Commit 6c4e0283 authored by panos's avatar panos Committed by Jérome Perrin

change the output of the distribution fitting

parent dd8b1442
...@@ -44,7 +44,7 @@ class Distributions: ...@@ -44,7 +44,7 @@ class Distributions:
self.Normal= rFitDistr(data,'Normal') #It fits the normal distribution to the given data sample self.Normal= rFitDistr(data,'Normal') #It fits the normal distribution to the given data sample
except RRuntimeError: except RRuntimeError:
return None #If it doesn't fit Return None return None #If it doesn't fit Return None
myDict = {'distributionType':'Normal','aParameter':'mean','bParameter':'stdev','aParameterValue':self.Normal[0][0],'bParameterValue': self.Normal[0][1],'min':0, 'max':(self.Normal[0][0]+3*self.Normal[0][1])} #Create a dictionary with keys distribution's and distribution's parameters names and the parameters' values myDict = {'distributionType':'Normal','mean':self.Normal[0][0],'stdev': self.Normal[0][1],'min':0, 'max':(self.Normal[0][0]+3*self.Normal[0][1])} #Create a dictionary with keys distribution's and distribution's parameters names and the parameters' values
return myDict #If there is no Error return the dictionary with the Normal distribution parameters for the given data sample return myDict #If there is no Error return the dictionary with the Normal distribution parameters for the given data sample
def Lognormal_distrfit(self,data): def Lognormal_distrfit(self,data):
...@@ -54,7 +54,7 @@ class Distributions: ...@@ -54,7 +54,7 @@ class Distributions:
self.Lognormal= rFitDistr(data,'Lognormal') #It fits the Lognormal distribution to the given data sample self.Lognormal= rFitDistr(data,'Lognormal') #It fits the Lognormal distribution to the given data sample
except RRuntimeError: except RRuntimeError:
return None #If it doesn't fit Return None return None #If it doesn't fit Return None
myDict ={'distributionType':'Lognormal','aParameter':'logmean','bParameter':'logsd','aParameterValue':self.Lognormal[0][0],'bParameterValue': self.Lognormal[0][1]} #Create a dictionary with keys distribution's and distribution's parameters names and the parameters' values myDict ={'distributionType':'Lognormal','logmean':self.Lognormal[0][0],'logsd': self.Lognormal[0][1]} #Create a dictionary with keys distribution's and distribution's parameters names and the parameters' values
return myDict #If there is no Error return the dictionary with the Lognormal distribution parameters for the given data sample return myDict #If there is no Error return the dictionary with the Lognormal distribution parameters for the given data sample
def NegativeBinomial_distrfit(self,data): def NegativeBinomial_distrfit(self,data):
...@@ -74,7 +74,7 @@ class Distributions: ...@@ -74,7 +74,7 @@ class Distributions:
self.Exp= rFitDistr(data,'Exponential') self.Exp= rFitDistr(data,'Exponential')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Exp','aParameter':'mean', 'aParameterValue':self.Exp[0][0]} myDict = {'distributionType':'Exp', 'mean':self.Exp[0][0]}
return myDict return myDict
def Poisson_distrfit(self,data): def Poisson_distrfit(self,data):
...@@ -84,7 +84,7 @@ class Distributions: ...@@ -84,7 +84,7 @@ class Distributions:
self.Poisson= rFitDistr(data,'Poisson') self.Poisson= rFitDistr(data,'Poisson')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Poisson','aParameter':'lambda','aParameterValue':self.Poisson[0][0]} myDict = {'distributionType':'Poisson', 'lambda':self.Poisson[0][0]}
return myDict return myDict
def Logistic_distrfit(self,data): def Logistic_distrfit(self,data):
...@@ -94,7 +94,7 @@ class Distributions: ...@@ -94,7 +94,7 @@ class Distributions:
self.Logist= rFitDistr(data,'logistic') self.Logist= rFitDistr(data,'logistic')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Logistic','aParameter':'location','bParameter':'scale','aParameterValue':self.Logist[0][0],'bParameterValue':self.Logist[0][1]} myDict = {'distributionType':'Logistic', 'location':self.Logist[0][0],'scale':self.Logist[0][1]}
return myDict return myDict
def Geometric_distrfit(self,data): def Geometric_distrfit(self,data):
...@@ -104,7 +104,7 @@ class Distributions: ...@@ -104,7 +104,7 @@ class Distributions:
self.Geom= rFitDistr(data,'Geometric') self.Geom= rFitDistr(data,'Geometric')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Geometric','aParameter':'probability','aParameterValue':self.Geom[0][0]} myDict = {'distributionType':'Geometric','probability':self.Geom[0][0]}
return myDict return myDict
def Gamma_distrfit(self,data): def Gamma_distrfit(self,data):
...@@ -114,7 +114,7 @@ class Distributions: ...@@ -114,7 +114,7 @@ class Distributions:
self.Gam=rFitDistr(data,'Gamma') self.Gam=rFitDistr(data,'Gamma')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Gamma','aParameter':'shape','bParameter':'rate','aParameterValue':self.Gam[0][0],'bParameterValue':self.Gam[0][1]} myDict = {'distributionType':'Gamma','shape':self.Gam[0][0],'rate':self.Gam[0][1]}
return myDict return myDict
def Weibull_distrfit(self,data): def Weibull_distrfit(self,data):
...@@ -124,7 +124,7 @@ class Distributions: ...@@ -124,7 +124,7 @@ class Distributions:
self.Weib=rFitDistr(data,'weibull') self.Weib=rFitDistr(data,'weibull')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Weibull','aParameter':'shape','bParameter':'scale','aParameterValue':self.Weib[0][0],'bParameterValue':self.Weib[0][1]} myDict = {'distributionType':'Weibull','shape':self.Weib[0][0],'scale':self.Weib[0][1]}
return myDict return myDict
def Cauchy_distrfit(self,data): def Cauchy_distrfit(self,data):
...@@ -134,7 +134,7 @@ class Distributions: ...@@ -134,7 +134,7 @@ class Distributions:
self.Cauchy=rFitDistr(data,'Cauchy') self.Cauchy=rFitDistr(data,'Cauchy')
except RRuntimeError: except RRuntimeError:
return None return None
myDict = {'distributionType':'Cauchy','aParameter':'location','bParameter':'scale','aParameterValue':self.Cauchy[0][0],'bParameterValue':self.Cauchy[0][1]} myDict = {'distributionType':'Cauchy','location':self.Cauchy[0][0],'scale':self.Cauchy[0][1]}
return myDict return myDict
#The Distribution Fitting test object #The Distribution Fitting test object
...@@ -329,39 +329,39 @@ class DistFittest: ...@@ -329,39 +329,39 @@ class DistFittest:
#Set of if...elif syntax in order to get a Python dictionary with the best fitting statistical distribution and its parameters #Set of if...elif syntax in order to get a Python dictionary with the best fitting statistical distribution and its parameters
if list1[b]=='Normal': #Check if in list's b position is the Normal distribution if list1[b]=='Normal': #Check if in list's b position is the Normal distribution
self.Normal_distrfit(data) self.Normal_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'mean','bParameter':'stdev','aParameterValue':self.Normal[0][0],'bParameterValue': self.Normal[0][1],'min':0, 'max':(self.Normal[0][0]+3*self.Normal[0][1])} #Create a dictionary with distribution's and distribution parameters' names and distribution parameters' values myDict = {'distributionType':list1[b],'mean':self.Normal[0][0],'stdev': self.Normal[0][1],'min':0, 'max':(self.Normal[0][0]+3*self.Normal[0][1])} #Create a dictionary with distribution's and distribution parameters' names and distribution parameters' values
return myDict return myDict
elif list1[b]=='Lognormal': elif list1[b]=='Lognormal':
self.Lognormal_distrfit(data) self.Lognormal_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'logmean','bParameter':'logsd','aParameterValue':self.Lognormal[0][0],'bParameterValue': self.Lognormal[0][1]} myDict = {'distributionType':list1[b],'logmean':self.Lognormal[0][0],'logsd': self.Lognormal[0][1]}
return myDict return myDict
elif list1[b]=='Exp': elif list1[b]=='Exp':
self.Exponential_distrfit(data) self.Exponential_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'mean', 'aParameterValue':self.Exp[0][0]} myDict = {'distributionType':list1[b],'mean':self.Exp[0][0]}
return myDict return myDict
elif list1[b]=='Poisson': elif list1[b]=='Poisson':
self.Poisson_distrfit(data) self.Poisson_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'lambda','aParameterValue':self.Poisson[0][0]} myDict = {'distributionType':list1[b],'lambda':self.Poisson[0][0]}
return myDict return myDict
elif list1[b]=='Geometric': elif list1[b]=='Geometric':
self.Geometric_distrfit(data) self.Geometric_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'probability','aParameterValue':self.Geom[0][0]} myDict = {'distributionType':list1[b],'probability':self.Geom[0][0]}
return myDict return myDict
elif list1[b]=='Logistic': elif list1[b]=='Logistic':
self.Logistic_distrfit(data) self.Logistic_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'location','bParameter':'scale','aParameterValue':self.Logist[0][0],'bParameterValue':self.Logist[0][1]} myDict = {'distributionType':list1[b],'location':self.Logist[0][0],'scale':self.Logist[0][1]}
return myDict return myDict
elif list1[b]=='Gamma': elif list1[b]=='Gamma':
self.Gamma_distrfit(data) self.Gamma_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'shape','bParameter':'rate','aParameterValue':self.Gam[0][0],'bParameterValue':self.Gam[0][1]} myDict = {'distributionType':list1[b],'shape':self.Gam[0][0],'rate':self.Gam[0][1]}
return myDict return myDict
elif list1[b]=='Weibull': elif list1[b]=='Weibull':
self.Weibull_distrfit(data) self.Weibull_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'shape','bParameter':'scale','aParameterValue':self.Weib[0][0],'bParameterValue':self.Weib[0][1]} myDict = {'distributionType':list1[b],'shape':self.Weib[0][0],'scale':self.Weib[0][1]}
return myDict return myDict
else: else:
self.Cauchy_distrfit(data) self.Cauchy_distrfit(data)
myDict = {'distributionType':list1[b],'aParameter':'location','bParameter':'scale','aParameterValue':self.Cauchy[0][0],'bParameterValue':self.Cauchy[0][1]} myDict = {'distributionType':list1[b],'location':self.Cauchy[0][0],'scale':self.Cauchy[0][1]}
return myDict return myDict
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment