Commit 3c164cd2 authored by Rusty Russell's avatar Rusty Russell

tal/talloc: new module for backending tal onto talloc.

David Gibson points out that a project may already be using talloc, so
this gives a simple adapter if one module uses tal.
Signed-off-by: default avatarRusty Russell <rusty@rustcorp.com.au>
parent d3cbb4cb
......@@ -92,6 +92,7 @@ MODS_EXTERNAL_WITH_SRC:=jmap \
jset \
nfs \
ogg_to_pcm \
tal/talloc \
wwviaudio
MODS_EXTERNAL:=$(MODS_EXTERNAL_NO_SRC) $(MODS_EXTERNAL_WITH_SRC)
......
../../../licenses/LGPL-3
\ No newline at end of file
#include <stdio.h>
#include <string.h>
#include "config.h"
/**
* tal/talloc - an implementation of the tal interface in terms of talloc.
*
* Tal and talloc are both hierarchical allocators, but have different APIs.
* The tal API is mostly a subset of talloc, but if your project already
* uses talloc then having both tal and talloc pointers is confusing, and
* a waste of resources.
*
* The standard convention to tell ccan modules to use this instead of
* ccan/tal is to define TAL_USE_TALLOC, usually on the commandline.
*
* Bugs:
* tal_first() and tal_next() can't be implemented.
* tal_set_backend() can only change the error function.
*
* License: LGPL
*/
int main(int argc, char *argv[])
{
if (argc != 2)
return 1;
if (strcmp(argv[1], "depends") == 0) {
printf("ccan/take\n");
printf("ccan/typesafe_cb\n");
printf("talloc\n");
return 0;
}
if (strcmp(argv[1], "libs") == 0) {
printf("talloc\n");
return 0;
}
return 1;
}
/* Licensed under LGPL - see LICENSE file for details */
#include <ccan/tal/talloc/talloc.h>
#include <ccan/take/take.h>
#include <errno.h>
#include <assert.h>
static void (*errorfn)(const char *msg) = (void *)abort;
static void COLD call_error(const char *msg)
{
errorfn(msg);
}
static void *error_on_null(void *p, const char *msg)
{
if (!p)
call_error(msg);
return p;
}
void *tal_talloc_(const tal_t *ctx, size_t bytes, bool clear,
const char *label)
{
void *ret;
if (clear)
ret = _talloc_zero(ctx, bytes, label);
else
ret = talloc_named_const(ctx, bytes, label);
return error_on_null(ret, "allocation failure");
}
void *tal_talloc_arr_(const tal_t *ctx, size_t bytes, size_t count, bool clear,
const char *label)
{
void *ret;
if (clear)
ret = _talloc_zero_array(ctx, bytes, count, label);
else
ret = _talloc_array(ctx, bytes, count, label);
return error_on_null(ret, "array allocation failure");
}
void *tal_talloc_free_(const tal_t *ctx)
{
int saved_errno = errno;
talloc_free((void *)ctx);
errno = saved_errno;
return NULL;
}
bool tal_talloc_set_name_(tal_t *ctx, const char *name, bool literal)
{
if (!literal) {
name = talloc_strdup(ctx, name);
if (!name) {
call_error("set_name allocation failure");
return false;
}
}
talloc_set_name_const(ctx, name);
return true;
}
const char *tal_talloc_name_(const tal_t *ctx)
{
const char *p = talloc_get_name(ctx);
if (p && unlikely(strcmp(p, "UNNAMED") == 0))
p = NULL;
return p;
}
static bool adjust_size(size_t *size, size_t count)
{
/* Multiplication wrap */
if (count && unlikely(*size * count / *size != count))
goto overflow;
*size *= count;
/* Make sure we don't wrap adding header. */
if (*size + 1024 < 1024)
goto overflow;
return true;
overflow:
call_error("allocation size overflow");
return false;
}
void *tal_talloc_dup_(const tal_t *ctx, const void *p, size_t size,
size_t n, size_t extra, const char *label)
{
void *ret;
size_t nbytes = size;
if (!adjust_size(&nbytes, n)) {
if (taken(p))
tal_free(p);
return NULL;
}
/* Beware addition overflow! */
if (n + extra < n) {
call_error("dup size overflow");
if (taken(p))
tal_free(p);
return NULL;
}
if (taken(p)) {
if (unlikely(!p))
return NULL;
if (unlikely(!tal_talloc_resize_((void **)&p, size, n + extra)))
return tal_free(p);
if (unlikely(!tal_steal(ctx, p)))
return tal_free(p);
return (void *)p;
}
ret = tal_talloc_arr_(ctx, size, n + extra, false, label);
if (ret)
memcpy(ret, p, nbytes);
return ret;
}
bool tal_talloc_resize_(tal_t **ctxp, size_t size, size_t count)
{
tal_t *newp;
if (unlikely(count == 0)) {
/* Don't free it! */
newp = talloc_size(talloc_parent(*ctxp), 0);
if (!newp) {
call_error("Resize failure");
return false;
}
talloc_free(*ctxp);
*ctxp = newp;
return true;
}
newp = _talloc_realloc_array(NULL, *ctxp, size, count, NULL);
if (!newp) {
call_error("Resize failure");
return false;
}
*ctxp = newp;
return true;
}
bool tal_talloc_expand_(tal_t **ctxp, const void *src, size_t size, size_t count)
{
bool ret = false;
size_t old_count = talloc_get_size(*ctxp) / size;
/* Check for additive overflow */
if (old_count + count < count) {
call_error("dup size overflow");
goto out;
}
/* Don't point src inside thing we're expanding! */
assert(src < *ctxp
|| (char *)src >= (char *)(*ctxp) + (size * old_count));
if (!tal_talloc_resize_(ctxp, size, old_count + count))
goto out;
memcpy((char *)*ctxp + size * old_count, src, count * size);
ret = true;
out:
if (taken(src))
tal_free(src);
return ret;
}
/* Sucky inline hash table implementation, to avoid deps. */
#define HTABLE_BITS 10
struct destructor {
struct destructor *next;
const tal_t *ctx;
void (*destroy)(void *me);
};
static struct destructor *destr_hash[1 << HTABLE_BITS];
static unsigned int hash_ptr(const void *p)
{
unsigned long h = (unsigned long)p / sizeof(void *);
return (h ^ (h >> HTABLE_BITS)) & ((1 << HTABLE_BITS) - 1);
}
static int tal_talloc_destroy(const tal_t *ctx)
{
struct destructor **d = &destr_hash[hash_ptr(ctx)];
while (*d) {
if ((*d)->ctx == ctx) {
struct destructor *this = *d;
this->destroy((void *)ctx);
*d = this->next;
talloc_free(this);
}
}
return 0;
}
bool tal_talloc_add_destructor_(const tal_t *ctx, void (*destroy)(void *me))
{
struct destructor *d = talloc(ctx, struct destructor);
if (!d)
return false;
d->next = destr_hash[hash_ptr(ctx)];
d->ctx = ctx;
d->destroy = destroy;
destr_hash[hash_ptr(ctx)] = d;
talloc_set_destructor(ctx, tal_talloc_destroy);
return true;
}
bool tal_talloc_del_destructor_(const tal_t *ctx, void (*destroy)(void *me))
{
struct destructor **d = &destr_hash[hash_ptr(ctx)];
while (*d) {
if ((*d)->ctx == ctx && (*d)->destroy == destroy) {
struct destructor *this = *d;
*d = this->next;
talloc_free(this);
return true;
}
d = &(*d)->next;
}
return false;
}
void tal_talloc_set_backend_(void *(*alloc_fn)(size_t size),
void *(*resize_fn)(void *, size_t size),
void (*free_fn)(void *),
void (*error_fn)(const char *msg))
{
assert(!alloc_fn);
assert(!resize_fn);
assert(!free_fn);
errorfn = error_fn;
talloc_set_abort_fn(error_fn);
}
bool tal_talloc_check_(const tal_t *ctx, const char *errorstr)
{
/* We can't really check, but this iterates (and may abort). */
return !ctx || talloc_total_blocks(ctx) >= 1;
}
/* Licensed under LGPL - see LICENSE file for details */
#ifndef CCAN_TAL_TALLOC_H
#define CCAN_TAL_TALLOC_H
#include "config.h"
#include <ccan/compiler/compiler.h>
#include <ccan/likely/likely.h>
#include <ccan/typesafe_cb/typesafe_cb.h>
#include <ccan/str/str.h>
#include <talloc.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdarg.h>
/**
* tal_t - convenient alias for void to mark tal pointers.
*
* Since any pointer can be a tal-allocated pointer, it's often
* useful to use this typedef to mark them explicitly.
*/
typedef TALLOC_CTX tal_t;
/**
* tal - basic allocator function
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
*
* Allocates a specific type, with a given parent context. The name
* of the object is a string of the type, but if CCAN_TAL_DEBUG is
* defined it also contains the file and line which allocated it.
*
* Example:
* int *p = tal(NULL, int);
* *p = 1;
*/
#define tal(ctx, type) \
((type *)tal_talloc_((ctx), sizeof(type), false, \
TAL_LABEL(type, "")))
/**
* talz - zeroing allocator function
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
*
* Equivalent to tal() followed by memset() to zero.
*
* Example:
* p = talz(NULL, int);
* assert(*p == 0);
*/
#define talz(ctx, type) \
((type *)tal_talloc_((ctx), sizeof(type), true, \
TAL_LABEL(type, "")))
/**
* tal_free - free a tal-allocated pointer.
* @p: NULL, or tal allocated object to free.
*
* This calls the destructors for p (if any), then does the same for all its
* children (recursively) before finally freeing the memory. It returns
* NULL, for convenience.
*
* Note: errno is preserved by this call.
*
* Example:
* p = tal_free(p);
*/
#define tal_free(p) tal_talloc_free_(p)
/**
* tal_arr - allocate an array of objects.
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
* @count: the number to allocate.
*
* Note that an object allocated with tal_arr() has a length property;
* see tal_count().
*
* Example:
* p = tal_arr(NULL, int, 2);
* p[0] = 0;
* p[1] = 1;
*/
#define tal_arr(ctx, type, count) \
((type *)tal_talloc_arr_((ctx), sizeof(type), (count), false, \
TAL_LABEL(type, "[]")))
/**
* tal_arrz - allocate an array of zeroed objects.
* @ctx: NULL, or tal allocated object to be parent.
* @type: the type to allocate.
* @count: the number to allocate.
*
* Note that an object allocated with tal_arrz() has a length property;
* see tal_count().
*
* Example:
* p = tal_arrz(NULL, int, 2);
* assert(p[0] == 0 && p[1] == 0);
*/
#define tal_arrz(ctx, type, count) \
((type *)tal_talloc_arr_((ctx), sizeof(type), (count), true, \
TAL_LABEL(type, "[]")))
/**
* tal_resize - enlarge or reduce a tal_arr[z].
* @p: A pointer to the tal allocated array to resize.
* @count: the number to allocate.
*
* This returns true on success (and may move *@p), or false on failure.
* If @p has a length property, it is updated on success.
*
* Example:
* tal_resize(&p, 100);
*/
#define tal_resize(p, count) \
tal_talloc_resize_((void **)(p), sizeof**(p), (count))
/**
* tal_steal - change the parent of a tal-allocated pointer.
* @ctx: The new parent.
* @ptr: The tal allocated object to move.
*
* This may need to perform an allocation, in which case it may fail; thus
* it can return NULL, otherwise returns @ptr.
*/
#define tal_steal(ctx, ptr) talloc_steal((ctx), (ptr))
/**
* tal_add_destructor - add a callback function when this context is destroyed.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
*
* This is a more convenient form of tal_add_notifier(@ptr,
* TAL_NOTIFY_FREE, ...), in that the function prototype takes only @ptr.
*/
#define tal_add_destructor(ptr, function) \
tal_talloc_add_destructor_((ptr), typesafe_cb(void, void *, \
(function), (ptr)))
/**
* tal_del_destructor - remove a destructor callback function.
* @ptr: The tal allocated object.
* @function: the function to call before it's freed.
*
* If @function has not been successfully added as a destructor, this returns
* false.
*
* Note: you can't add more than one destructor with the talloc backend!
*/
#define tal_del_destructor(ptr, function) \
tal_talloc_del_destructor_((ptr), typesafe_cb(void, void *, \
(function), (ptr)))
/**
* tal_set_name - attach a name to a tal pointer.
* @ptr: The tal allocated object.
* @name: The name to use.
*
* The name is copied, unless we're certain it's a string literal.
*/
#define tal_set_name(ptr, name) \
tal_talloc_set_name_((ptr), (name), TAL_TALLOC_IS_LITERAL(name))
/**
* tal_name - get the name for a tal pointer.
* @ptr: The tal allocated object.
*
* Returns NULL if no name has been set.
*/
#define tal_name(ptr) \
tal_talloc_name_(ptr)
/**
* tal_count - get the count of objects in a tal_arr.
* @ptr: The tal allocated object array.
*/
#define tal_count(ptr) talloc_array_length(ptr)
/**
* tal_parent - get the parent of a tal object.
* @ctx: The tal allocated object.
*
* Returns the parent, which may be NULL. Returns NULL if @ctx is NULL.
*/
#define tal_parent(ctx) talloc_parent(ctx)
/**
* tal_dup - duplicate an array.
* @ctx: The tal allocated object to be parent of the result (may be NULL).
* @type: the type (should match type of @p!)
* @p: the array to copy (or resized & reparented if take())
* @n: the number of sizeof(type) entries to copy.
* @extra: the number of extra sizeof(type) entries to allocate.
*/
#define tal_dup(ctx, type, p, n, extra) \
((type *)tal_talloc_dup_((ctx), tal_talloc_typechk_(p, type *), \
sizeof(type), (n), (extra), \
TAL_LABEL(type, "[]")))
/**
* tal_set_backend - set the allocation or error functions to use
* @alloc_fn: NULL
* @resize_fn: NULL
* @free_fn: NULL
* @error_fn: called on errors or NULL (default is abort)
*
* The defaults are set up so tal functions never return NULL, but you
* can override error_fn to change that. error_fn can return, and is
* called if malloc or realloc fail.
*/
#define tal_set_backend(alloc_fn, resize_fn, free_fn, error_fn) \
tal_talloc_set_backend_((alloc_fn), (resize_fn), (free_fn), (error_fn))
/**
* tal_expand - expand a tal array with contents.
* @a1p: a pointer to the tal array to expand.
* @a2: the second array (can be take()).
* @num2: the number of elements in the second array.
*
* Note that *@a1 and @a2 should be the same type. tal_count(@a1) will
* be increased by @num2.
*
* Example:
* int *arr1 = tal_arrz(NULL, int, 2);
* int arr2[2] = { 1, 3 };
*
* tal_expand(&arr1, arr2, 2);
* assert(tal_count(arr1) == 4);
* assert(arr1[2] == 1);
* assert(arr1[3] == 3);
*/
#define tal_expand(a1p, a2, num2) \
tal_talloc_expand_((void **)(a1p), (a2), sizeof**(a1p), \
(num2) + 0*sizeof(*(a1p) == (a2)))
/**
* tal_check - set the allocation or error functions to use
* @ctx: a tal context, or NULL.
* @errorstr: a string to prepend calls to error_fn, or NULL.
*
* This sanity-checks a tal tree (unless NDEBUG is defined, in which case
* it simply returns true). If errorstr is not null, error_fn is called
* when a problem is found, otherwise it is not.
