@@ -27,7 +27,7 @@ to clone and fetch large repositories, speeding up development.
For a video introduction to Geo, see [Introduction to GitLab Geo - GitLab Features](https://www.youtube.com/watch?v=-HDLxSjEh6w).
To make sure you're using the right version of the documentation, navigate to [this page on GitLab.com](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/administration/geo/index.md) and choose the appropriate release from the **Switch branch/tag** dropdown. For example, [`v11.2.3-ee`](https://gitlab.com/gitlab-org/gitlab/blob/v11.2.3-ee/doc/administration/geo/index.md).
To make sure you're using the right version of the documentation, navigate to [the Geo page on GitLab.com](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/administration/geo/index.md) and choose the appropriate release from the **Switch branch/tag** dropdown. For example, [`v11.2.3-ee`](https://gitlab.com/gitlab-org/gitlab/blob/v11.2.3-ee/doc/administration/geo/index.md).
Client applications (e.g. GitLab Rails and Docker CLI) interact with the Container Registry through its [HTTP API](https://gitlab.com/gitlab-org/container-registry/-/blob/master/docs/spec/api.md). The most common operations are pushing and pulling images to/from the registry, which require a series of HTTP requests in a specific order. The request flow for these operations is detailed [here](https://gitlab.com/gitlab-org/container-registry/-/blob/master/docs-gitlab/push-pull-request-flow.md).
Client applications (e.g. GitLab Rails and Docker CLI) interact with the Container Registry through its [HTTP API](https://gitlab.com/gitlab-org/container-registry/-/blob/master/docs/spec/api.md). The most common operations are pushing and pulling images to/from the registry, which require a series of HTTP requests in a specific order. The request flow for these operations is detailed in the [Request flow](https://gitlab.com/gitlab-org/container-registry/-/blob/master/docs-gitlab/push-pull-request-flow.md).
The registry supports multiple [storage backends](https://gitlab.com/gitlab-org/container-registry/-/blob/master/docs/configuration.md#storage), including Google Cloud Storage (GCS) which is used for the GitLab.com registry. In the storage backend, images are stored as blobs, deduplicated, and shared across repositories. These are then linked (like a symlink) to each repository that relies on them, giving them access to the central storage location.
...
...
@@ -156,7 +156,7 @@ Running *online* and [*post deployment*](../../../development/post_deployment_mi
The registry database will be partitioned from start to achieve greater performance (by limiting the amount of data to act upon and enable parallel execution), easier maintenance (by splitting tables and indexes into smaller units), and high availability (with partition independence). By partitioning the database from start we can also facilitate a sharding implementation later on if necessary.
Although blobs are shared across repositories, manifest and tag metadata are scoped by repository. This is also visible at the API level, where all write and read requests (except [listing repositories](https://gitlab.com/gitlab-org/container-registry/-/blob/a113d0f0ab29b49cf88e173ee871893a9fc56a90/docs/spec/api.md#listing-repositories)) are scoped by repository, with its namespace being part of the request URI. For this reason, after [identifying access patterns](https://gitlab.com/gitlab-org/gitlab/-/issues/234255), we decided to partition manifests and tags by repository and blobs by digest, ensuring that lookups are always performed by partition key for optimal performance. The initial version of the partitioned schema was documented [here](https://gitlab.com/gitlab-com/www-gitlab-com/-/merge_requests/60918).
Although blobs are shared across repositories, manifest and tag metadata are scoped by repository. This is also visible at the API level, where all write and read requests (except [listing repositories](https://gitlab.com/gitlab-org/container-registry/-/blob/a113d0f0ab29b49cf88e173ee871893a9fc56a90/docs/spec/api.md#listing-repositories)) are scoped by repository, with its namespace being part of the request URI. For this reason, after [identifying access patterns](https://gitlab.com/gitlab-org/gitlab/-/issues/234255), we decided to partition manifests and tags by repository and blobs by digest, ensuring that lookups are always performed by partition key for optimal performance. The initial version of the partitioned schema was documented [in a merge request](https://gitlab.com/gitlab-com/www-gitlab-com/-/merge_requests/60918).
Content image resizing is a more complex problem to tackle. There are no set size restrictions and there are additional features or requirements to consider.
- Dynamic WebP support - the WebP format typically achieves an average of 30% more compression than JPEG without the loss of image quality. More details [here](https://developers.google.com/speed/webp/docs/c_study)
- Dynamic WebP support - the WebP format typically achieves an average of 30% more compression than JPEG without the loss of image quality. More details are in [this Google Comparative Study](https://developers.google.com/speed/webp/docs/c_study)
- Extract first image of GIF's so we can prevent from loading 10MB pixels
- Check Device Pixel Ratio to deliver nice images on High DPI screens
- Progressive image loading, similar to what is described [here](https://www.sitepoint.com/how-to-build-your-own-progressive-image-loader/)
- Progressive image loading, similar to what is described in [this article about how to build a progressive image loader](https://www.sitepoint.com/how-to-build-your-own-progressive-image-loader/)