Commit d0745560 authored by panos's avatar panos Committed by Jérome Perrin

bug fixed in the output of the Kolmogorov-Smirnov test

parent 96e118d3
...@@ -263,49 +263,62 @@ class DistFittest: ...@@ -263,49 +263,62 @@ class DistFittest:
def ks_test(self,data): #Method that conducts the Kolmogorov-Smirnov statistical test and returns the best fitting distribution among the list of the available statistical distributions def ks_test(self,data): #Method that conducts the Kolmogorov-Smirnov statistical test and returns the best fitting distribution among the list of the available statistical distributions
data=robjects.FloatVector(data) #The given data sample changes into float vector in order to be handled by RPy2 data=robjects.FloatVector(data) #The given data sample changes into float vector in order to be handled by RPy2
self.Norm_kstest(data)
self.Lognorm_kstest(data)
self.Exp_kstest(data)
self.Pois_kstest(data)
self.Geom_kstest(data)
self.Logis_kstest(data)
self.Geom_kstest(data)
self.Weib_kstest(data)
self.Cauchy_kstest(data)
#Create a list with strings the available statistical distributions #Create a list with strings the available statistical distributions
list1=('Normal','Lognormal','Exponential','Poisson', 'Geometric','Logistic','Gamma','Weibull', 'Cauchy') list1=('Normal','Lognormal','Exponential','Poisson', 'Geometric','Logistic','Gamma','Weibull', 'Cauchy')
list2=[] #Create a list
#try...except syntaxes to test if the Kolmogorov-Smirnov statistical tests can be conducted to the available distributions #try...except syntaxes to test if the Kolmogorov-Smirnov statistical tests can be conducted to the available distributions
try: try:
arga=self.Normtest[0][0] #Create a variable that holds the D parameter of the Kolmogorov-Smirnov test in Normal distribution list2.append(self.Normtest[0][0]) #It appends in list2 the D statistic parameter of the Kolmogorov-Smirnov test in Normal distribution
except: except:
arga='' #in case of an error, the variable is left blank list2.append('') #in case of an error, it appends a blank point
try: try:
argb=self.Longnormtest[0][0] #Create a variable that holds the D parameter of the Kolmogorov-Smirnov test in Lognormal distribution list2.append(self.Lognormtest[0][0]) #It appends in list2 the D statistic parameter of the Kolmogorov-Smirnov test in Lognormal distribution
except: except:
argb='' list2.append('') # #in case of an error, it appends a blank point
try: try:
argd=self.Exptest[0][0] #Create a variable that holds the D parameter of the Kolmogorov-Smirnov test in Exponential distribution list2.append(self.Exptest[0][0]) #It appends in list2 the D statistic parameter of the Kolmogorov-Smirnov test in Exponential distribution
except: except:
argd='' #in case of an error, the variable is left blank list2.append('') #in case of an error, it appends a blank point
try: try:
arge=self.Poistest[0][0] list2.append(self.Poistest[0][0])
except: except:
arge='' list2.append('')
try: try:
argf=self.Geomtest[0][0] list2.append(self.Geomtest[0][0])
except: except:
argf='' list2.append('')
try: try:
argg=self.Logistest[0][0] list2.append(self.Logistest[0][0])
except: except:
argg='' list2.append('')
try: try:
argh= self.Gamtest[0][0] list2.append(self.Gamtest[0][0])
except: except:
argh='' list2.append('')
try: try:
argi=self.Weibtest[0][0] list2.append(self.Weibtest[0][0])
except: except:
argi='' list2.append('')
try: try:
argj=self.Cauchytest[0][0] list2.append(self.Cauchytest[0][0])
except: except:
argj='' list2.append('')
#Create a list with parameters the above D parameters calculated by the Kolmogorov-Smirnov tests in the available statistical distributions #Create a list with parameters the above D parameters calculated by the Kolmogorov-Smirnov tests in the available statistical distributions
list2=[arga,argb,argd,arge,argf,argg,argh,argi,argj]
a=min(list2) #Create a variable that holds the minimum value from the above list a=min(list2) #Create a variable that holds the minimum value from the above list
b=list2.index(a) #Create a variable that holds the actual position of the minimum value in the list b=list2.index(a) #Create a variable that holds the actual position of the minimum value in the list
self=Distributions() self=Distributions()
#Set of if...elif syntax in order to get a Python dictionary with the best fitting statistical distribution and its parameters #Set of if...elif syntax in order to get a Python dictionary with the best fitting statistical distribution and its parameters
if list1[b]=='Normal': #Check if in list's b position is the Normal distribution if list1[b]=='Normal': #Check if in list's b position is the Normal distribution
...@@ -350,3 +363,5 @@ class DistFittest: ...@@ -350,3 +363,5 @@ class DistFittest:
...@@ -31,7 +31,7 @@ from DistributionFitting import DistFittest ...@@ -31,7 +31,7 @@ from DistributionFitting import DistFittest
#The ExcelOutput object export in Excel document both the calculated statistical measures and the distribution fitting test of a dataset #The ExcelOutput object export in Excel document both the calculated statistical measures and the distribution fitting test of a dataset
class Output(BasicStatisticalMeasures,DistFittest): class Output(BasicStatisticalMeasures,DistFittest):
def PrintStatisticalMeasures(self,data): def PrintStatisticalMeasures(self,data,fileName="StatisticalMeasuresResults.xls"):
data=robjects.FloatVector(data) #The given list changes into float vector in order to be handled by RPy2 data=robjects.FloatVector(data) #The given list changes into float vector in order to be handled by RPy2
book = Workbook() book = Workbook()
...@@ -103,11 +103,11 @@ class Output(BasicStatisticalMeasures,DistFittest): ...@@ -103,11 +103,11 @@ class Output(BasicStatisticalMeasures,DistFittest):
###selfnterquartselfle Range### ###selfnterquartselfle Range###
sheet1.write(17,1,(self.IQR(data))) sheet1.write(17,1,(self.IQR(data)))
book.save('StatisticalMeasuresResults.xls') #Save the excel document book.save(fileName) #Save the excel document
def PrintDistributionFit(self,data): def PrintDistributionFit(self,data,fileName="DistributionFittingResults.xls"):
data=robjects.FloatVector(data) data=robjects.FloatVector(data)
book = Workbook() book = Workbook()
...@@ -240,5 +240,4 @@ class Output(BasicStatisticalMeasures,DistFittest): ...@@ -240,5 +240,4 @@ class Output(BasicStatisticalMeasures,DistFittest):
sheet2.write(15,15,(A.get('aParameterValue'))) sheet2.write(15,15,(A.get('aParameterValue')))
sheet2.write(15,16,(A.get('bParameterValue'))) sheet2.write(15,16,(A.get('bParameterValue')))
#book.save('C:\Eclipse workspace\FirstPrototype\src\ExcelOutput_DistributionFitting.xls') #Save the excel document in the given directory book.save(fileName) #Save the excel document
book.save('DistributionFittingResults.xls') #Save the excel document
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment