(4206);
  return -1;

 equal_error3:
  setErrorCodeAbort(4209);
  return -1;
}

/******************************************************************************
 * Uint64 setTupleId( void )
 *
 * Return Value:  Return > 0: OK 
 *                Return 0 : setTupleId failed
 * Parameters:     
 * Remark:
 *****************************************************************************/
Uint64
NdbOperation::setTupleId()
{
  if (theStatus != OperationDefined)
  {
    return 0;
  }
  Uint64 tTupleId = theNdb->getTupleIdFromNdb(m_currentTable->m_tableId);
332
  if (tTupleId == ~(Uint64)0){
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    setErrorCodeAbort(theNdb->theError.code);
    return 0;
  }
  if (equal((Uint32)0, tTupleId) == -1)
    return 0;

  return tTupleId;
}

/******************************************************************************
 * int insertKEYINFO(const char* aValue, aStartPosition, 
 *                   anAttrSizeInWords, Uint32 anAttrBitsInLastWord);
 *
 * Return Value:   Return 0 : insertKEYINFO was succesful.
 *                 Return -1: In all other case.   
 * Parameters:     aValue: the data to insert into KEYINFO.
 *    		   aStartPosition : Start position for Tuplekey in 
 *                                  KEYINFO (TCKEYREQ).
 *                 aKeyLenInByte : Length of tuplekey or part of tuplekey
 *                 anAttrBitsInLastWord : Nr of bits in last word. 
 * Remark:         Puts the the data into either TCKEYREQ signal 
 *                 or KEYINFO signal.
 *****************************************************************************/
int
NdbOperation::insertKEYINFO(const char* aValue,
			    register Uint32 aStartPosition,
			    register Uint32 anAttrSizeInWords,
			    register Uint32 anAttrBitsInLastWord)
{
  NdbApiSignal* tSignal;
  NdbApiSignal* tCurrentKEYINFO;
  //register NdbApiSignal* tTCREQ = theTCREQ;
  register Uint32 tAttrPos;
  Uint32 tPosition;
  Uint32 tEndPos;
  Uint32 tPos;
  Uint32 signalCounter;
  Uint32 tData;

/*****************************************************************************
 *	Calculate the end position of the attribute in the key information.  *
 *	Since the first attribute starts at position one we need to subtract *
 *	one to get the correct end position.				     *
 *	We must also remember the last word with only partial information.   *
 *****************************************************************************/
  tEndPos = aStartPosition + anAttrSizeInWords - 1;

  if ((tEndPos < 9) && (anAttrBitsInLastWord == 0)) {
    register Uint32 tkeyData = *(Uint32*)aValue;
    //TcKeyReq* tcKeyReq = CAST_PTR(TcKeyReq, tTCREQ->getDataPtrSend());
    register Uint32* tDataPtr = (Uint32*)aValue;
    tAttrPos = 1;
    register Uint32* tkeyDataPtr = theKEYINFOptr + aStartPosition - 1;
    // (Uint32*)&tcKeyReq->keyInfo[aStartPosition - 1];
    do {
      tDataPtr++;
      *tkeyDataPtr = tkeyData;
      if (tAttrPos < anAttrSizeInWords) {
        ;
      } else {
        return 0;
      }//if
      tkeyData = *tDataPtr;
      tkeyDataPtr++;
      tAttrPos++;
    } while (1);
    return 0;
  }//if
/*****************************************************************************
 *	Allocate all the KEYINFO signals needed for this key before starting *
 *	to fill the signals with data. This simplifies error handling and    *
 *      avoids duplication of code.					     *
 *****************************************************************************/
  tAttrPos = 0;
  signalCounter = 1;
  while(tEndPos > theTotalNrOfKeyWordInSignal)
  {
    tSignal = theNdb->getSignal();
    if (tSignal == NULL)
    {
      setErrorCodeAbort(4000);
      return -1;
    }
    if (tSignal->setSignal(m_keyInfoGSN) == -1)
    {
      setErrorCodeAbort(4001);
      return -1;
    }
    if (theFirstKEYINFO != NULL)
       theLastKEYINFO->next(tSignal);
    else
       theFirstKEYINFO = tSignal;
    theLastKEYINFO = tSignal;
    theLastKEYINFO->next(NULL);
    theTotalNrOfKeyWordInSignal += 20;
  }

/*****************************************************************************
 *	Change to variable tPosition for more appropriate naming of rest of  *
 *	the code. We must set up current KEYINFO already here if the last    *
 *	word is a word which is set at LastWordLabel and at the same time    *
 *	this is the first word in a KEYINFO signal.			     *
 *****************************************************************************/
  tPosition = aStartPosition;
  tCurrentKEYINFO = theFirstKEYINFO;
 
/*****************************************************************************
 *	Start by filling up Key information in the 8 words allocated in the  *
 *	TC[KEY/INDX]REQ signal.						     *
 *****************************************************************************/
  while (tPosition < 9)
  {
    theKEYINFOptr[tPosition-1] = * (Uint32*)(aValue + (tAttrPos << 2));
    tAttrPos++;
    if (anAttrSizeInWords == tAttrPos)
      goto LastWordLabel;
    tPosition++;
  }

/*****************************************************************************
 *	We must set up the start position of the writing of Key information  *
 *	before we start the writing of KEYINFO signals. If the start is not  *
 *	the first word of the first KEYINFO signals then we must step forward*
 *	to the proper KEYINFO signal and set the signalCounter properly.     *
 *	signalCounter is set to the actual position in the signal ( = 4 for  *
 *	first key word in KEYINFO signal.				     *
 *****************************************************************************/
  tPos = 8;
  while ((tPosition - tPos) > 20)
  {
    tCurrentKEYINFO = tCurrentKEYINFO->next();
    tPos += 20;
  }
  signalCounter = tPosition - tPos + 3;    

/*****************************************************************************
 *	The loop that actually fills in the Key information into the KEYINFO *
 *	signals. Can be optimised by writing larger chunks than 4 bytes at a *
 *	time.								     *
 *****************************************************************************/
  do
  {
    if (signalCounter > 23)
    {
      tCurrentKEYINFO = tCurrentKEYINFO->next();
      signalCounter = 4;
    }
    tCurrentKEYINFO->setData(*(Uint32*)(aValue + (tAttrPos << 2)), 
			     signalCounter);
    tAttrPos++;
    if (anAttrSizeInWords == tAttrPos)
      goto LastWordLabel;
    tPosition++;
    signalCounter++;
  } while (1);

LastWordLabel:

/*****************************************************************************
 *	There could be a last word that only contains partial data. This word*
 *	will contain zeroes in the rest of the bits since the index expects  *
 *	a certain number of words and do not care for parts of words.	     *
 *****************************************************************************/
  if (anAttrBitsInLastWord != 0) {
    tData = *(Uint32*)(aValue + (anAttrSizeInWords - 1) * 4);
    tData = convertEndian(tData);
    tData = tData & ((1 << anAttrBitsInLastWord) - 1);
    tData = convertEndian(tData);
    if (tPosition > 8) {
      tCurrentKEYINFO->setData(tData, signalCounter);
      signalCounter++;
    } else {
      theTCREQ->setData(tData, (12 + tPosition));
    }//if
  }//if

  return 0;
}
pekka@mysql.com's avatar
pekka@mysql.com committed
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

int
NdbOperation::getKeyFromTCREQ(Uint32* data, unsigned size)
{
  assert(m_accessTable != 0 && m_accessTable->m_sizeOfKeysInWords != 0);
  assert(m_accessTable->m_sizeOfKeysInWords == size);
  unsigned pos = 0;
  while (pos < 8 && pos < size) {
    data[pos++] = theKEYINFOptr[pos];
  }
  NdbApiSignal* tSignal = theFirstKEYINFO;
  unsigned n = 0;
  while (pos < size) {
    if (n == 20) {
      tSignal = tSignal->next();
      n = 0;
    }
    data[pos++] = tSignal->getDataPtrSend()[3 + n++];
  }
  return 0;
}