*/
#define tal_check(ctx, errorstr) \
tal_talloc_check_((ctx), (errorstr))
/* Internal support functions */
#ifndef TAL_TALLOC_LABEL
#ifdef CCAN_TAL_NO_LABELS
#define TAL_LABEL(type, arr) NULL
#else
#ifdef CCAN_TAL_DEBUG
#define TAL_LABEL(type, arr) \
__FILE__ ":" stringify(__LINE__) ":" stringify(type) arr
#else
#define TAL_LABEL(type, arr) stringify(type) arr
#endif /* CCAN_TAL_DEBUG */
#endif
#endif
#if HAVE_BUILTIN_CONSTANT_P
#define TAL_TALLOC_IS_LITERAL(str) __builtin_constant_p(str)
#else
#define TAL_TALLOC_IS_LITERAL(str) false
#endif
#if HAVE_TYPEOF && HAVE_STATEMENT_EXPR
/* Careful: ptr can be const foo *, ptype is foo *. Also, ptr could
* be an array, eg "hello". */
#define tal_talloc_typechk_(ptr, ptype) ({ __typeof__((ptr)+0) _p = (ptype)(ptr); _p; })
#else
#define tal_talloc_typechk_(ptr, ptype) (ptr)
#endif
void *tal_talloc_(const tal_t *ctx, size_t bytes, bool clear,
const char *label);
void *tal_talloc_arr_(const tal_t *ctx, size_t bytes, size_t count, bool clear,
const char *label);
void *tal_talloc_free_(const tal_t *ctx);
const char *tal_talloc_name_(const tal_t *ctx);
bool tal_talloc_set_name_(tal_t *ctx, const char *name, bool literal);
bool tal_talloc_add_destructor_(const tal_t *ctx, void (*destroy)(void *me));
bool tal_talloc_del_destructor_(const tal_t *ctx, void (*destroy)(void *me));
/* ccan/tal/str uses this, so define it. */
#define tal_dup_(ctx, p, size, n, extra, add_count, label) \
tal_talloc_dup_((ctx), (p), (size), (n), (extra), (label))
void *tal_talloc_dup_(const tal_t *ctx, const void *p, size_t size,
size_t n, size_t extra, const char *label);
bool tal_talloc_resize_(tal_t **ctxp, size_t size, size_t count);
bool tal_talloc_expand_(tal_t **ctxp, const void *src, size_t size, size_t count);
bool tal_talloc_check_(const tal_t *ctx, const char *errorstr);
void tal_talloc_set_backend_(void *(*alloc_fn)(size_t size),
void *(*resize_fn)(void *, size_t size),
void (*free_fn)(void *),
void (*error_fn)(const char *msg));
#endif /* CCAN_TAL_TALLOC_H */
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
char *parent, *c[4];
int i;
plan_tests(11);
parent = tal(NULL, char);
ok1(parent);
/* Zeroing allocations. */
for (i = 0; i < 4; i++) {
c[i] = talz(parent, char);
ok1(*c[i] == '\0');
tal_free(c[i]);
}
/* Array allocation. */
for (i = 0; i < 4; i++) {
c[i] = tal_arr(parent, char, 4);
strcpy(c[i], "abc");
tal_free(c[i]);
}
/* Zeroing array allocation. */
for (i = 0; i < 4; i++) {
c[i] = tal_arrz(parent, char, 4);
ok1(!c[i][0] && !c[i][1] && !c[i][2] && !c[i][3]);
strcpy(c[i], "abc");
tal_free(c[i]);
}
/* Resizing. */
c[0] = tal_arrz(parent, char, 4);
ok1(tal_resize(&c[0], 6));
strcpy(c[0], "hello");
tal_free(c[0]);
ok1(talloc_total_blocks(parent) == 1);
tal_free(parent);
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
char *p1, *p2;
plan_tests(12);
p1 = tal(NULL, char);
ok1(p1);
ok1(tal_count(p1) == 1);
p2 = tal_arr(p1, char, 1);
ok1(p2);
ok1(tal_count(p2) == 1);
ok1(tal_resize(&p2, 2));
ok1(tal_count(p2) == 2);
ok1(tal_check(NULL, NULL));
tal_free(p2);
p2 = tal_arrz(p1, char, 7);
ok1(p2);
ok1(tal_count(p2) == 7);
ok1(tal_resize(&p2, 0));
ok1(tal_count(p2) == 0);
ok1(tal_check(NULL, NULL));
tal_free(p2);
tal_free(p1);
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
static char *parent, *child;
static int destroy_count;
/* Parent gets destroyed first. */
static void destroy_parent(char *p)
{
ok1(p == parent);
ok1(destroy_count == 0);
/* Can still access child. */
*child = '1';
destroy_count++;
}
static void destroy_child(char *p)
{
ok1(p == child);
ok1(destroy_count == 1);
/* Can still access parent (though destructor has been called). */
*parent = '1';
destroy_count++;
}
static void destroy_inc(char *p)
{
destroy_count++;
}
int main(void)
{
char *child2;
plan_tests(18);
destroy_count = 0;
parent = tal(NULL, char);
child = tal(parent, char);
ok1(tal_add_destructor(parent, destroy_parent));
ok1(tal_add_destructor(child, destroy_child));
tal_free(parent);
ok1(destroy_count == 2);
destroy_count = 0;
parent = tal(NULL, char);
child = tal(parent, char);
ok1(tal_add_destructor(parent, destroy_parent));
ok1(tal_add_destructor(child, destroy_child));
ok1(tal_del_destructor(child, destroy_child));
tal_free(parent);
ok1(destroy_count == 1);
destroy_count = 0;
parent = tal(NULL, char);
child = tal(parent, char);
child2 = tal(parent, char);
ok1(tal_add_destructor(parent, destroy_inc));
ok1(tal_add_destructor(parent, destroy_inc));
ok1(tal_add_destructor(child, destroy_inc));
ok1(tal_add_destructor(child2, destroy_inc));
tal_free(parent);
ok1(destroy_count == 4);
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
int *a;
const int arr[] = { 1, 2 };
plan_tests(14);
talloc_enable_null_tracking_no_autofree();
a = tal_arrz(NULL, int, 1);
ok1(a);
ok1(tal_expand(&a, arr, 2));
ok1(tal_count(a) == 3);
ok1(a[0] == 0);
ok1(a[1] == 1);
ok1(a[2] == 2);
ok1(tal_expand(&a, take(tal_arrz(NULL, int, 1)), 1));
ok1(tal_count(a) == 4);
ok1(a[0] == 0);
ok1(a[1] == 1);
ok1(a[2] == 2);
ok1(a[3] == 0);
ok1(talloc_total_blocks(NULL) == 2);
ok1(talloc_total_blocks(a) == 1);
tal_free(a);
talloc_disable_null_tracking();
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
#include <errno.h>
static void destroy_errno(char *p)
{
errno = ENOENT;
}
int main(void)
{
char *p;
plan_tests(2);
p = tal(NULL, char);
ok1(tal_add_destructor(p, destroy_errno));
/* Errno save/restored across free. */
errno = EINVAL;
tal_free(p);
ok1(errno == EINVAL);
return exit_status();
}
#define CCAN_TAL_DEBUG
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
int *p;
char name[] = "test name";
plan_tests(6);
p = tal(NULL, int);
ok1(strcmp(tal_name(p), __FILE__ ":13:int") == 0);
tal_set_name(p, "some literal");
ok1(strcmp(tal_name(p), "some literal") == 0);
tal_set_name(p, name);
ok1(strcmp(tal_name(p), name) == 0);
/* You can't reuse my pointer though! */
ok1(tal_name(p) != name);
tal_set_name(p, "some other literal");
ok1(strcmp(tal_name(p), "some other literal") == 0);
tal_free(p);
p = tal_arr(NULL, int, 2);
ok1(strcmp(tal_name(p), __FILE__ ":29:int[]") == 0);
tal_free(p);
return exit_status();
}
#define CCAN_TAL_NO_LABELS
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
int *p;
char name[] = "test name";
plan_tests(5);
p = tal(NULL, int);
ok1(tal_name(p) == NULL);
tal_set_name(p, "some literal");
ok1(strcmp(tal_name(p), "some literal") == 0);
tal_set_name(p, name);
ok1(strcmp(tal_name(p), name) == 0);
/* You can't reuse my pointer though! */
ok1(tal_name(p) != name);
tal_set_name(p, "some other literal");
ok1(strcmp(tal_name(p), "some other literal") == 0);
tal_free(p);
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
int *p;
char name[] = "test name";
plan_tests(6);
p = tal(NULL, int);
ok1(strcmp(tal_name(p), "int") == 0);
tal_set_name(p, "some literal");
ok1(strcmp(tal_name(p), "some literal") == 0);
tal_set_name(p, name);
ok1(strcmp(tal_name(p), name) == 0);
/* You can't reuse my pointer though! */
ok1(tal_name(p) != name);
tal_set_name(p, "some other literal");
ok1(strcmp(tal_name(p), "some other literal") == 0);
tal_free(p);
p = tal_arr(NULL, int, 2);
ok1(strcmp(tal_name(p), "int[]") == 0);
tal_free(p);
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
static int error_count;
static void my_error(const char *msg)
{
error_count++;
}
int main(void)
{
void *p;
int *pi, *origpi;
char *cp;
plan_tests(30);
tal_set_backend(NULL, NULL, NULL, my_error);
talloc_enable_null_tracking_no_autofree();
p = tal_arr(NULL, int, (size_t)-1);
ok1(!p);
ok1(error_count == 1);
p = tal_arr(NULL, char, (size_t)-2);
ok1(!p);
ok1(error_count == 2);
/* Now try overflow cases for tal_dup. */
error_count = 0;
origpi = tal_arr(NULL, int, 100);
ok1(origpi);
ok1(error_count == 0);
pi = tal_dup(NULL, int, origpi, (size_t)-1, 0);
ok1(!pi);
ok1(error_count == 1);
pi = tal_dup(NULL, int, origpi, 0, (size_t)-1);
ok1(!pi);
ok1(error_count == 2);
pi = tal_dup(NULL, int, origpi, (size_t)-1UL / sizeof(int),
(size_t)-1UL / sizeof(int));
ok1(!pi);
ok1(error_count == 3);
/* This will still overflow when tal_hdr is added. */
pi = tal_dup(NULL, int, origpi, (size_t)-1UL / sizeof(int) / 2,
(size_t)-1UL / sizeof(int) / 2);
ok1(!pi);
ok1(error_count == 4);
ok1(talloc_total_blocks(NULL) == 2);
tal_free(origpi);
/* Now, check that with taltk() we free old one on failure. */
origpi = tal_arr(NULL, int, 100);
error_count = 0;
pi = tal_dup(NULL, int, take(origpi), (size_t)-1, 0);
ok1(!pi);
ok1(error_count == 1);
origpi = tal_arr(NULL, int, 100);
error_count = 0;
pi = tal_dup(NULL, int, take(origpi), 0, (size_t)-1);
ok1(!pi);
ok1(error_count == 1);
ok1(talloc_total_blocks(NULL) == 1);
origpi = tal_arr(NULL, int, 100);
error_count = 0;
pi = tal_dup(NULL, int, take(origpi), (size_t)-1UL / sizeof(int),
(size_t)-1UL / sizeof(int));
ok1(!pi);
ok1(error_count == 1);
ok1(talloc_total_blocks(NULL) == 1);
origpi = tal_arr(NULL, int, 100);
error_count = 0;
/* This will still overflow when tal_hdr is added. */
pi = tal_dup(NULL, int, take(origpi), (size_t)-1UL / sizeof(int) / 2,
(size_t)-1UL / sizeof(int) / 2);
ok1(!pi);
ok1(error_count == 1);
ok1(talloc_total_blocks(NULL) == 1);
/* Overflow on expand addition. */
cp = tal_arr(p, char, 100);
ok1(!tal_expand(&cp, NULL, (size_t)-99UL));
ok1(error_count == 2);
tal_free(cp);
/* Overflow when multiplied by size */
origpi = tal_arr(NULL, int, 100);
ok1(!tal_expand(&origpi, NULL, (size_t)-1UL / sizeof(int)));
ok1(error_count == 3);
tal_free(origpi);
talloc_disable_null_tracking();
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
char *p[5];
unsigned int i;
plan_tests(9);
p[0] = tal(NULL, char);
for (i = 1; i < 5; i++)
p[i] = tal(p[i-1], char);
tal_check(NULL, "check");
/* Steal node with no children. */
ok1(tal_steal(p[0], p[4]) == p[4]);
tal_check(NULL, "check");
/* Noop steal. */
ok1(tal_steal(p[0], p[4]) == p[4]);
tal_check(NULL, "check");
/* Steal with children. */
ok1(tal_steal(p[0], p[1]) == p[1]);
tal_check(NULL, "check");
/* Noop steal. */
ok1(tal_steal(p[0], p[1]) == p[1]);
tal_check(NULL, "check");
/* Steal from direct child. */
ok1(tal_steal(p[0], p[2]) == p[2]);
tal_check(NULL, "check");
ok1(tal_parent(p[1]) == p[0]);
ok1(tal_parent(p[2]) == p[0]);
ok1(tal_parent(p[3]) == p[2]);
ok1(tal_parent(p[4]) == p[0]);
tal_free(p[0]);
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
char *parent, *c;
plan_tests(21);
/* We can take NULL. */
ok1(take(NULL) == NULL);
ok1(is_taken(NULL));
ok1(taken(NULL)); /* Undoes take() */
ok1(!is_taken(NULL));
ok1(!taken(NULL));
parent = tal(NULL, char);
ok1(parent);
ok1(take(parent) == parent);
ok1(is_taken(parent));
ok1(taken(parent)); /* Undoes take() */
ok1(!is_taken(parent));
ok1(!taken(parent));
c = tal(parent, char);
*c = 'h';
c = tal_dup(parent, char, take(c), 1, 0);
ok1(c[0] == 'h');
ok1(tal_parent(c) == parent);
c = tal_dup(parent, char, take(c), 1, 2);
ok1(c[0] == 'h');
strcpy(c, "hi");
ok1(tal_parent(c) == parent);
/* dup must reparent child. */
c = tal_dup(NULL, char, take(c), 1, 0);
ok1(c[0] == 'h');
ok1(tal_parent(c) == NULL);
/* No leftover allocations. */
tal_free(c);
ok1(talloc_total_blocks(parent) == 1);
tal_free(parent);
ok1(!taken_any());
/* NULL pass-through. */
c = NULL;
ok1(tal_dup(NULL, char, take(c), 5, 5) == NULL);
ok1(!taken_any());
return exit_status();
}
#include <ccan/tal/talloc/talloc.h>
#include <ccan/tal/talloc/talloc.c>
#include <ccan/tap/tap.h>
int main(void)
{
char *parent, *c[4];
int i, j;
plan_tests(9);
/* tal_free(NULL) works. */
ok1(tal_free(NULL) == NULL);
parent = tal(NULL, char);
ok1(parent);
ok1(tal_parent(parent) == NULL);
ok1(tal_parent(NULL) == NULL);
for (i = 0; i < 4; i++)
c[i] = tal(parent, char);
for (i = 0; i < 4; i++)
ok1(tal_parent(c[i]) == parent);
/* Free parent. */
ok1(tal_free(parent) == NULL);
parent = tal(NULL, char);
/* Test freeing in every order */
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c[j] = tal(parent, char);
tal_free(c[i]);
tal_free(c[(i+1) % 4]);
tal_free(c[(i+2) % 4]);
tal_free(c[(i+3) % 4]);
}
tal_free(parent);
return exit_status();
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment