Commit c56d3328 authored by panos's avatar panos Committed by Jérome Perrin

Change the output in CMSD and JSON based on the changes in the output of the...

Change the output in CMSD and JSON based on the changes in the output of the statistical distributions
parent 377528e5
...@@ -49,38 +49,39 @@ A=HandleMissingValues() #Call the HandleMiss ...@@ -49,38 +49,39 @@ A=HandleMissingValues() #Call the HandleMiss
Machine1_OpearationTimes= A.DeleteMissingValue(Machine1_OpearationTimes) #It deletes the missing values in the lists with the operation times data Machine1_OpearationTimes= A.DeleteMissingValue(Machine1_OpearationTimes) #It deletes the missing values in the lists with the operation times data
Machine2_OpearationTimes= A.DeleteMissingValue(Machine2_OpearationTimes) Machine2_OpearationTimes= A.DeleteMissingValue(Machine2_OpearationTimes)
Dict={}
B=DistFittest() #It calls the DistFittest object B=DistFittest() #It calls the DistFittest object
B.ks_test(Machine2_OpearationTimes) #It conducts the Kolmogorov-Smirnov test in the list with the operation times data Dict['M1']=B.ks_test(Machine1_OpearationTimes) #It conducts the Kolmogorov-Smirnov test in the list with the operation times data
B.ks_test(Machine1_OpearationTimes) Dict['M2']=B.ks_test(Machine2_OpearationTimes)
lista=[] #It creates a list, that contains the outcome of the Kolmogorov-Smirnov tests M1=Dict.get('M1')
lista.append(B.ks_test(Machine1_OpearationTimes)) M2=Dict.get('M2')
lista.append(B.ks_test(Machine2_OpearationTimes))
names = [] #It defines the following five lists
aParameters=[]
bParameters=[]
aParameterValue=[]
bParameterValue=[]
for index in range(len(lista)):
names.append(lista[index].get('type')) #Insert the distribution names from the dictionary into the names list
aParameters.append(lista[index].get('aParameter')) #Insert the name of the first parameter of each distribution from the dictionary into the aParameters list
try:
bParameters.append(lista[index].get('bParameter')) #Insert the name of the second parameter of each distribution from the dictionary (if there are any->use of except) into the bParameters list
except:
bParameters.append('')
aParameterValue.append(lista[index].get('aParameterValue')) #Insert the value of the first parameter of each distribution from the dictionary into the aParameterValue list
try:
bParameterValue.append(lista[index].get('bParameterValue')) #Insert the value of the second parameter of each distribution from the dictionary (if there are any->use of except) into the bParameterValue list
except:
bParameterValue.append('')
#==================================== Output preparation: output the updated values in the CMSD information model of Topology10 ====================================================# #==================================== Output preparation: output the updated values in the CMSD information model of Topology10 ====================================================#
datafile=('CMSD_Topology10.xml') #It defines the name or the directory of the XML file that is manually written the CMSD information model datafile=('CMSD_Topology10.xml') #It defines the name or the directory of the XML file that is manually written the CMSD information model
tree = et.parse(datafile) #This file will be parsed using the XML.ETREE Python library tree = et.parse(datafile) #This file will be parsed using the XML.ETREE Python library
M1Parameters=[]
M1ParameterValue=[]
for index in list(Dict['M1'].keys()):
if index is not 'distributionType':
M1Parameters.append(index)
M1ParameterValue.append(Dict['M1'][index])
if Dict['M1']['distributionType']=='Normal':
del M1['min']
del M1['max']
elif Dict['M2']['distributionType']=='Normal':
del M2['min']
del M2['max']
M2Parameters=[]
M2ParameterValue=[]
for index in list(Dict['M2'].keys()):
if index is not 'distributionType':
M2Parameters.append(index)
M2ParameterValue.append(Dict['M2'][index])
root=tree.getroot() root=tree.getroot()
process=tree.findall('./DataSection/ProcessPlan/Process') #It creates a new variable and using the 'findall' order in XML.ETREE library, this new variable holds all the processes defined in the XML file process=tree.findall('./DataSection/ProcessPlan/Process') #It creates a new variable and using the 'findall' order in XML.ETREE library, this new variable holds all the processes defined in the XML file
for process in process: for process in process:
...@@ -89,32 +90,32 @@ for process in process: ...@@ -89,32 +90,32 @@ for process in process:
OperationTime=process.get('OpeationTime') #It gets the element attribute OpearationTime inside the Process node OperationTime=process.get('OpeationTime') #It gets the element attribute OpearationTime inside the Process node
Distribution=process.get('./OperationTime/Distribution') #It gets the element attribute Distribution inside the OpearationTime node Distribution=process.get('./OperationTime/Distribution') #It gets the element attribute Distribution inside the OpearationTime node
Name=process.find('./OperationTime/Distribution/Name') #It finds the subelement Name inside the Distribution attribute Name=process.find('./OperationTime/Distribution/Name') #It finds the subelement Name inside the Distribution attribute
Name.text=str(names[0]) #It changes the text between the Name element tags, putting the name of the distribution (e.g. in Normal distribution that will be Normal) Name.text=Dict['M1']['distributionType'] #It changes the text between the Name element tags, putting the name of the distribution (e.g. in Normal distribution that will be Normal)
DistributionParameterA=process.get('./OperationTime/Distribution/DistributionParameterA') DistributionParameterA=process.get('./OperationTime/Distribution/DistributionParameterA')
Name=process.find('./OperationTime/Distribution/DistributionParameterA/Name') Name=process.find('./OperationTime/Distribution/DistributionParameterA/Name')
Name.text=str(aParameters[0]) #It changes the text between the Name element tags, putting the name of the distribution's first parameter (e.g. in Normal that will be the mean) Name.text=str(M1Parameters[0]) #It changes the text between the Name element tags, putting the name of the distribution's first parameter (e.g. in Normal that will be the mean)
Value=process.find('./OperationTime/Distribution/DistributionParameterA/Value') Value=process.find('./OperationTime/Distribution/DistributionParameterA/Value')
Value.text=str(aParameterValue[0]) #It changes the text between the Value element tags, putting the value of the distribution's first parameter (e.g. in Normal so for mean value that will be 5.0) Value.text=str(M1ParameterValue[0]) #It changes the text between the Value element tags, putting the value of the distribution's first parameter (e.g. in Normal so for mean value that will be 5.0)
DistributionParameterB=process.get('./OperationTime/Distribution/DistributionParameterB') DistributionParameterB=process.get('./OperationTime/Distribution/DistributionParameterB')
Name=process.find('./OperationTime/Distribution/DistributionParameterB/Name') Name=process.find('./OperationTime/Distribution/DistributionParameterB/Name')
Name.text=str(bParameters[0]) #It changes the text between the Name element tags, putting the name of the distribution's second parameter (e.g. in Normal that will be the standarddeviation) Name.text=str(M1Parameters[1]) #It changes the text between the Name element tags, putting the name of the distribution's second parameter (e.g. in Normal that will be the standarddeviation)
Value=process.find('./OperationTime/Distribution/DistributionParameterB/Value') Value=process.find('./OperationTime/Distribution/DistributionParameterB/Value')
Value.text=str(bParameterValue[0]) #It changes the text between the Value element tags, putting the value of the distribution's second parameter (e.g. in Normal so for standarddeviation value that will be 1.3) Value.text=str(M1ParameterValue[1]) #It changes the text between the Value element tags, putting the value of the distribution's second parameter (e.g. in Normal so for standarddeviation value that will be 1.3)
elif process_identifier=='A040': #It checks using if...elif syntax if the process identifier is 'A040', so the process that uses the second machine elif process_identifier=='A040': #It checks using if...elif syntax if the process identifier is 'A040', so the process that uses the second machine
OperationTime=process.get('OpeationTime') OperationTime=process.get('OpeationTime')
Distribution=process.get('./OperationTime/Distribution') Distribution=process.get('./OperationTime/Distribution')
Name=process.find('./OperationTime/Distribution/Name') Name=process.find('./OperationTime/Distribution/Name')
Name.text=str(names[1]) Name.text=Dict['M2']['distributionType']
DistributionParameterA=process.get('./OperationTime/Distribution/DistributionParameterA') DistributionParameterA=process.get('./OperationTime/Distribution/DistributionParameterA')
Name=process.find('./OperationTime/Distribution/DistributionParameterA/Name') Name=process.find('./OperationTime/Distribution/DistributionParameterA/Name')
Name.text=str(aParameters[1]) Name.text=str(M2Parameters[0])
Value=process.find('./OperationTime/Distribution/DistributionParameterA/Value') Value=process.find('./OperationTime/Distribution/DistributionParameterA/Value')
Value.text=str(aParameterValue[1]) Value.text=str(M2ParameterValue[0])
DistributionParameterB=process.get('./OperationTime/Distribution/DistributionParameterB') DistributionParameterB=process.get('./OperationTime/Distribution/DistributionParameterB')
Name=process.find('./OperationTime/Distribution/DistributionParameterB/Name') Name=process.find('./OperationTime/Distribution/DistributionParameterB/Name')
Name.text=str(bParameters[1]) Name.text=str(M2Parameters[1])
Value=process.find('./OperationTime/Distribution/DistributionParameterB/Value') Value=process.find('./OperationTime/Distribution/DistributionParameterB/Value')
Value.text=str(bParameterValue[1]) Value.text=str(M1ParameterValue[1])
else: else:
continue continue
tree.write('CMSD_Topology10_Output.xml',encoding="utf8") #It writes the element tree to a specified file, using the 'utf8' output encoding tree.write('CMSD_Topology10_Output.xml',encoding="utf8") #It writes the element tree to a specified file, using the 'utf8' output encoding
...@@ -129,14 +130,10 @@ for element in nodes: ...@@ -129,14 +130,10 @@ for element in nodes:
name=element.get('name') #It creates a variable that gets the element attribute 'name' name=element.get('name') #It creates a variable that gets the element attribute 'name'
processingTime=element.get('processingTime',{}) #It creates a variable that gets the element attribute 'processingTime' processingTime=element.get('processingTime',{}) #It creates a variable that gets the element attribute 'processingTime'
if name =='Machine1': #It checks using if...elif syntax if the name is 'Machine1', so the first machine in the Topology10 if name =='Machine1':
processingTime['distributionType']=str(names[0]) #It changes the attribute's ('distributionType') name, putting the name of the distribution (e.g. in Normal distribution that will be Normal) element['processingTime']=Dict['M1'] #It checks using if...elif syntax if the name is 'Machine1', so the first machine in the Topology10
processingTime[str(aParameters[0])]=str(aParameterValue[0]) # It adds a new attribute in the JSON file with the name of the first argument in aParameter's list (e.g. in Normal that will be the mean), putting the value of the distribution's first parameter (e.g. in Normal so for mean value that will be 7.0)
processingTime[str(bParameters[0])]=str(bParameterValue[0]) # It adds a new attribute in the JSON file with the name of the second argument in aParameter's list (e.g. in Normal that will be the standarddeviation), putting the value of the distribution's second parameter (e.g. in Normal so for standarddeviation value that will be 7.0)
elif name=='Machine2': elif name=='Machine2':
processingTime['distributionType']=str(names[1]) element['processingTime']=Dict['M2']
processingTime[str(aParameters[1])]=str(aParameterValue[1])
processingTime[str(bParameters[1])]=str(bParameterValue[1])
else: else:
continue continue
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment