Commit a8456e68 authored by sergefp@mysql.com's avatar sergefp@mysql.com

Numerous small fixes to index_merge read time estimates code

parent 50f29b0e
......@@ -666,6 +666,17 @@ extern double my_atof(const char*);
#define FLT_MAX ((float)3.40282346638528860e+38)
#endif
/* Define missing math constants. */
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_E
#define M_E 2.7182818284590452354
#endif
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
/*
Max size that must be added to a so that we know Size to make
adressable obj.
......
......@@ -109,7 +109,7 @@ key1 key2 key3 key4 key5 key6 key7 key8
explain select * from t0 where
(key1 < 3 or key2 < 3) and (key3 < 4 or key4 < 4) and (key5 < 2 or key6 < 2);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t0 index_merge i1,i2,i3,i4,i5,i6 i5,i6 4,4 NULL 4 Using where
1 SIMPLE t0 index_merge i1,i2,i3,i4,i5,i6 i1,i2 4,4 NULL 6 Using where
explain select * from t0 where
(key1 < 3 or key2 < 3) and (key3 < 100);
id select_type table type possible_keys key key_len ref rows Extra
......
......@@ -18,10 +18,6 @@
#include "mysql_priv.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
Item *create_func_abs(Item* a)
{
return new Item_func_abs(a);
......
......@@ -750,7 +750,7 @@ double Item_func_log2::val()
double value=args[0]->val();
if ((null_value=(args[0]->null_value || value <= 0.0)))
return 0.0;
return log(value) / log(2.0);
return log(value) / M_LN2;
}
double Item_func_log10::val()
......
......@@ -296,6 +296,9 @@ typedef struct st_qsel_param {
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
bool quick; // Don't calulate possible keys
uint *imerge_cost_buff; /* buffer for index_merge cost estimates */
uint imerge_cost_buff_size; /* size of the buffer */
} PARAM;
static SEL_TREE * get_mm_parts(PARAM *param,Field *field,
......@@ -953,6 +956,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
param.table=head;
param.keys=0;
param.mem_root= &alloc;
param.imerge_cost_buff_size= 0;
thd->no_errors=1; // Don't warn about NULL
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
......@@ -1011,7 +1015,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
ha_rows found_records;
double found_read_time= read_time;
if (!get_quick_select_params(tree, &param, needed_reg, true,
if (!get_quick_select_params(tree, &param, needed_reg, false,
&found_read_time, &found_records,
&best_key))
{
......@@ -1254,54 +1258,48 @@ static int get_index_merge_params(PARAM *param, key_map& needed_reg,
*/
/*
It may be possible to use different keys for index_merge scans,
e.g. for query like
It may be possible to use different keys for index_merge scans, e.g. for
query like
...WHERE (key1 < c2 AND key2 < c2) OR (key3 < c3 AND key4 < c4)
we have to make choice between key1 and key2 for one scan and
between key3,key4 for another.
We assume we'll get the best way if we choose the best key read
inside each of the conjuncts. Comparison is done without 'using index'.
we have to make choice between key1 and key2 for one scan and between
key3, key4 for another.
We assume we'll get the best if we choose the best key read inside each
of the conjuncts.
*/
for (SEL_TREE **ptree= imerge->trees;
ptree != imerge->trees_next;
ptree++)
{
SEL_ARG **tree_best_key;
uint keynr;
tree_read_time= *read_time;
if (get_quick_select_params(*ptree, param, needed_reg, false,
if (get_quick_select_params(*ptree, param, needed_reg, true,
&tree_read_time, &tree_records,
&tree_best_key))
{
/*
Non-'index only' range scan on a one in index_merge key is more
expensive than other available option. The entire index_merge will be
more expensive then, too. We continue here only to update SQL_SELECT
members.
One of index scans in this index_merge is more expensive than entire
table read for another available option. The entire index_merge will
be more expensive then, too. We continue here only to update
SQL_SELECT members.
*/
imerge_too_expensive= true;
}
if (imerge_too_expensive)
continue;
uint keynr= param->real_keynr[(tree_best_key-(*ptree)->keys)];
imerge->best_keys[ptree - imerge->trees]= tree_best_key;
keynr= param->real_keynr[(tree_best_key-(*ptree)->keys)];
imerge_cost += tree_read_time;
if (pk_is_clustered && keynr == param->table->primary_key)
{
/* This is a Clustered PK scan, it will be done without 'index only' */
imerge_cost += tree_read_time;
have_cpk_scan= true;
cpk_records= tree_records;
}
else
{
/* Non-CPK scan, calculate time to do it using 'index only' */
imerge_cost += get_index_only_read_time(param, tree_records,keynr);
records_for_unique += tree_records;
}
}
DBUG_PRINT("info",("index_merge cost of index reads: %g", imerge_cost));
......@@ -1359,18 +1357,27 @@ static int get_index_merge_params(PARAM *param, key_map& needed_reg,
DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g", imerge_cost));
/* PHASE 3: Add Unique operations cost */
double unique_cost=
Unique::get_use_cost(param->mem_root, records_for_unique,
register uint unique_calc_buff_size=
Unique::get_cost_calc_buff_size(records_for_unique,
param->table->file->ref_length,
param->thd->variables.sortbuff_size);
if (param->imerge_cost_buff_size < unique_calc_buff_size)
{
if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
unique_calc_buff_size)))
DBUG_RETURN(1);
param->imerge_cost_buff_size= unique_calc_buff_size;
}
imerge_cost +=
Unique::get_use_cost(param->imerge_cost_buff, records_for_unique,
param->table->file->ref_length,
param->thd->variables.sortbuff_size);
if (unique_cost < 0.0)
DBUG_RETURN(1);
imerge_cost += unique_cost;
DBUG_PRINT("info",("index_merge total cost: %g", imerge_cost));
if (imerge_cost < *read_time)
{
*read_time= imerge_cost;
*read_time= imerge_cost;
records_for_unique += cpk_records;
*imerge_rows= min(records_for_unique, param->table->file->records);
DBUG_RETURN(0);
......@@ -1415,8 +1422,8 @@ inline double get_index_only_read_time(PARAM* param, ha_rows records,
tree in make range select for this SEL_TREE
param in parameters from test_quick_select
needed_reg in/out other table data needed by this quick_select
index_read_can_be_used if false, assume that 'index only' option is not
available.
index_read_must_be_used if true, assume 'index only' option will be set
(except for clustered PK indexes)
read_time out read time estimate
records out # of records estimate
key_to_read out SEL_ARG to be used for creating quick select
......@@ -1424,16 +1431,17 @@ inline double get_index_only_read_time(PARAM* param, ha_rows records,
static int get_quick_select_params(SEL_TREE *tree, PARAM *param,
key_map& needed_reg,
bool index_read_can_be_used,
bool index_read_must_be_used,
double *read_time, ha_rows *records,
SEL_ARG ***key_to_read)
{
int idx;
int result = 1;
bool pk_is_clustered= param->table->file->primary_key_is_clustered();
/*
Note that there may be trees that have type SEL_TREE::KEY but contain
no key reads at all. For example, tree for expression "key1 is not null"
where key1 is defined as "not null".
Note that there may be trees that have type SEL_TREE::KEY but contain no
key reads at all, e.g. tree for expression "key1 is not null" where key1
is defined as "not null".
*/
SEL_ARG **key,**end;
......@@ -1450,22 +1458,29 @@ static int get_quick_select_params(SEL_TREE *tree, PARAM *param,
(*key)->maybe_flag)
needed_reg.set_bit(keynr);
bool read_index_only= index_read_can_be_used?
param->table->used_keys.is_set(keynr): false;
bool read_index_only= index_read_must_be_used? true :
(bool)param->table->used_keys.is_set(keynr);
found_records=check_quick_select(param, idx, *key);
if (found_records != HA_POS_ERROR && found_records > 2 &&
read_index_only &&
(param->table->file->index_flags(keynr) & HA_KEY_READ_ONLY))
(param->table->file->index_flags(keynr) & HA_KEY_READ_ONLY) &&
!(pk_is_clustered && keynr == param->table->primary_key))
{
/* We can resolve this by only reading through this key. */
found_read_time=get_index_only_read_time(param, found_records, keynr);
}
else
{
/*
cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
*/
found_read_time= (param->table->file->read_time(keynr,
param->range_count,
found_records)+
(double) found_records / TIME_FOR_COMPARE);
}
if (*read_time > found_read_time && found_records != HA_POS_ERROR)
{
*read_time= found_read_time;
......
......@@ -1233,8 +1233,16 @@ public:
}
bool get(TABLE *table);
static double get_use_cost(MEM_ROOT *alloc, uint nkeys, uint key_size,
static double get_use_cost(uint *buffer, uint nkeys, uint key_size,
ulong max_in_memory_size);
inline static int get_cost_calc_buff_size(ulong nkeys, uint key_size,
ulong max_in_memory_size)
{
register ulong max_elems_in_tree=
(1 + max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size));
return sizeof(uint)*(1 + nkeys/max_elems_in_tree);
}
friend int unique_write_to_file(gptr key, element_count count, Unique *unique);
friend int unique_write_to_ptrs(gptr key, element_count count, Unique *unique);
};
......
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment