Commit 93dfd2fa authored by Léo-Paul Géneau's avatar Léo-Paul Géneau 👾

erp5_wendelin_drone: automatically fetch the amount of parameters

parent 477cf068
...@@ -8,148 +8,64 @@ import re ...@@ -8,148 +8,64 @@ import re
# Now, to save space, we just overwrite the old array with the new one, that contains the new scores # Now, to save space, we just overwrite the old array with the new one, that contains the new scores
# This new array will give us the final overview of the ranking of the parameters. This can be used by our genetic algorithm to decide when we can stop and which parameters worked the best. # This new array will give us the final overview of the ranking of the parameters. This can be used by our genetic algorithm to decide when we can stop and which parameters worked the best.
score_array = input_array_scores['Data Array']
score_dtypes = {'name': 'S256', 'Param1': 'f8', 'Param2': 'f8',
'distance_reciprocal': 'f8', 'ASML_reciprocal': 'f8',
'ground_speed_reciprocal': 'f8', 'climb_rate_reciprocal': 'f8',
'score_reciprocal': 'f8', 'score_cosine_row': 'f8',
'score_cosine_column': 'f8'}
new_score_dtypes= {'name': 'S256', 'Param1': 'f8', 'Param2': 'f8',
'distance_reciprocal': 'f8', 'ASML_reciprocal': 'f8',
'ground_speed_reciprocal': 'f8', 'climb_rate_reciprocal': 'f8',
'score_reciprocal': 'f8', 'score_cosine_row': 'f8',
'score_cosine_column': 'f8',
'iteration': 'i8'}
plot_dtypes = {
'name': 'S256',
'Param1': 'f8',
'Param2': 'f8',
'timestamp': 'f8',
'distance_diff': 'f8',
'ASML_diff': 'f8',
'ground_speed_diff': 'f8',
'climb_rate_diff': 'f8',
'distance_reciprocal': 'f8',
'ASML_reciprocal': 'f8',
'ground_speed_reciprocal': 'f8',
'climb_rate_reciprocal': 'f8',
'score_reciprocal': 'f8',
'score_cosine_row': 'f8',
'score_cosine_column': 'f8',
'iteration': 'i8'
}
new_plot_dtypes = {
'Param1': 'f8',
'Param2': 'f8',
'timestamp': 'f8',
'distance_diff': 'f8',
'ASML_diff': 'f8',
'ground_speed_diff': 'f8',
'climb_rate_diff': 'f8',
'distance_reciprocal': 'f8',
'ASML_reciprocal': 'f8',
'ground_speed_reciprocal': 'f8',
'climb_rate_reciprocal': 'f8',
'score_reciprocal': 'f8',
'score_cosine_row': 'f8',
'score_cosine_column': 'f8',
'iteration': 'i8'
}
score_array = input_array_scores["Data Array"]
new_score_array = out_array_scores["Data Array"]
plot_array = input_array_plot["Data Array"]
new_plot_array = out_array_plots["Data Array"]
# Should only look at the newest few
score_nparray = score_array.getArray() score_nparray = score_array.getArray()
if score_nparray is None: if score_nparray is None:
score_nparray = out_array_scores["Data Array"].initArray(shape=(0,), dtype=list(new_score_dtypes.items())) return
plot_array = input_array_plot['Data Array']
plot_nparray = plot_array.getArray() plot_nparray = plot_array.getArray()
if plot_nparray is None: if plot_nparray is None:
plot_nparray = out_array_plots["Data Array"].initArray(shape=(0,), dtype=list(new_plot_dtypes.items())) return
old_score_df = pd.DataFrame.from_records(score_nparray[:].copy())
old_plot_df = pd.DataFrame.from_records(plot_nparray[:].copy())
progress_indicator = input_array_scores["Progress Indicator"]
seen_sims = progress_indicator.getStringOffsetIndex()
if seen_sims is None:
seen_sims = ""
sim_flight_names = list(old_score_df["name"])
# We will only continue if there is new data available.
if len([x for x in sim_flight_names if x not in seen_sims]) == 0:
return
new_score_dtypes = [(k, v[0]) for k, v in dict(score_nparray.dtype.fields).items()]
new_score_dtypes.append(('iteration', 'i8'))
new_score_array = out_array_scores['Data Array']
new_score_nparray = new_score_array.getArray() new_score_nparray = new_score_array.getArray()
if new_score_nparray is None: if new_score_nparray is None:
new_score_nparray = out_array_scores["Data Array"].initArray(shape=(0,), dtype=list(new_score_dtypes.items())) new_score_array.initArray(shape=(0,), dtype=new_score_dtypes)
new_plot_dtypes = [(k, v[0]) for k, v in dict(plot_nparray.dtype.fields).items()]
new_plot_dtypes.append(('iteration', 'i8'))
new_plot_array = out_array_plots['Data Array']
new_plot_nparray = new_plot_array.getArray() new_plot_nparray = new_plot_array.getArray()
if new_plot_nparray is None: if new_plot_nparray is None:
new_plot_nparray = out_array_plots["Data Array"].initArray(shape=(0,), dtype=list(new_plot_dtypes.items())) new_plot_array.initArray(shape=(0,), dtype=new_plot_dtypes)
new_score_df = pd.DataFrame.from_records(new_score_nparray[:].copy())
new_plot_df = pd.DataFrame.from_records(new_plot_nparray[:].copy())
old_score_df = pd.DataFrame.from_records(score_nparray[:].copy())
old_plot_df = pd.DataFrame.from_records(plot_nparray[:].copy())
progress_indicator = input_array_scores['Progress Indicator']
seen_sims = progress_indicator.getStringOffsetIndex()
if seen_sims is None:
seen_sims = ""
sim_flight_names = list(old_score_df['name'])
# We will only continue if there is new data available.
if len([x for x in sim_flight_names if x not in seen_sims]) == 0:
return
new_score_df = pd.DataFrame.from_records(new_score_nparray[:].copy())
new_plot_df = pd.DataFrame.from_records(new_plot_nparray[:].copy())
new_score_iteration = new_score_df["iteration"].max() new_score_iteration = new_score_df['iteration'].max()
if math.isnan(new_score_iteration): if math.isnan(new_score_iteration):
new_score_iteration = 0 new_score_iteration = 0
new_score_df = new_score_df.drop(['iteration'], axis=1)
new_score_df = new_score_df.drop(["iteration"],axis=1)
new_plot_iteration = new_plot_df["iteration"].max() new_plot_iteration = new_plot_df["iteration"].max()
if math.isnan(new_plot_iteration): if math.isnan(new_plot_iteration):
new_plot_iteration = 0 new_plot_iteration = 0
#new_plot_df = new_plot_df.drop(columns=["iteration"]) param_subset = [k for k in old_score_df.dtypes.keys().values if not 'reciprocal' in k and not 'score' in k and k != 'name']
answer_scores = pd.concat([old_score_df, new_score_df]).drop_duplicates(subset=param_subset, keep='last')
answer_plots = pd.concat([old_plot_df, new_plot_df]).drop_duplicates(subset=param_subset, keep='last')
answer_scores = pd.concat([old_score_df, new_score_df]).drop_duplicates(subset=['Param1','Param2'], keep='last')
answer_plots = pd.concat([old_plot_df, new_plot_df]).drop_duplicates(subset=['Param1','Param2'], keep='last')
answer_scores["score_reciprocal"] = answer_scores["score_reciprocal"].astype('float64')
answer_scores = answer_scores.nlargest(5, "score_reciprocal")
answer_plots = old_plot_df[old_plot_df["name"].isin(list(answer_scores["name"]))]
answer_scores['score_reciprocal'] = answer_scores['score_reciprocal'].astype('float64')
answer_scores = answer_scores.nlargest(5, 'score_reciprocal')
answer_plots = old_plot_df[old_plot_df['name'].isin(list(answer_scores['name']))]
new_score_iteration = new_score_iteration + 1 new_score_iteration = new_score_iteration + 1
new_plot_iteration = new_plot_iteration + 1 new_plot_iteration = new_plot_iteration + 1
...@@ -158,24 +74,14 @@ answer_scores["iteration"] = new_score_iteration ...@@ -158,24 +74,14 @@ answer_scores["iteration"] = new_score_iteration
answer_plots["iteration"] = new_plot_iteration answer_plots["iteration"] = new_plot_iteration
# We will remove all the data from the data arrays before we append the new data. Essentially we will be left with only the best few iterations # We will remove all the data from the data arrays before we append the new data. Essentially we will be left with only the best few iterations
new_score_nparray = out_array_scores["Data Array"].initArray(shape=(0,), dtype=list(new_score_dtypes.items())) new_score_nparray = new_score_array.initArray(shape=(0,), dtype=new_score_dtypes)
new_plot_nparray = new_plot_array.initArray(shape=(0,), dtype=new_plot_dtypes)
new_plot_nparray = out_array_plots["Data Array"].initArray(shape=(0,), dtype=list(new_plot_dtypes.items()))
new_score_nparray.append(answer_scores.to_records(index = False)) new_score_nparray.append(answer_scores.to_records(index = False))
# Group the DataFrame by the 'name' column # Group the DataFrame by the 'name' column
grouped = answer_plots.groupby(['Param1', 'Param2']) grouped = answer_plots.groupby(param_subset)
# Initialize a list to store the resulting DataFrames # Initialize a list to store the resulting DataFrames
resulting_dfs = [] resulting_dfs = []
...@@ -209,5 +115,5 @@ for df in resulting_dfs: ...@@ -209,5 +115,5 @@ for df in resulting_dfs:
progress_indicator.setStringOffsetIndex(sim_flight_names) progress_indicator.setStringOffsetIndex(sim_flight_names)
return return
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment