Commit 28de5d36 authored by unknown's avatar unknown

Merge pnousiainen@bk-internal.mysql.com:/home/bk/mysql-4.1-ndb

into mysql.com:/space/pekka/ndb/version/my41-tux


ndb/src/kernel/blocks/dblqh/DblqhMain.cpp:
  Auto merged
sql/ha_ndbcluster.cc:
  Auto merged
parents 68e39eca 1b31325e
#
# test range scan bounds
# output to mysql-test/t/ndb_range_bounds.test
#
# give option --all to generate all cases
#
use strict;
use integer;
my $all = shift;
!defined($all) || ($all eq '--all' && !defined(shift))
or die "only available option is --all";
my $table = 't';
print <<EOF;
--source include/have_ndb.inc
--disable_warnings
drop table if exists $table;
--enable_warnings
# test range scan bounds
# generated by mysql-test/ndb/ndb_range_bounds.pl
# all selects must return 0
EOF
sub cut ($$@) {
my($op, $key, @v) = @_;
$op = '==' if $op eq '=';
my(@w);
eval "\@w = grep(\$_ $op $key, \@v)";
$@ and die $@;
return @w;
}
sub mkdummy (\@) {
my ($val) = @_;
return {
'dummy' => 1,
'exp' => '9 = 9',
'cnt' => scalar @$val,
};
}
sub mkone ($$$\@) {
my($col, $op, $key, $val) = @_;
my $cnt = scalar cut($op, $key, @$val);
return {
'exp' => "$col $op $key",
'cnt' => $cnt,
};
}
sub mktwo ($$$$$\@) {
my($col, $op1, $key1, $op2, $key2, $val) = @_;
my $cnt = scalar cut($op2, $key2, cut($op1, $key1, @$val));
return {
'exp' => "$col $op1 $key1 and $col $op2 $key2",
'cnt' => $cnt,
};
}
sub mkall ($$$\@) {
my($col, $key1, $key2, $val) = @_;
my @a = ();
my $p = mkdummy(@$val);
push(@a, $p) if $all;
my @ops1 = $all ? qw(< <= = >= >) : qw(= >= >);
my @ops2 = $all ? qw(< <= = >= >) : qw(< <=);
for my $op1 (@ops1) {
my $p = mkone($col, $op1, $key1, @$val);
push(@a, $p) if $all || $p->{cnt} != 0;
for my $op2 (@ops2) {
my $p = mktwo($col, $op1, $key1, $op2, $key2, @$val);
push(@a, $p) if $all || $p->{cnt} != 0;
}
}
return \@a;
}
for my $nn ("bcd", "") {
my %nn;
for my $x (qw(b c d)) {
$nn{$x} = $nn =~ /$x/ ? "not null" : "null";
}
print <<EOF;
create table $table (
a int primary key,
b int $nn{b},
c int $nn{c},
d int $nn{d},
index (b, c, d)
) engine=ndb;
EOF
my @val = (0..4);
my $v0 = 0;
for my $v1 (@val) {
for my $v2 (@val) {
for my $v3 (@val) {
print "insert into $table values($v0, $v1, $v2, $v3);\n";
$v0++;
}
}
}
my $key1 = 1;
my $key2 = 3;
my $a1 = mkall('b', $key1, $key2, @val);
my $a2 = mkall('c', $key1, $key2, @val);
my $a3 = mkall('d', $key1, $key2, @val);
for my $p1 (@$a1) {
my $cnt1 = $p1->{cnt} * @val * @val;
print "select count(*) - $cnt1 from $table";
print " where $p1->{exp};\n";
for my $p2 (@$a2) {
my $cnt2 = $p1->{cnt} * $p2->{cnt} * @val;
print "select count(*) - $cnt2 from $table";
print " where $p1->{exp} and $p2->{exp};\n";
for my $p3 (@$a3) {
my $cnt3 = $p1->{cnt} * $p2->{cnt} * $p3->{cnt};
print "select count(*) - $cnt3 from $table";
print " where $p1->{exp} and $p2->{exp} and $p3->{exp};\n";
}
}
}
print <<EOF;
drop table $table;
EOF
}
# vim: set sw=2:
......@@ -48,7 +48,6 @@ private:
Uint32 tuxScanPtrI;
/*
* Number of words of bound info included after fixed signal data.
* Starts with 5 unused words (word 0 is length used by LQH).
*/
Uint32 boundAiLength;
};
......
......@@ -55,28 +55,12 @@ public:
return readTuples(LM_Exclusive, 0, parallell, false);
}
/**
* @name Define Range Scan
*
* A range scan is a scan on an ordered index. The operation is on
* the index table but tuples are returned from the primary table.
* The index contains all tuples where at least one index key has not
* null value.
*
* A range scan is currently opened via a normal open scan method.
* Bounds can be defined for each index key. After setting bounds,
* usual scan methods can be used (get value, interpreter, take over).
* These operate on the primary table.
*
* @{
*/
/**
* Type of ordered index key bound. The values (0-4) will not change
* and can be used explicitly (e.g. they could be computed).
*/
enum BoundType {
BoundLE = 0, ///< lower bound,
BoundLE = 0, ///< lower bound
BoundLT = 1, ///< lower bound, strict
BoundGE = 2, ///< upper bound
BoundGT = 3, ///< upper bound, strict
......@@ -86,20 +70,28 @@ public:
/**
* Define bound on index key in range scan.
*
* Each index key can have lower and/or upper bound, or can be set
* equal to a value. The bounds can be defined in any order but
* a duplicate definition is an error.
* Each index key can have lower and/or upper bound. Setting the key
* equal to a value defines both upper and lower bounds. The bounds
* can be defined in any order. Conflicting definitions is an error.
*
* For equality, it is better to use BoundEQ instead of the equivalent
* pair of BoundLE and BoundGE. This is especially true when table
* distribution key is an initial part of the index key.
*
* The bounds must specify a single range i.e. they are on an initial
* sequence of index keys and the condition is equality for all but
* (at most) the last key which has a lower and/or upper bound.
* The sets of lower and upper bounds must be on initial sequences of
* index keys. All but possibly the last bound must be non-strict.
* So "a >= 2 and b > 3" is ok but "a > 2 and b >= 3" is not.
*
* The scan may currently return tuples for which the bounds are not
* satisfied. For example, "a <= 2 and b <= 3" scans the index up to
* (a=2, b=3) but also returns any (a=1, b=4).
*
* NULL is treated like a normal value which is less than any not-NULL
* value and equal to another NULL value. To search for NULL use
* value and equal to another NULL value. To compare against NULL use
* setBound with null pointer (0).
*
* An index stores also all-NULL keys (this may become optional).
* Doing index scan with empty bound set returns all table tuples.
* An index stores also all-NULL keys. Doing index scan with empty
* bound set returns all table tuples.
*
* @param attrName Attribute name, alternatively:
* @param anAttrId Index column id (starting from 0)
......@@ -117,8 +109,6 @@ public:
*/
int setBound(Uint32 anAttrId, int type, const void* aValue, Uint32 len = 0);
/** @} *********************************************************************/
/**
* Reset bounds and put operation in list that will be
* sent on next execute
......
......@@ -7692,7 +7692,6 @@ void Dblqh::accScanConfScanLab(Signal* signal)
Uint32 boundAiLength = tcConnectptr.p->primKeyLen - 4;
if (scanptr.p->rangeScan) {
jam();
// bound info length is in first of the 5 header words
TuxBoundInfo* const req = (TuxBoundInfo*)signal->getDataPtrSend();
req->errorCode = RNIL;
req->tuxScanPtrI = scanptr.p->scanAccPtr;
......
......@@ -172,12 +172,21 @@ private:
* Physical tuple address in TUP. Provides fast access to table tuple
* or index node. Valid within the db node and across timeslices.
* Not valid between db nodes or across restarts.
*
* To avoid wasting an Uint16 the pageid is split in two.
*/
struct TupLoc {
Uint32 m_pageId; // page i-value
private:
Uint16 m_pageId1; // page i-value (big-endian)
Uint16 m_pageId2;
Uint16 m_pageOffset; // page offset in words
public:
TupLoc();
TupLoc(Uint32 pageId, Uint16 pageOffset);
Uint32 getPageId() const;
void setPageId(Uint32 pageId);
Uint32 getPageOffset() const;
void setPageOffset(Uint32 pageOffset);
bool operator==(const TupLoc& loc) const;
bool operator!=(const TupLoc& loc) const;
};
......@@ -224,18 +233,13 @@ private:
* work entry part 5
*
* There are 3 links to other nodes: left child, right child, parent.
* These are in TupLoc format but the pageIds and pageOffsets are
* stored in separate arrays (saves 1 word).
*
* Occupancy (number of entries) is at least 1 except temporarily when
* a node is about to be removed. If occupancy is 1, only max entry
* is present but both min and max prefixes are set.
* a node is about to be removed.
*/
struct TreeNode;
friend struct TreeNode;
struct TreeNode {
Uint32 m_linkPI[3]; // link to 0-left child 1-right child 2-parent
Uint16 m_linkPO[3]; // page offsets for above real page ids
TupLoc m_link[3]; // link to 0-left child 1-right child 2-parent
unsigned m_side : 2; // we are 0-left child 1-right child 2-root
int m_balance : 2; // balance -1, 0, +1
unsigned pad1 : 4;
......@@ -805,22 +809,52 @@ Dbtux::ConstData::operator=(Data data)
inline
Dbtux::TupLoc::TupLoc() :
m_pageId(RNIL),
m_pageId1(RNIL >> 16),
m_pageId2(RNIL & 0xFFFF),
m_pageOffset(0)
{
}
inline
Dbtux::TupLoc::TupLoc(Uint32 pageId, Uint16 pageOffset) :
m_pageId(pageId),
m_pageId1(pageId >> 16),
m_pageId2(pageId & 0xFFFF),
m_pageOffset(pageOffset)
{
}
inline Uint32
Dbtux::TupLoc::getPageId() const
{
return (m_pageId1 << 16) | m_pageId2;
}
inline void
Dbtux::TupLoc::setPageId(Uint32 pageId)
{
m_pageId1 = (pageId >> 16);
m_pageId2 = (pageId & 0xFFFF);
}
inline Uint32
Dbtux::TupLoc::getPageOffset() const
{
return (Uint32)m_pageOffset;
}
inline void
Dbtux::TupLoc::setPageOffset(Uint32 pageOffset)
{
m_pageOffset = (Uint16)pageOffset;
}
inline bool
Dbtux::TupLoc::operator==(const TupLoc& loc) const
{
return m_pageId == loc.m_pageId && m_pageOffset == loc.m_pageOffset;
return
m_pageId1 == loc.m_pageId1 &&
m_pageId2 == loc.m_pageId2 &&
m_pageOffset == loc.m_pageOffset;
}
inline bool
......@@ -851,13 +885,13 @@ Dbtux::TreeEnt::eq(const TreeEnt ent) const
inline int
Dbtux::TreeEnt::cmp(const TreeEnt ent) const
{
if (m_tupLoc.m_pageId < ent.m_tupLoc.m_pageId)
if (m_tupLoc.getPageId() < ent.m_tupLoc.getPageId())
return -1;
if (m_tupLoc.m_pageId > ent.m_tupLoc.m_pageId)
if (m_tupLoc.getPageId() > ent.m_tupLoc.getPageId())
return +1;
if (m_tupLoc.m_pageOffset < ent.m_tupLoc.m_pageOffset)
if (m_tupLoc.getPageOffset() < ent.m_tupLoc.getPageOffset())
return -1;
if (m_tupLoc.m_pageOffset > ent.m_tupLoc.m_pageOffset)
if (m_tupLoc.getPageOffset() > ent.m_tupLoc.getPageOffset())
return +1;
if (m_tupVersion < ent.m_tupVersion)
return -1;
......@@ -880,12 +914,9 @@ Dbtux::TreeNode::TreeNode() :
m_occup(0),
m_nodeScan(RNIL)
{
m_linkPI[0] = NullTupLoc.m_pageId;
m_linkPO[0] = NullTupLoc.m_pageOffset;
m_linkPI[1] = NullTupLoc.m_pageId;
m_linkPO[1] = NullTupLoc.m_pageOffset;
m_linkPI[2] = NullTupLoc.m_pageId;
m_linkPO[2] = NullTupLoc.m_pageOffset;
m_link[0] = NullTupLoc;
m_link[1] = NullTupLoc;
m_link[2] = NullTupLoc;
}
// Dbtux::TreeHead
......@@ -913,7 +944,6 @@ Dbtux::TreeHead::getSize(AccSize acc) const
case AccFull:
return m_nodeSize;
}
abort();
return 0;
}
......@@ -1088,13 +1118,13 @@ inline Dbtux::TupLoc
Dbtux::NodeHandle::getLink(unsigned i)
{
ndbrequire(i <= 2);
return TupLoc(m_node->m_linkPI[i], m_node->m_linkPO[i]);
return m_node->m_link[i];
}
inline unsigned
Dbtux::NodeHandle::getChilds()
{
return (getLink(0) != NullTupLoc) + (getLink(1) != NullTupLoc);
return (m_node->m_link[0] != NullTupLoc) + (m_node->m_link[1] != NullTupLoc);
}
inline unsigned
......@@ -1125,8 +1155,7 @@ inline void
Dbtux::NodeHandle::setLink(unsigned i, TupLoc loc)
{
ndbrequire(i <= 2);
m_node->m_linkPI[i] = loc.m_pageId;
m_node->m_linkPO[i] = loc.m_pageOffset;
m_node->m_link[i] = loc;
}
inline void
......@@ -1224,7 +1253,7 @@ Dbtux::getTupAddr(const Frag& frag, TreeEnt ent)
const Uint32 tableFragPtrI = frag.m_tupTableFragPtrI[ent.m_fragBit];
const TupLoc tupLoc = ent.m_tupLoc;
Uint32 tupAddr = NullTupAddr;
c_tup->tuxGetTupAddr(tableFragPtrI, tupLoc.m_pageId, tupLoc.m_pageOffset, tupAddr);
c_tup->tuxGetTupAddr(tableFragPtrI, tupLoc.getPageId(), tupLoc.getPageOffset(), tupAddr);
jamEntry();
return tupAddr;
}
......
......@@ -87,21 +87,23 @@ Dbtux::cmpSearchKey(const Frag& frag, unsigned& start, ConstData searchKey, Cons
/*
* Scan bound vs node prefix or entry.
*
* Compare lower or upper bound and index attribute data. The attribute
* data may be partial in which case CmpUnknown may be returned.
* Returns -1 if the boundary is to the left of the compared key and +1
* if the boundary is to the right of the compared key.
* Compare lower or upper bound and index entry data. The entry data
* may be partial in which case CmpUnknown may be returned. Otherwise
* returns -1 if the bound is to the left of the entry and +1 if the
* bound is to the right of the entry.
*
* To get this behaviour we treat equality a little bit special. If the
* boundary is a lower bound then the boundary is to the left of all
* equal keys and if it is an upper bound then the boundary is to the
* right of all equal keys.
* The routine is similar to cmpSearchKey, but 0 is never returned.
* Suppose all attributes compare equal. Recall that all bounds except
* possibly the last one are non-strict. Use the given bound direction
* (0-lower 1-upper) and strictness of last bound to return -1 or +1.
*
* When searching for the first key we are using the lower bound to try
* to find the first key that is to the right of the boundary. Then we
* start scanning from this tuple (including the tuple itself) until we
* find the first key which is to the right of the boundary. Then we
* stop and do not include that key in the scan result.
* Following example illustrates this. We are at (a=2, b=3).
*
* dir bounds strict return
* 0 a >= 2 and b >= 3 no -1
* 0 a >= 2 and b > 3 yes +1
* 1 a <= 2 and b <= 3 no +1
* 1 a <= 2 and b < 3 yes -1
*/
int
Dbtux::cmpScanBound(const Frag& frag, unsigned dir, ConstData boundInfo, unsigned boundCount, ConstData entryData, unsigned maxlen)
......@@ -111,12 +113,7 @@ Dbtux::cmpScanBound(const Frag& frag, unsigned dir, ConstData boundInfo, unsigne
ndbrequire(dir <= 1);
// number of words of data left
unsigned len2 = maxlen;
/*
* No boundary means full scan, low boundary is to the right of all
* keys. Thus we should always return -1. For upper bound we are to
* the right of all keys, thus we should always return +1. We achieve
* this behaviour by initializing type to 4.
*/
// in case of no bounds, init last type to something non-strict
unsigned type = 4;
while (boundCount != 0) {
if (len2 <= AttributeHeaderSize) {
......@@ -124,7 +121,7 @@ Dbtux::cmpScanBound(const Frag& frag, unsigned dir, ConstData boundInfo, unsigne
return NdbSqlUtil::CmpUnknown;
}
len2 -= AttributeHeaderSize;
// get and skip bound type
// get and skip bound type (it is used after the loop)
type = boundInfo[0];
boundInfo += 1;
if (! boundInfo.ah().isNULL()) {
......@@ -166,30 +163,7 @@ Dbtux::cmpScanBound(const Frag& frag, unsigned dir, ConstData boundInfo, unsigne
entryData += AttributeHeaderSize + entryData.ah().getDataSize();
boundCount -= 1;
}
if (dir == 0) {
jam();
/*
* Looking for the lower bound. If strict lower bound then the
* boundary is to the right of the compared key and otherwise (equal
* included in range) then the boundary is to the left of the key.
*/
if (type == 1) {
jam();
return +1;
}
return -1;
} else {
jam();
/*
* Looking for the upper bound. If strict upper bound then the
* boundary is to the left of all equal keys and otherwise (equal
* included in the range) then the boundary is to the right of all
* equal keys.
*/
if (type == 3) {
jam();
return -1;
}
return +1;
}
// all attributes were equal
const int strict = (type & 0x1);
return (dir == 0 ? (strict == 0 ? -1 : +1) : (strict == 0 ? +1 : -1));
}
......@@ -256,8 +256,8 @@ operator<<(NdbOut& out, const Dbtux::TupLoc& loc)
if (loc == Dbtux::NullTupLoc) {
out << "null";
} else {
out << dec << loc.m_pageId;
out << "." << dec << loc.m_pageOffset;
out << dec << loc.getPageId();
out << "." << dec << loc.getPageOffset();
}
return out;
}
......@@ -274,13 +274,10 @@ operator<<(NdbOut& out, const Dbtux::TreeEnt& ent)
NdbOut&
operator<<(NdbOut& out, const Dbtux::TreeNode& node)
{
Dbtux::TupLoc link0(node.m_linkPI[0], node.m_linkPO[0]);
Dbtux::TupLoc link1(node.m_linkPI[1], node.m_linkPO[1]);
Dbtux::TupLoc link2(node.m_linkPI[2], node.m_linkPO[2]);
out << "[TreeNode " << hex << &node;
out << " [left " << link0 << "]";
out << " [right " << link1 << "]";
out << " [up " << link2 << "]";
out << " [left " << node.m_link[0] << "]";
out << " [right " << node.m_link[1] << "]";
out << " [up " << node.m_link[2] << "]";
out << " [side " << dec << node.m_side << "]";
out << " [occup " << dec << node.m_occup << "]";
out << " [balance " << dec << (int)node.m_balance << "]";
......@@ -427,8 +424,9 @@ operator<<(NdbOut& out, const Dbtux::NodeHandle& node)
}
data = (const Uint32*)node.m_node + Dbtux::NodeHeadSize + tree.m_prefSize;
const Dbtux::TreeEnt* entList = (const Dbtux::TreeEnt*)data;
for (unsigned pos = 0; pos < numpos; pos++)
out << " " << entList[pos];
// print entries in logical order
for (unsigned pos = 1; pos <= numpos; pos++)
out << " " << entList[pos % numpos];
out << "]";
}
out << "]";
......
......@@ -245,7 +245,7 @@ Dbtux::readKeyAttrs(const Frag& frag, TreeEnt ent, unsigned start, Data keyData)
const Uint32 numAttrs = frag.m_numAttrs - start;
// skip to start position in keyAttrs only
keyAttrs += start;
int ret = c_tup->tuxReadAttrs(tableFragPtrI, tupLoc.m_pageId, tupLoc.m_pageOffset, tupVersion, keyAttrs, numAttrs, keyData);
int ret = c_tup->tuxReadAttrs(tableFragPtrI, tupLoc.getPageId(), tupLoc.getPageOffset(), tupVersion, keyAttrs, numAttrs, keyData);
jamEntry();
// TODO handle error
ndbrequire(ret > 0);
......@@ -256,7 +256,7 @@ Dbtux::readTablePk(const Frag& frag, TreeEnt ent, Data pkData, unsigned& pkSize)
{
const Uint32 tableFragPtrI = frag.m_tupTableFragPtrI[ent.m_fragBit];
const TupLoc tupLoc = ent.m_tupLoc;
int ret = c_tup->tuxReadPk(tableFragPtrI, tupLoc.m_pageId, tupLoc.m_pageOffset, pkData);
int ret = c_tup->tuxReadPk(tableFragPtrI, tupLoc.getPageId(), tupLoc.getPageOffset(), pkData);
jamEntry();
// TODO handle error
ndbrequire(ret > 0);
......
......@@ -120,7 +120,7 @@ Dbtux::execTUX_MAINT_REQ(Signal* signal)
searchToAdd(signal, frag, c_searchKey, ent, treePos);
#ifdef VM_TRACE
if (debugFlags & DebugMaint) {
debugOut << treePos << endl;
debugOut << treePos << (treePos.m_match ? " - error" : "") << endl;
}
#endif
if (treePos.m_match) {
......@@ -154,7 +154,7 @@ Dbtux::execTUX_MAINT_REQ(Signal* signal)
searchToRemove(signal, frag, c_searchKey, ent, treePos);
#ifdef VM_TRACE
if (debugFlags & DebugMaint) {
debugOut << treePos << endl;
debugOut << treePos << (! treePos.m_match ? " - error" : "") << endl;
}
#endif
if (! treePos.m_match) {
......
......@@ -235,6 +235,20 @@ Dbtux::execTUX_ADD_ATTRREQ(Signal* signal)
tree.m_minOccup = tree.m_maxOccup - maxSlack;
// root node does not exist (also set by ctor)
tree.m_root = NullTupLoc;
#ifdef VM_TRACE
if (debugFlags & DebugMeta) {
if (fragOpPtr.p->m_fragNo == 0) {
debugOut << "Index id=" << indexPtr.i;
debugOut << " nodeSize=" << tree.m_nodeSize;
debugOut << " headSize=" << NodeHeadSize;
debugOut << " prefSize=" << tree.m_prefSize;
debugOut << " entrySize=" << TreeEntSize;
debugOut << " minOccup=" << tree.m_minOccup;
debugOut << " maxOccup=" << tree.m_maxOccup;
debugOut << endl;
}
}
#endif
// fragment is defined
c_fragOpPool.release(fragOpPtr);
}
......
......@@ -24,8 +24,8 @@ int
Dbtux::allocNode(Signal* signal, NodeHandle& node)
{
Frag& frag = node.m_frag;
Uint32 pageId = NullTupLoc.m_pageId;
Uint32 pageOffset = NullTupLoc.m_pageOffset;
Uint32 pageId = NullTupLoc.getPageId();
Uint32 pageOffset = NullTupLoc.getPageOffset();
Uint32* node32 = 0;
int errorCode = c_tup->tuxAllocNode(signal, frag.m_tupIndexFragPtrI, pageId, pageOffset, node32);
jamEntry();
......@@ -60,8 +60,8 @@ Dbtux::selectNode(Signal* signal, NodeHandle& node, TupLoc loc, AccSize acc)
{
Frag& frag = node.m_frag;
ndbrequire(loc != NullTupLoc);
Uint32 pageId = loc.m_pageId;
Uint32 pageOffset = loc.m_pageOffset;
Uint32 pageId = loc.getPageId();
Uint32 pageOffset = loc.getPageOffset();
Uint32* node32 = 0;
c_tup->tuxGetNode(frag.m_tupIndexFragPtrI, pageId, pageOffset, node32);
jamEntry();
......@@ -100,8 +100,8 @@ Dbtux::deleteNode(Signal* signal, NodeHandle& node)
Frag& frag = node.m_frag;
ndbrequire(node.getOccup() == 0);
TupLoc loc = node.m_loc;
Uint32 pageId = loc.m_pageId;
Uint32 pageOffset = loc.m_pageOffset;
Uint32 pageId = loc.getPageId();
Uint32 pageOffset = loc.getPageOffset();
Uint32* node32 = reinterpret_cast<Uint32*>(node.m_node);
c_tup->tuxFreeNode(signal, frag.m_tupIndexFragPtrI, pageId, pageOffset, node32);
jamEntry();
......
......@@ -108,15 +108,23 @@ Dbtux::execACC_SCANREQ(Signal* signal)
/*
* Receive bounds for scan in single direct call. The bounds can arrive
* in any order. Attribute ids are those of index table.
*
* Replace EQ by equivalent LE + GE. Check for conflicting bounds.
* Check that sets of lower and upper bounds are on initial sequences of
* keys and that all but possibly last bound is non-strict.
*
* Finally save the sets of lower and upper bounds (i.e. start key and
* end key). Full bound type (< 4) is included but only the strict bit
* is used since lower and upper have now been separated.
*/
void
Dbtux::execTUX_BOUND_INFO(Signal* signal)
{
jamEntry();
struct BoundInfo {
int type;
unsigned offset;
unsigned size;
int type;
};
TuxBoundInfo* const sig = (TuxBoundInfo*)signal->getDataPtrSend();
const TuxBoundInfo reqCopy = *(const TuxBoundInfo*)sig;
......@@ -124,18 +132,11 @@ Dbtux::execTUX_BOUND_INFO(Signal* signal)
// get records
ScanOp& scan = *c_scanOpPool.getPtr(req->tuxScanPtrI);
Index& index = *c_indexPool.getPtr(scan.m_indexId);
// collect bound info for each index attribute
BoundInfo boundInfo[MaxIndexAttributes][2];
// collect lower and upper bounds
BoundInfo boundInfo[2][MaxIndexAttributes];
// largest attrId seen plus one
Uint32 maxAttrId = 0;
// skip 5 words
Uint32 maxAttrId[2] = { 0, 0 };
unsigned offset = 0;
if (req->boundAiLength < offset) {
jam();
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::InvalidAttrInfo;
return;
}
const Uint32* const data = (Uint32*)sig + TuxBoundInfo::SignalLength;
// walk through entries
while (offset + 2 <= req->boundAiLength) {
......@@ -156,32 +157,35 @@ Dbtux::execTUX_BOUND_INFO(Signal* signal)
sig->errorCode = TuxBoundInfo::InvalidAttrInfo;
return;
}
while (maxAttrId <= attrId) {
BoundInfo* b = boundInfo[maxAttrId++];
b[0].type = b[1].type = -1;
}
BoundInfo* b = boundInfo[attrId];
if (type == 0 || type == 1 || type == 4) {
if (b[0].type != -1) {
jam();
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::InvalidBounds;
return;
for (unsigned j = 0; j <= 1; j++) {
// check if lower/upper bit matches
const unsigned luBit = (j << 1);
if ((type & 0x2) != luBit && type != 4)
continue;
// EQ -> LE, GE
const unsigned type2 = (type & 0x1) | luBit;
// fill in any gap
while (maxAttrId[j] <= attrId) {
BoundInfo& b = boundInfo[j][maxAttrId[j]++];
b.type = -1;
}
b[0].offset = offset;
b[0].size = 2 + dataSize;
b[0].type = type;
}
if (type == 2 || type == 3 || type == 4) {
if (b[1].type != -1) {
jam();
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::InvalidBounds;
return;
BoundInfo& b = boundInfo[j][attrId];
if (b.type != -1) {
// compare with previous bound
if (b.type != type2 ||
b.size != 2 + dataSize ||
memcmp(&data[b.offset + 2], &data[offset + 2], dataSize << 2) != 0) {
jam();
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::InvalidBounds;
return;
}
} else {
// enter new bound
b.type = type2;
b.offset = offset;
b.size = 2 + dataSize;
}
b[1].offset = offset;
b[1].size = 2 + dataSize;
b[1].type = type;
}
// jump to next
offset += 2 + dataSize;
......@@ -192,34 +196,27 @@ Dbtux::execTUX_BOUND_INFO(Signal* signal)
sig->errorCode = TuxBoundInfo::InvalidAttrInfo;
return;
}
// save the bounds in index attribute id order
scan.m_boundCnt[0] = 0;
scan.m_boundCnt[1] = 0;
for (unsigned i = 0; i < maxAttrId; i++) {
jam();
const BoundInfo* b = boundInfo[i];
// current limitation - check all but last is equality
if (i + 1 < maxAttrId) {
if (b[0].type != 4 || b[1].type != 4) {
for (unsigned j = 0; j <= 1; j++) {
// save lower/upper bound in index attribute id order
for (unsigned i = 0; i < maxAttrId[j]; i++) {
jam();
const BoundInfo& b = boundInfo[j][i];
// check for gap or strict bound before last
if (b.type == -1 || (i + 1 < maxAttrId[j] && (b.type & 0x1))) {
jam();
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::InvalidBounds;
return;
}
}
for (unsigned j = 0; j <= 1; j++) {
if (b[j].type != -1) {
bool ok = scan.m_bound[j]->append(&data[b.offset], b.size);
if (! ok) {
jam();
bool ok = scan.m_bound[j]->append(&data[b[j].offset], b[j].size);
if (! ok) {
jam();
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::OutOfBuffers;
return;
}
scan.m_boundCnt[j]++;
scan.m_state = ScanOp::Invalid;
sig->errorCode = TuxBoundInfo::OutOfBuffers;
return;
}
}
scan.m_boundCnt[j] = maxAttrId[j];
}
// no error
sig->errorCode = 0;
......
......@@ -31,10 +31,11 @@ Dbtux::searchToAdd(Signal* signal, Frag& frag, ConstData searchKey, TreeEnt sear
const unsigned numAttrs = frag.m_numAttrs;
NodeHandle currNode(frag);
currNode.m_loc = tree.m_root;
// assume success
treePos.m_match = false;
if (currNode.m_loc == NullTupLoc) {
// empty tree
jam();
treePos.m_match = false;
return;
}
NodeHandle glbNode(frag); // potential g.l.b of final node
......@@ -93,6 +94,7 @@ Dbtux::searchToAdd(Signal* signal, Frag& frag, ConstData searchKey, TreeEnt sear
jam();
treePos.m_loc = currNode.m_loc;
treePos.m_pos = 0;
// failed
treePos.m_match = true;
return;
}
......@@ -100,9 +102,16 @@ Dbtux::searchToAdd(Signal* signal, Frag& frag, ConstData searchKey, TreeEnt sear
}
// access rest of current node
accessNode(signal, currNode, AccFull);
for (unsigned j = 0, occup = currNode.getOccup(); j < occup; j++) {
// anticipate
treePos.m_loc = currNode.m_loc;
// binary search
int lo = -1;
int hi = currNode.getOccup();
int ret;
while (1) {
jam();
int ret;
// hi - lo > 1 implies lo < j < hi
int j = (hi + lo) / 2;
// read and compare attributes
unsigned start = 0;
readKeyAttrs(frag, currNode.getEnt(j), start, c_entryKey);
......@@ -113,25 +122,38 @@ Dbtux::searchToAdd(Signal* signal, Frag& frag, ConstData searchKey, TreeEnt sear
// keys are equal, compare entry values
ret = searchEnt.cmp(currNode.getEnt(j));
}
if (ret <= 0) {
jam();
treePos.m_loc = currNode.m_loc;
if (ret < 0)
hi = j;
else if (ret > 0)
lo = j;
else {
treePos.m_pos = j;
treePos.m_match = (ret == 0);
// failed
treePos.m_match = true;
return;
}
if (hi - lo == 1)
break;
}
if (! bottomNode.isNull()) {
if (ret < 0) {
jam();
// backwards compatible for now
treePos.m_loc = bottomNode.m_loc;
treePos.m_pos = 0;
treePos.m_match = false;
treePos.m_pos = hi;
return;
}
treePos.m_loc = currNode.m_loc;
treePos.m_pos = currNode.getOccup();
treePos.m_match = false;
if (hi < currNode.getOccup()) {
jam();
treePos.m_pos = hi;
return;
}
if (bottomNode.isNull()) {
jam();
treePos.m_pos = hi;
return;
}
jam();
// backwards compatible for now
treePos.m_loc = bottomNode.m_loc;
treePos.m_pos = 0;
}
/*
......@@ -150,9 +172,12 @@ Dbtux::searchToRemove(Signal* signal, Frag& frag, ConstData searchKey, TreeEnt s
const unsigned numAttrs = frag.m_numAttrs;
NodeHandle currNode(frag);
currNode.m_loc = tree.m_root;
// assume success
treePos.m_match = true;
if (currNode.m_loc == NullTupLoc) {
// empty tree
jam();
// failed
treePos.m_match = false;
return;
}
......@@ -206,27 +231,26 @@ Dbtux::searchToRemove(Signal* signal, Frag& frag, ConstData searchKey, TreeEnt s
jam();
treePos.m_loc = currNode.m_loc;
treePos.m_pos = 0;
treePos.m_match = true;
return;
}
break;
}
// access rest of current node
accessNode(signal, currNode, AccFull);
// anticipate
treePos.m_loc = currNode.m_loc;
// pos 0 was handled above
for (unsigned j = 1, occup = currNode.getOccup(); j < occup; j++) {
jam();
// compare only the entry
if (searchEnt.eq(currNode.getEnt(j))) {
jam();
treePos.m_loc = currNode.m_loc;
treePos.m_pos = j;
treePos.m_match = true;
return;
}
}
treePos.m_loc = currNode.m_loc;
treePos.m_pos = currNode.getOccup();
// failed
treePos.m_match = false;
}
......
......@@ -108,4 +108,16 @@ charsets mc02/a 35 ms 60 ms 71 pct
[ case b: TUX can no longer use pointers to TUP data ]
optim 15 mc02/a 34 ms 60 ms 72 pct
mc02/b 42 ms 85 ms 100 pct
mc02/c 5 ms 12 ms 110 pct
mc02/d 178 ms 242 ms 35 pct
[ corrected wasted space in index node ]
optim 16 mc02/a 34 ms 53 ms 53 pct
mc02/b 42 ms 75 ms 75 pct
[ case a, b: binary search of bounding node when adding entry ]
vim: set et:
......@@ -212,6 +212,8 @@ struct Par : public Opt {
// value calculation
unsigned m_range;
unsigned m_pctrange;
// choice of key
bool m_randomkey;
// do verify after read
bool m_verify;
// deadlock possible
......@@ -227,6 +229,7 @@ struct Par : public Opt {
m_totrows(m_threads * m_rows),
m_range(m_rows),
m_pctrange(0),
m_randomkey(false),
m_verify(false),
m_deadlock(false) {
}
......@@ -1965,9 +1968,21 @@ BSet::calcpk(Par par, unsigned i)
int
BSet::setbnd(Par par) const
{
for (unsigned j = 0; j < m_bvals; j++) {
const BVal& bval = *m_bval[j];
CHK(bval.setbnd(par) == 0);
if (m_bvals != 0) {
unsigned p1 = urandom(m_bvals);
unsigned p2 = 10009; // prime
// random order
for (unsigned j = 0; j < m_bvals; j++) {
unsigned k = p1 + p2 * j;
const BVal& bval = *m_bval[k % m_bvals];
CHK(bval.setbnd(par) == 0);
}
// duplicate
if (urandom(5) == 0) {
unsigned k = urandom(m_bvals);
const BVal& bval = *m_bval[k];
CHK(bval.setbnd(par) == 0);
}
}
return 0;
}
......@@ -2107,7 +2122,8 @@ pkupdate(Par par)
Lst lst;
bool deadlock = false;
for (unsigned j = 0; j < par.m_rows; j++) {
unsigned i = thrrow(par, j);
unsigned j2 = ! par.m_randomkey ? j : urandom(par.m_rows);
unsigned i = thrrow(par, j2);
set.lock();
if (! set.exist(i) || set.pending(i)) {
set.unlock();
......@@ -2710,6 +2726,7 @@ pkupdateindexbuild(Par par)
if (par.m_no == 0) {
CHK(createindex(par) == 0);
} else {
par.m_randomkey = true;
CHK(pkupdate(par) == 0);
}
return 0;
......
......@@ -1227,114 +1227,158 @@ inline int ha_ndbcluster::next_result(byte *buf)
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
/*
Set bounds for a ordered index scan, use key_range
Set bounds for ordered index scan.
*/
int ha_ndbcluster::set_bounds(NdbIndexScanOperation *op,
const key_range *key,
int bound)
const key_range *keys[2])
{
uint key_len, key_store_len, tot_len, key_tot_len;
byte *key_ptr;
KEY* key_info= table->key_info + active_index;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
Field* field;
bool key_nullable, key_null;
const KEY *const key_info= table->key_info + active_index;
const uint key_parts= key_info->key_parts;
uint key_tot_len[2];
uint tot_len;
int i, j;
DBUG_ENTER("set_bounds");
DBUG_PRINT("enter", ("bound: %d", bound));
DBUG_PRINT("enter", ("key_parts: %d", key_info->key_parts));
DBUG_PRINT("enter", ("key->length: %d", key->length));
DBUG_PRINT("enter", ("key->flag: %d", key->flag));
DBUG_PRINT("info", ("key_parts=%d", key_parts));
// Set bounds using key data
tot_len= 0;
key_ptr= (byte *) key->key;
key_tot_len= key->length;
for (; key_part != end; key_part++)
for (j= 0; j <= 1; j++)
{
field= key_part->field;
key_len= key_part->length;
key_store_len= key_part->store_length;
key_nullable= (bool) key_part->null_bit;
key_null= (field->maybe_null() && *key_ptr);
tot_len+= key_store_len;
const char* bounds[]= {"LE", "LT", "GE", "GT", "EQ"};
DBUG_ASSERT(bound >= 0 && bound <= 4);
DBUG_PRINT("info", ("Set Bound%s on %s %s %s",
bounds[bound],
field->field_name,
key_nullable ? "NULLABLE" : "",
key_null ? "NULL":""));
DBUG_PRINT("info", ("Total length %d", tot_len));
DBUG_DUMP("key", (char*) key_ptr, key_store_len);
if (op->setBound(field->field_name,
bound,
key_null ? 0 : (key_nullable ? key_ptr + 1 : key_ptr),
key_null ? 0 : key_len) != 0)
ERR_RETURN(op->getNdbError());
key_ptr+= key_store_len;
if (tot_len >= key_tot_len)
break;
/*
Only one bound which is not EQ can be set
so if this bound was not EQ, bail out and make
a best effort attempt
*/
if (bound != NdbIndexScanOperation::BoundEQ)
break;
const key_range *key= keys[j];
if (key != NULL)
{
// for key->flag see ha_rkey_function
DBUG_PRINT("info", ("key %d length=%d flag=%d",
j, key->length, key->flag));
key_tot_len[j]= key->length;
}
else
{
DBUG_PRINT("info", ("key %d not present", j));
key_tot_len[j]= 0;
}
}
tot_len= 0;
DBUG_RETURN(0);
}
for (i= 0; i < key_parts; i++)
{
KEY_PART_INFO *key_part= &key_info->key_part[i];
Field *field= key_part->field;
uint part_len= key_part->length;
uint part_store_len= key_part->store_length;
bool part_nullable= (bool) key_part->null_bit;
// Info about each key part
struct part_st {
bool part_last;
const key_range *key;
const byte *part_ptr;
bool part_null;
int bound_type;
const char* bound_ptr;
};
struct part_st part[2];
for (j= 0; j <= 1; j++)
{
struct part_st &p = part[j];
p.key= NULL;
p.bound_type= -1;
if (tot_len < key_tot_len[j])
{
p.part_last= (tot_len + part_store_len >= key_tot_len[j]);
p.key= keys[j];
p.part_ptr= &p.key->key[tot_len];
p.part_null= (field->maybe_null() && *p.part_ptr);
p.bound_ptr= (const char *)
p.part_null ? 0 : part_nullable ? p.part_ptr + 1 : p.part_ptr;
if (j == 0)
{
switch (p.key->flag)
{
case HA_READ_KEY_EXACT:
p.bound_type= NdbIndexScanOperation::BoundEQ;
break;
case HA_READ_KEY_OR_NEXT:
p.bound_type= NdbIndexScanOperation::BoundLE;
break;
case HA_READ_AFTER_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundLE;
else
p.bound_type= NdbIndexScanOperation::BoundLT;
break;
default:
break;
}
}
if (j == 1) {
switch (p.key->flag)
{
case HA_READ_BEFORE_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundGE;
else
p.bound_type= NdbIndexScanOperation::BoundGT;
break;
case HA_READ_AFTER_KEY: // weird
p.bound_type= NdbIndexScanOperation::BoundGE;
break;
default:
break;
}
}
#ifndef DBUG_OFF
if (p.bound_type == -1)
{
DBUG_PRINT("error", ("key %d unknown flag %d", j, p.key->flag));
DBUG_ASSERT(false);
// Stop setting bounds but continue with what we have
DBUG_RETURN(0);
}
}
}
const char* key_flag_strs[] =
{ "HA_READ_KEY_EXACT",
"HA_READ_KEY_OR_NEXT",
"HA_READ_KEY_OR_PREV",
"HA_READ_AFTER_KEY",
"HA_READ_BEFORE_KEY",
"HA_READ_PREFIX",
"HA_READ_PREFIX_LAST",
"HA_READ_PREFIX_LAST_OR_PREV",
"HA_READ_MBR_CONTAIN",
"HA_READ_MBR_INTERSECT",
"HA_READ_MBR_WITHIN",
"HA_READ_MBR_DISJOINT",
"HA_READ_MBR_EQUAL"
};
// Seen with e.g. b = 1 and c > 1
if (part[0].bound_type == NdbIndexScanOperation::BoundLE &&
part[1].bound_type == NdbIndexScanOperation::BoundGE &&
memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0)
{
DBUG_PRINT("info", ("replace LE/GE pair by EQ"));
part[0].bound_type= NdbIndexScanOperation::BoundEQ;
part[1].bound_type= -1;
}
// Not seen but was in previous version
if (part[0].bound_type == NdbIndexScanOperation::BoundEQ &&
part[1].bound_type == NdbIndexScanOperation::BoundGE &&
memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0)
{
DBUG_PRINT("info", ("remove GE from EQ/GE pair"));
part[1].bound_type= -1;
}
const int no_of_key_flags = sizeof(key_flag_strs)/sizeof(char*);
for (j= 0; j <= 1; j++)
{
struct part_st &p = part[j];
// Set bound if not done with this key
if (p.key != NULL)
{
DBUG_PRINT("info", ("key %d:%d offset=%d length=%d last=%d bound=%d",
j, i, tot_len, part_len, p.part_last, p.bound_type));
DBUG_DUMP("info", (const char*)p.part_ptr, part_store_len);
// Set bound if not cancelled via type -1
if (p.bound_type != -1)
if (op->setBound(field->field_name, p.bound_type, p.bound_ptr))
ERR_RETURN(op->getNdbError());
}
}
void print_key(const key_range* key, const char* info)
{
if (key)
{
const char* str= key->flag < no_of_key_flags ?
key_flag_strs[key->flag] : "Unknown flag";
DBUG_LOCK_FILE;
fprintf(DBUG_FILE,"%s: %s, length=%d, key=", info, str, key->length);
uint i;
for (i=0; i<key->length-1; i++)
fprintf(DBUG_FILE,"%0d ", key->key[i]);
fprintf(DBUG_FILE, "\n");
DBUG_UNLOCK_FILE;
tot_len+= part_store_len;
}
return;
DBUG_RETURN(0);
}
#endif
/*
Start ordered index scan in NDB
......@@ -1353,13 +1397,10 @@ int ha_ndbcluster::ordered_index_scan(const key_range *start_key,
DBUG_PRINT("enter", ("index: %u, sorted: %d", active_index, sorted));
DBUG_PRINT("enter", ("Starting new ordered scan on %s", m_tabname));
DBUG_EXECUTE("enter", print_key(start_key, "start_key"););
DBUG_EXECUTE("enter", print_key(end_key, "end_key"););
// Check that sorted seems to be initialised
DBUG_ASSERT(sorted == 0 || sorted == 1);
if(m_active_cursor == 0)
if (m_active_cursor == 0)
{
restart= false;
NdbOperation::LockMode lm=
......@@ -1380,29 +1421,15 @@ int ha_ndbcluster::ordered_index_scan(const key_range *start_key,
if(op->reset_bounds())
DBUG_RETURN(ndb_err(m_active_trans));
}
if (start_key &&
set_bounds(op, start_key,
(start_key->flag == HA_READ_KEY_EXACT) ?
NdbIndexScanOperation::BoundEQ :
(start_key->flag == HA_READ_AFTER_KEY) ?
NdbIndexScanOperation::BoundLT :
NdbIndexScanOperation::BoundLE))
DBUG_RETURN(1);
if (end_key)
{
if (start_key && start_key->flag == HA_READ_KEY_EXACT)
{
DBUG_PRINT("info", ("start_key is HA_READ_KEY_EXACT ignoring end_key"));
}
else if (set_bounds(op, end_key,
(end_key->flag == HA_READ_AFTER_KEY) ?
NdbIndexScanOperation::BoundGE :
NdbIndexScanOperation::BoundGT))
DBUG_RETURN(1);
const key_range *keys[2]= { start_key, end_key };
int ret= set_bounds(op, keys);
if (ret)
DBUG_RETURN(ret);
}
if(!restart)
if (!restart)
{
DBUG_RETURN(define_read_attrs(buf, op));
}
......
......@@ -214,8 +214,7 @@ class ha_ndbcluster: public handler
int set_primary_key(NdbOperation *op, const byte *key);
int set_primary_key(NdbOperation *op);
int set_primary_key_from_old_data(NdbOperation *op, const byte *old_data);
int set_bounds(NdbIndexScanOperation *ndb_op, const key_range *key,
int bound);
int set_bounds(NdbIndexScanOperation *ndb_op, const key_range *keys[2]);
int key_cmp(uint keynr, const byte * old_row, const byte * new_row);
void print_results();
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment