Name Last Update
golang Loading commit data...
gpython Loading commit data...
.gitignore Loading commit data...
CHANGELOG.rst Loading commit data...
COPYING Loading commit data... Loading commit data...
README.rst Loading commit data... Loading commit data...
tox.ini Loading commit data...

Pygolang - Go-like features for Python

Package golang provides Go-like features for Python:

  • gpython is Python interpreter with support for lightweight threads.
  • go spawns lightweight thread.
  • chan and select provide channels with Go semantic.
  • func allows to define methods separate from class.
  • defer allows to schedule a cleanup from the main control flow.
  • gimport allows to import python modules by full path in a Go workspace.

Additional packages and utilities are also provided to close other gaps between Python and Go environments.


Command gpython provides Python interpreter that supports lightweight threads via tight integration with gevent. The standard library of GPython is API compatible with Python standard library, but inplace of OS threads lightweight coroutines are provided, and IO is internally organized via libuv/libev-based IO scheduler. Consequently programs can spawn lots of coroutines cheaply, and modules like time, socket, ssl, subprocess etc - all could be used from all coroutines simultaneously, and in the same blocking way as if every coroutine was a full OS thread. This gives ability to scale programs without changing concurrency model and existing code.

Additionally GPython sets UTF-8 to be default encoding always, and puts go, chan, select etc into builtin namespace.


GPython is optional and the rest of Pygolang can be used from under standard Python too. However without gevent integration go spawns full - not lightweight - OS thread.

Goroutines and channels

go spawns a coroutine, or thread if gevent was not activated. It is possible to exchange data in between either threads or coroutines via channels. chan creates a new channel with Go semantic - either synchronous or buffered. Use chan.recv, chan.send and chan.close for communication. nilchan stands for the nil channel. select can be used to multiplex on several channels. For example:

ch1 = chan()    # synchronous channel
ch2 = chan(3)   # channel with buffer of size 3

def _():

ch1.recv()      # will give 'a'
ch2.recv_()     # will give ('b', True)

ch2 = nilchan   # rebind ch2 to nil channel
_, _rx = select(
    ch1.recv,           # 0
    ch1.recv_,          # 1
    (ch1.send, obj),    # 2
    ch2.recv,           # 3
    default,            # 4
if _ == 0:
    # _rx is what was received from ch1
if _ == 1:
    # _rx is (rx, ok) of what was received from ch1
if _ == 2:
    # we know obj was sent to ch1
if _ == 3:
    # this case will be never selected because
    # send/recv on nil channel block forever.
if _ == 4:
    # default case


func decorator allows to define methods separate from class.

For example:

def my_method(self, ...):

will define MyClass.my_method().

func can be also used on just functions, for example:

def my_function(...):

Defer / recover / panic

defer allows to schedule a cleanup to be executed when current function returns. It is similar to try/finally but does not force the cleanup part to be far away in the end. For example:

wc = wcfs.join(zurl)    │     wc = wcfs.join(zurl)
defer(wc.close)         │     try:
                        │        ...
...                     │        ...
...                     │        ...
...                     │     finally:
                        │        wc.close()

For completeness there is recover and panic that allow to program with Go-style error handling, for example:

def _():
   r = recover()
   if r is not None:
      print("recovered. error was: %s" % (r,))



But recover and panic are probably of less utility since they can be practically natively modelled with try/except.

If defer is used, the function that uses it must be wrapped with @func decorator.


gimport provides way to import python modules by full path in a Go workspace.

For example

lonet = gimport('')

will import either

  •, or

located in src/ under $GOPATH.

Additional packages and utilities

The following additional packages and utilities are also provided to close gaps between Python and Go environments:


In addition to go and channels, the following packages are provided to help handle concurrency in structured ways:

  • golang.context provides contexts to propagate deadlines, cancellation and task-scoped values among spawned goroutines [*].
  • golang.sync provides sync.WorkGroup to spawn group of goroutines working on a common task. It also provides low-level primitives - for example sync.Once and sync.WaitGroup - that are sometimes useful too.
  • golang.time provides timers integrated with channels.
[*] See Go Concurrency Patterns: Context for overview of contexts.

String conversion

qq (import from golang.gcompat) provides %q functionality that quotes as Go would do. For example the following code will print name quoted in " without escaping printable UTF-8 characters:

print('hello %s' % qq(name))

qq accepts both str and bytes (unicode and str on Python2) and also any other type that can be converted to str.

Package golang.strconv provides direct access to conversion routines, for example strconv.quote and strconv.unquote.

Benchmarking and testing

py.bench allows to benchmark python code similarly to go test -bench and py.test. For example, running py.bench on the following code:

def bench_add(b):
    x, y = 1, 2
    for i in xrange(b.N):
        x + y

gives something like:

$ py.bench --count=3
Benchmarkadd    50000000        0.020 µs/op
Benchmarkadd    50000000        0.020 µs/op
Benchmarkadd    50000000        0.020 µs/op

Package golang.testing provides corresponding runtime bits, e.g. testing.B.

py.bench produces output in Go benchmark format, and so benchmark results can be analyzed and compared with standard Go tools, for example with benchstat. Additionally package golang.x.perf.benchlib can be used to load and process such benchmarking data in Python.