Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dream
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
dream
Commits
acf19df7
Commit
acf19df7
authored
Apr 24, 2015
by
panos
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Example ammended based on the objects name changes
parent
f52b201a
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
8 deletions
+8
-8
dream/KnowledgeExtraction/KEtool_examples/AssemblyLine/Ass_Line_example.py
...traction/KEtool_examples/AssemblyLine/Ass_Line_example.py
+8
-8
No files found.
dream/KnowledgeExtraction/KEtool_examples/AssemblyLine/Ass_Line_example.py
View file @
acf19df7
...
@@ -24,12 +24,12 @@ Created on 23 Sep 2014
...
@@ -24,12 +24,12 @@ Created on 23 Sep 2014
#================= Main script of KE tool =====================================#
#================= Main script of KE tool =====================================#
from
__future__
import
division
from
__future__
import
division
from
dream.KnowledgeExtraction.StatisticalMeasures
import
Basic
StatisticalMeasures
from
dream.KnowledgeExtraction.StatisticalMeasures
import
StatisticalMeasures
from
dream.KnowledgeExtraction.DistributionFitting
import
Distributions
from
dream.KnowledgeExtraction.DistributionFitting
import
Distributions
from
dream.KnowledgeExtraction.DistributionFitting
import
DistFittest
from
dream.KnowledgeExtraction.DistributionFitting
import
DistFittest
from
dream.KnowledgeExtraction.ReplaceMissingValues
import
Handl
eMissingValues
from
dream.KnowledgeExtraction.ReplaceMissingValues
import
Replac
eMissingValues
from
dream.KnowledgeExtraction.ImportExceldata
import
Import
_Excel
from
dream.KnowledgeExtraction.ImportExceldata
import
Import
Exceldata
from
dream.KnowledgeExtraction.DetectOutliers
import
Handle
Outliers
from
dream.KnowledgeExtraction.DetectOutliers
import
Detect
Outliers
from
JSONOutput
import
JSONOutput
from
JSONOutput
import
JSONOutput
from
dream.KnowledgeExtraction.CMSDOutput
import
CMSDOutput
from
dream.KnowledgeExtraction.CMSDOutput
import
CMSDOutput
from
xml.etree
import
ElementTree
as
et
from
xml.etree
import
ElementTree
as
et
...
@@ -45,7 +45,7 @@ worksheets = workbook.sheet_names()
...
@@ -45,7 +45,7 @@ worksheets = workbook.sheet_names()
main
=
workbook
.
sheet_by_name
(
'Export Worksheet'
)
main
=
workbook
.
sheet_by_name
(
'Export Worksheet'
)
worksheet_ProdData
=
worksheets
[
0
]
#Define the worksheet with the production data
worksheet_ProdData
=
worksheets
[
0
]
#Define the worksheet with the production data
A
=
Import
_Excel
()
#Call the Python object Import_Excel
A
=
Import
Exceldata
()
#Call the Python object Import_Excel
ProdData
=
A
.
Input_data
(
worksheet_ProdData
,
workbook
)
#Create the Production data dictionary with keys the labels of Excel's different columns
ProdData
=
A
.
Input_data
(
worksheet_ProdData
,
workbook
)
#Create the Production data dictionary with keys the labels of Excel's different columns
##Get from the ProdData dictionary the different keys and define the following lists
##Get from the ProdData dictionary the different keys and define the following lists
...
@@ -248,7 +248,7 @@ for key in processStory.keys():
...
@@ -248,7 +248,7 @@ for key in processStory.keys():
continue
continue
#Call the HandleMissingValues object and delete the missing values in the lists with the scrap quantity and processing times data
#Call the HandleMissingValues object and delete the missing values in the lists with the scrap quantity and processing times data
B
=
Handl
eMissingValues
()
B
=
Replac
eMissingValues
()
MA_Scrap
=
B
.
DeleteMissingValue
(
MA
.
get
(
'ScrapQuant'
,[]))
MA_Scrap
=
B
.
DeleteMissingValue
(
MA
.
get
(
'ScrapQuant'
,[]))
MA_Proc
=
B
.
DeleteMissingValue
(
MA
.
get
(
'ProcTime'
,[]))
MA_Proc
=
B
.
DeleteMissingValue
(
MA
.
get
(
'ProcTime'
,[]))
M1A_Scrap
=
B
.
DeleteMissingValue
(
M1A
.
get
(
'ScrapQuant'
,[]))
M1A_Scrap
=
B
.
DeleteMissingValue
(
M1A
.
get
(
'ScrapQuant'
,[]))
...
@@ -275,7 +275,7 @@ PaB_Scrap= B.DeleteMissingValue(PaB.get('ScrapQuant',[]))
...
@@ -275,7 +275,7 @@ PaB_Scrap= B.DeleteMissingValue(PaB.get('ScrapQuant',[]))
PaB_Proc
=
B
.
DeleteMissingValue
(
PaB
.
get
(
'ProcTime'
,[]))
PaB_Proc
=
B
.
DeleteMissingValue
(
PaB
.
get
(
'ProcTime'
,[]))
#Call the HandleOutliers object and delete the outliers in the lists with the processing times data of each station
#Call the HandleOutliers object and delete the outliers in the lists with the processing times data of each station
C
=
Handle
Outliers
()
C
=
Detect
Outliers
()
MA_Proc
=
C
.
DeleteOutliers
(
MA_Proc
)
MA_Proc
=
C
.
DeleteOutliers
(
MA_Proc
)
M1A_Proc
=
C
.
DeleteOutliers
(
M1A_Proc
)
M1A_Proc
=
C
.
DeleteOutliers
(
M1A_Proc
)
M1B_Proc
=
C
.
DeleteOutliers
(
M1B_Proc
)
M1B_Proc
=
C
.
DeleteOutliers
(
M1B_Proc
)
...
@@ -290,7 +290,7 @@ PaA_Proc= C.DeleteOutliers(PaA_Proc)
...
@@ -290,7 +290,7 @@ PaA_Proc= C.DeleteOutliers(PaA_Proc)
PaB_Proc
=
C
.
DeleteOutliers
(
PaB_Proc
)
PaB_Proc
=
C
.
DeleteOutliers
(
PaB_Proc
)
#Call the BasicStatisticalMeasures object and calculate the mean value of the processing times for each station
#Call the BasicStatisticalMeasures object and calculate the mean value of the processing times for each station
E
=
Basic
StatisticalMeasures
()
E
=
StatisticalMeasures
()
meanMA_Proc
=
E
.
mean
(
MA_Proc
)
meanMA_Proc
=
E
.
mean
(
MA_Proc
)
meanM1A_Proc
=
E
.
mean
(
M1A_Proc
)
meanM1A_Proc
=
E
.
mean
(
M1A_Proc
)
meanM2A_Proc
=
E
.
mean
(
M2A_Proc
)
meanM2A_Proc
=
E
.
mean
(
M2A_Proc
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment