efx.c 65.6 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2005-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24 25 26
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
48 49 50 51 52 53 54 55
	[LOOPBACK_GMII] 	= "GMII",
	[LOOPBACK_SGMII] 	= "SGMII",
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57 58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
60 61 62 63 64 65 66 67 68
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
	[LOOPBACK_GMII_WS] 	= "GMII_WS",
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
	[EFX_INT_MODE_MSIX]   = "MSI-X",
	[EFX_INT_MODE_MSI]    = "MSI",
	[EFX_INT_MODE_LEGACY] = "legacy",
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
91
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
92 93
};

94 95
#define EFX_MAX_MTU (9 * 1024)

96 97 98 99 100 101
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

102 103 104 105 106 107 108 109 110
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
111 112
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
113
 *
114
 * This is only used in MSI-X interrupt mode
115
 */
116 117 118 119
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

178 179 180 181
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

182 183 184 185 186 187 188 189 190 191
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

192 193 194 195 196 197 198
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

199 200 201 202 203 204 205 206 207 208 209 210
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
211 212
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
229
static int efx_process_channel(struct efx_channel *channel, int budget)
230
{
231
	struct efx_nic *efx = channel->efx;
232
	int spent;
233

234
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
235
		     !channel->enabled))
236
		return 0;
237

238 239
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
240
		return 0;
241 242 243 244 245 246 247 248 249 250

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

251
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
252

253
	return spent;
254 255 256 257 258 259 260 261 262 263
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
264 265 266
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
267
	channel->work_pending = false;
268 269
	smp_wmb();

270
	efx_nic_eventq_read_ack(channel);
271 272 273 274 275 276 277 278 279 280 281
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
282
	struct efx_nic *efx = channel->efx;
283
	int spent;
284

285 286 287
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
288

289
	spent = efx_process_channel(channel, budget);
290

291
	if (spent < budget) {
292
		if (channel->channel < efx->n_rx_channels &&
293 294 295 296
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
297 298
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
299
					efx->type->push_irq_moderation(channel);
300
				}
301 302
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
303 304 305
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
306
					efx->type->push_irq_moderation(channel);
307
				}
308 309 310 311 312
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

313
		/* There is no race here; although napi_disable() will
314
		 * only wait for napi_complete(), this isn't a problem
315 316 317
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
318
		napi_complete(napi);
319 320 321
		efx_channel_processed(channel);
	}

322
	return spent;
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
340
	efx_nic_disable_interrupts(efx);
341 342
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
343
	if (channel->irq)
344 345 346 347 348 349
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
350
	efx_process_channel(channel, EFX_EVQ_SIZE);
351 352 353 354 355 356

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
357
	efx_nic_enable_interrupts(efx);
358 359 360 361 362 363 364 365 366
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
367 368
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "chan %d create event queue\n", channel->channel);
369

370
	return efx_nic_probe_eventq(channel);
371 372 373
}

/* Prepare channel's event queue */
374
static void efx_init_eventq(struct efx_channel *channel)
375
{
376 377
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
378 379 380

	channel->eventq_read_ptr = 0;

381
	efx_nic_init_eventq(channel);
382 383 384 385
}

static void efx_fini_eventq(struct efx_channel *channel)
{
386 387
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
388

389
	efx_nic_fini_eventq(channel);
390 391 392 393
}

static void efx_remove_eventq(struct efx_channel *channel)
{
394 395
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
396

397
	efx_nic_remove_eventq(channel);
398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

412 413
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


446 447 448 449 450 451 452 453
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
454 455
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
456 457 458
				type = "-rx";
			} else {
				type = "-tx";
459
				number -= efx->n_rx_channels;
460 461 462 463 464 465 466
			}
		}
		snprintf(channel->name, sizeof(channel->name),
			 "%s%s-%d", efx->name, type, number);
	}
}

467 468 469 470
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
471
static void efx_init_channels(struct efx_nic *efx)
472 473 474 475 476
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

477 478 479 480 481 482
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
483
			      efx->type->rx_buffer_hash_size +
484
			      efx->type->rx_buffer_padding);
485 486
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
487 488 489

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
490 491
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "init chan %d\n", channel->channel);
492

493
		efx_init_eventq(channel);
494

495 496
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
497 498 499 500

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

501 502
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

518 519
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "starting chan %d\n", channel->channel);
520

521 522 523
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
524 525
	channel->work_pending = false;
	channel->enabled = true;
526
	smp_wmb();
527

528
	/* Fill the queues before enabling NAPI */
529 530
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
531 532

	napi_enable(&channel->napi_str);
533 534 535 536 537 538 539 540 541 542 543
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

544 545
	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
		  "stop chan %d\n", channel->channel);
546

547
	channel->enabled = false;
548 549 550 551 552 553 554 555
	napi_disable(&channel->napi_str);
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
556
	int rc;
557 558 559 560

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

561
	rc = efx_nic_flush_queues(efx);
562 563 564 565 566
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
567 568
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
569 570
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
571
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
572
	} else {
573 574
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
575
	}
576

577
	efx_for_each_channel(channel, efx) {
578 579
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "shut down chan %d\n", channel->channel);
580 581 582 583 584 585 586 587 588 589 590 591 592 593

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

594 595
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
596 597 598 599 600 601 602 603

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

604
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
605
{
606
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
607 608 609 610 611 612 613 614 615 616 617 618
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
Steve Hodgson's avatar
Steve Hodgson committed
619
void efx_link_status_changed(struct efx_nic *efx)
620
{
621 622
	struct efx_link_state *link_state = &efx->link_state;

623 624 625 626 627 628 629
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

Ben Hutchings's avatar
Ben Hutchings committed
630 631 632 633 634
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

635
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
636 637
		efx->n_link_state_changes++;

638
		if (link_state->up)
639 640 641 642 643 644
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
645
	if (link_state->up) {
646 647 648 649 650
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
651
	} else {
652
		netif_info(efx, link, efx->net_dev, "link down\n");
653 654 655 656
	}

}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

685 686
static void efx_fini_port(struct efx_nic *efx);

687 688 689 690 691 692 693 694
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
695
{
696 697
	enum efx_phy_mode phy_mode;
	int rc;
698

699
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
700

701 702 703 704 705 706
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

707 708
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
709 710 711 712 713
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

714
	rc = efx->type->reconfigure_port(efx);
715

716 717
	if (rc)
		efx->phy_mode = phy_mode;
718

719
	return rc;
720 721 722 723
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
724
int efx_reconfigure_port(struct efx_nic *efx)
725
{
726 727
	int rc;

728 729 730
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
731
	rc = __efx_reconfigure_port(efx);
732
	mutex_unlock(&efx->mac_lock);
733 734

	return rc;
735 736
}

737 738 739
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
740 741 742 743 744
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
745
	if (efx->port_enabled) {
746
		efx->type->push_multicast_hash(efx);
747 748
		efx->mac_op->reconfigure(efx);
	}
749 750 751
	mutex_unlock(&efx->mac_lock);
}

752 753 754 755
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

756
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
757

758 759 760
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

761 762
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
763 764 765 766 767 768 769
	if (rc)
		goto err;

	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
770 771
		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
			  efx->mac_address);
772 773 774 775 776
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
777 778 779
		netif_info(efx, probe, efx->net_dev,
			   "using locally-generated MAC %pM\n",
			   efx->net_dev->dev_addr);
780 781 782 783 784 785 786 787 788 789 790 791 792
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

793
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
794

795 796
	mutex_lock(&efx->mac_lock);

797
	rc = efx->phy_op->init(efx);
798
	if (rc)
799
		goto fail1;
800

801
	efx->port_initialized = true;
802

803 804 805 806 807 808 809 810 811
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
	efx->mac_op->reconfigure(efx);

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

812
	mutex_unlock(&efx->mac_lock);
813
	return 0;
814

815
fail2:
816
	efx->phy_op->fini(efx);
817 818
fail1:
	mutex_unlock(&efx->mac_lock);
819
	return rc;
820 821 822 823
}

static void efx_start_port(struct efx_nic *efx)
{
824
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
825 826 827
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
828
	efx->port_enabled = true;
829 830 831

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
832
	efx->type->push_multicast_hash(efx);
833 834
	efx->mac_op->reconfigure(efx);

835 836 837
	mutex_unlock(&efx->mac_lock);
}

Steve Hodgson's avatar
Steve Hodgson committed
838
/* Prevent efx_mac_work() and efx_monitor() from working */
839 840
static void efx_stop_port(struct efx_nic *efx)
{
841
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
842 843

	mutex_lock(&efx->mac_lock);
844
	efx->port_enabled = false;
845 846 847
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
848
	if (efx_dev_registered(efx)) {
849 850
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
851 852 853 854 855
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
856
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
857 858 859 860

	if (!efx->port_initialized)
		return;

861
	efx->phy_op->fini(efx);
862
	efx->port_initialized = false;
863

864
	efx->link_state.up = false;
865 866 867 868 869
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
870
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
871

872
	efx->type->remove_port(efx);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

888
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
889 890 891

	rc = pci_enable_device(pci_dev);
	if (rc) {
892 893
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
911 912
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
913 914
		goto fail2;
	}
915 916
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
917 918 919 920 921 922
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
923 924
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
925 926 927
		goto fail2;
	}

928 929
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
930
	if (rc) {
931 932
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
933 934 935 936 937 938
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
939 940 941 942
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
943 944 945
		rc = -ENOMEM;
		goto fail4;
	}
946 947 948 949
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
950 951 952 953

	return 0;

 fail4:
954
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
955
 fail3:
956
	efx->membase_phys = 0;
957 958 959 960 961 962 963 964
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
965
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
966 967 968 969 970 971 972

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
973
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
974
		efx->membase_phys = 0;
975 976 977 978 979
	}

	pci_disable_device(efx->pci_dev);
}

980 981 982
/* Get number of channels wanted.  Each channel will have its own IRQ,
 * 1 RX queue and/or 2 TX queues. */
static int efx_wanted_channels(void)
983
{
984
	cpumask_var_t core_mask;
985 986 987
	int count;
	int cpu;

988
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
989
		printk(KERN_WARNING
990
		       "sfc: RSS disabled due to allocation failure\n");
991 992 993
		return 1;
	}

994 995
	count = 0;
	for_each_online_cpu(cpu) {
996
		if (!cpumask_test_cpu(cpu, core_mask)) {
997
			++count;
998
			cpumask_or(core_mask, core_mask,
999
				   topology_core_cpumask(cpu));
1000 1001 1002
		}
	}

1003
	free_cpumask_var(core_mask);
1004 1005 1006 1007 1008 1009
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1010 1011
static void efx_probe_interrupts(struct efx_nic *efx)
{
1012 1013
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1014 1015 1016
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1017
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1018
		int n_channels;
1019

1020 1021 1022 1023
		n_channels = efx_wanted_channels();
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1024

1025
		for (i = 0; i < n_channels; i++)
1026
			xentries[i].entry = i;
1027
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1028
		if (rc > 0) {
1029 1030 1031 1032 1033
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
1034 1035
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1036
			rc = pci_enable_msix(efx->pci_dev, xentries,
1037
					     n_channels);
1038 1039 1040
		}

		if (rc == 0) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
			for (i = 0; i < n_channels; i++)
1053 1054 1055 1056
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1057 1058
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1059 1060 1061 1062 1063
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1064
		efx->n_channels = 1;
1065 1066
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1067 1068 1069 1070
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
1071 1072
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1073 1074 1075 1076 1077 1078
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1079
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1080 1081
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1082 1083 1084 1085 1086 1087 1088 1089 1090
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1091
	efx_for_each_channel(channel, efx)
1092 1093 1094 1095 1096 1097 1098 1099
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1100
static void efx_set_channels(struct efx_nic *efx)
1101
{
1102
	struct efx_channel *channel;
1103 1104
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1105 1106
	unsigned tx_channel_offset =
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1107

1108 1109 1110 1111 1112 1113 1114 1115
	efx_for_each_channel(channel, efx) {
		if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
			channel->tx_queue = &efx->tx_queue[
				(channel->channel - tx_channel_offset) *
				EFX_TXQ_TYPES];
			efx_for_each_channel_tx_queue(tx_queue, channel)
				tx_queue->channel = channel;
		}
1116
	}
1117

1118
	efx_for_each_rx_queue(rx_queue, efx)
1119
		rx_queue->channel = &efx->channel[rx_queue->queue];
1120 1121 1122 1123 1124 1125
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1126
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1127 1128

	/* Carry out hardware-type specific initialisation */
1129
	rc = efx->type->probe(efx);
1130 1131 1132
	if (rc)
		return rc;

1133
	/* Determine the number of channels and queues by trying to hook
1134 1135 1136
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1137
	efx_set_channels(efx);
1138
	efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
1139 1140

	/* Initialise the interrupt moderation settings */
1141
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1142 1143 1144 1145 1146 1147

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
1148
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1149 1150

	efx_remove_interrupts(efx);
1151
	efx->type->remove(efx);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
1168
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1169 1170 1171 1172 1173 1174
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
1175
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1176 1177 1178 1179 1180 1181 1182
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
1183 1184 1185
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
1186 1187 1188
			goto fail3;
		}
	}
1189
	efx_set_channel_names(efx);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1220
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1221 1222 1223 1224 1225 1226
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);

1227 1228 1229
	efx_for_each_channel(channel, efx) {
		if (efx_dev_registered(efx))
			efx_wake_queue(channel);
1230
		efx_start_channel(channel);
1231
	}
1232

1233
	efx_nic_enable_interrupts(efx);
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
	if (efx->reset_pending != RESET_TYPE_NONE)
		efx_mcdi_mode_poll(efx);

1244 1245 1246 1247
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1248 1249
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1250 1251 1252 1253 1254 1255
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1256

1257
	efx->type->start_stats(efx);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1268
	cancel_work_sync(&efx->mac_work);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1286
	efx->type->stop_stats(efx);
1287

1288 1289 1290
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1291
	/* Disable interrupts and wait for ISR to complete */
1292
	efx_nic_disable_interrupts(efx);
1293 1294
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1295
	efx_for_each_channel(channel, efx) {
1296 1297
		if (channel->irq)
			synchronize_irq(channel->irq);
1298
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

Steve Hodgson's avatar
Steve Hodgson committed
1309
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1310 1311 1312 1313
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1314
	if (efx_dev_registered(efx)) {
1315 1316 1317
		struct efx_channel *channel;
		efx_for_each_channel(channel, efx)
			efx_stop_queue(channel);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1339 1340 1341 1342 1343 1344 1345 1346 1347
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1348
/* Set interrupt moderation parameters */
1349 1350
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1351 1352 1353
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1354 1355
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1356 1357 1358 1359

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
1360
		tx_queue->channel->irq_moderation = tx_ticks;
1361

1362
	efx->irq_rx_adaptive = rx_adaptive;
1363
	efx->irq_rx_moderation = rx_ticks;
1364
	efx_for_each_rx_queue(rx_queue, efx)
1365
		rx_queue->channel->irq_moderation = rx_ticks;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1381 1382 1383
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1384
	BUG_ON(efx->type->monitor == NULL);
1385 1386 1387 1388

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
1389 1390 1391 1392
	if (!mutex_trylock(&efx->mac_lock))
		goto out_requeue;
	if (!efx->port_enabled)
		goto out_unlock;
1393
	efx->type->monitor(efx);
1394

1395
out_unlock:
1396
	mutex_unlock(&efx->mac_lock);
1397
out_requeue:
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1413
	struct efx_nic *efx = netdev_priv(net_dev);
1414
	struct mii_ioctl_data *data = if_mii(ifr);
1415 1416 1417

	EFX_ASSERT_RESET_SERIALISED(efx);

1418 1419 1420 1421 1422 1423
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1438 1439
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1440 1441 1442 1443 1444 1445 1446 1447 1448
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1449 1450
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1469
	struct efx_nic *efx = netdev_priv(net_dev);
1470 1471
	struct efx_channel *channel;

1472
	efx_for_each_channel(channel, efx)
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1487
	struct efx_nic *efx = netdev_priv(net_dev);
1488 1489
	EFX_ASSERT_RESET_SERIALISED(efx);

1490 1491
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1492

1493 1494
	if (efx->state == STATE_DISABLED)
		return -EIO;
1495 1496
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1497 1498
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1499

1500 1501 1502 1503
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1514
	struct efx_nic *efx = netdev_priv(net_dev);
1515

1516 1517
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1518

1519 1520 1521 1522 1523 1524
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1525 1526 1527 1528

	return 0;
}

1529
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1530
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev)
1531
{
1532
	struct efx_nic *efx = netdev_priv(net_dev);
1533
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1534
	struct rtnl_link_stats64 *stats = &net_dev->stats64;
1535

1536
	spin_lock_bh(&efx->stats_lock);
1537
	efx->type->update_stats(efx);
1538
	spin_unlock_bh(&efx->stats_lock);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1568
	struct efx_nic *efx = netdev_priv(net_dev);
1569

1570 1571 1572
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1573

1574
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1575 1576 1577 1578 1579 1580
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1581
	struct efx_nic *efx = netdev_priv(net_dev);
1582 1583 1584 1585 1586 1587 1588 1589 1590
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1591
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1592 1593

	efx_fini_channels(efx);
1594 1595 1596 1597

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1598
	net_dev->mtu = new_mtu;
1599 1600 1601
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

1602
	efx_init_channels(efx);
1603 1604 1605 1606 1607 1608 1609

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1610
	struct efx_nic *efx = netdev_priv(net_dev);
1611 1612 1613 1614 1615 1616
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1617 1618 1619
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1620 1621 1622 1623 1624 1625
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
1626 1627 1628
	mutex_lock(&efx->mac_lock);
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);
1629 1630 1631 1632

	return 0;
}

1633
/* Context: netif_addr_lock held, BHs disabled. */
1634 1635
static void efx_set_multicast_list(struct net_device *net_dev)
{
1636
	struct efx_nic *efx = netdev_priv(net_dev);
1637
	struct netdev_hw_addr *ha;
1638 1639 1640 1641
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1642
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1643 1644

	/* Build multicast hash table */
1645
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1646 1647 1648
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1649 1650
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1651 1652 1653 1654
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1655 1656 1657 1658 1659 1660
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1661

1662 1663 1664
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1665 1666
}

1667 1668 1669
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1670
	.ndo_get_stats64	= efx_net_stats,
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1683 1684 1685 1686 1687 1688 1689
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1690 1691 1692
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1693
	struct net_device *net_dev = ptr;
1694

1695 1696 1697
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1698 1699 1700 1701 1702 1703 1704 1705

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

1706 1707 1708 1709 1710 1711 1712 1713
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1714 1715 1716 1717 1718 1719 1720
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
1721
	net_dev->netdev_ops = &efx_netdev_ops;
1722 1723 1724
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1725
	efx->mac_op->update_stats(efx);
1726 1727
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1728
	rtnl_lock();
1729 1730 1731 1732

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1733
	efx_update_name(efx);
1734 1735 1736 1737 1738 1739 1740 1741

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1742
	rtnl_unlock();
1743

1744 1745
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1746 1747
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
1748 1749 1750
		goto fail_registered;
	}

1751
	return 0;
1752

1753 1754
fail_locked:
	rtnl_unlock();
1755
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1756 1757
	return rc;

1758 1759 1760
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1761 1762 1763 1764 1765 1766 1767 1768 1769
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1770
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1771 1772 1773 1774 1775 1776 1777

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1778
	if (efx_dev_registered(efx)) {
1779
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1780
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

Ben Hutchings's avatar
Ben Hutchings committed
1791 1792
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
1793
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1794 1795 1796
{
	EFX_ASSERT_RESET_SERIALISED(efx);

Ben Hutchings's avatar
Ben Hutchings committed
1797 1798
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1799
	mutex_lock(&efx->spi_lock);
Ben Hutchings's avatar
Ben Hutchings committed
1800

1801
	efx_fini_channels(efx);
1802 1803
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1804
	efx->type->fini(efx);
1805 1806
}

Ben Hutchings's avatar
Ben Hutchings committed
1807 1808 1809 1810 1811
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
1812
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1813 1814 1815
{
	int rc;

Ben Hutchings's avatar
Ben Hutchings committed
1816
	EFX_ASSERT_RESET_SERIALISED(efx);
1817

1818
	rc = efx->type->init(efx);
1819
	if (rc) {
1820
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
1821
		goto fail;
1822 1823
	}

1824 1825 1826
	if (!ok)
		goto fail;

1827
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1828 1829 1830 1831
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
1832 1833
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
1834 1835
	}

1836
	efx->mac_op->reconfigure(efx);
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	efx_init_channels(efx);

	mutex_unlock(&efx->spi_lock);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
Ben Hutchings's avatar
Ben Hutchings committed
1849

1850
	mutex_unlock(&efx->spi_lock);
Ben Hutchings's avatar
Ben Hutchings committed
1851 1852
	mutex_unlock(&efx->mac_lock);

1853 1854 1855
	return rc;
}

1856 1857
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
1858
 *
1859
 * Caller must hold the rtnl_lock.
1860
 */
1861
int efx_reset(struct efx_nic *efx, enum reset_type method)
1862
{
1863 1864
	int rc, rc2;
	bool disabled;
1865

1866 1867
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
1868

1869
	efx_reset_down(efx, method);
1870

1871
	rc = efx->type->reset(efx, method);
1872
	if (rc) {
1873
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
1874
		goto out;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

1886
out:
1887
	/* Leave device stopped if necessary */
1888 1889 1890 1891 1892 1893
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
1894 1895
	}

1896
	if (disabled) {
1897
		dev_close(efx->net_dev);
1898
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
1899 1900
		efx->state = STATE_DISABLED;
	} else {
1901
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
1902
	}
1903 1904 1905 1906 1907 1908 1909 1910
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
1911
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1912

1913 1914 1915
	if (efx->reset_pending == RESET_TYPE_NONE)
		return;

1916 1917 1918
	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
1919 1920
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
1921 1922 1923 1924
		return;
	}

	rtnl_lock();
1925
	(void)efx_reset(efx, efx->reset_pending);
1926
	rtnl_unlock();
1927 1928 1929 1930 1931 1932 1933
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
1934 1935
		netif_info(efx, drv, efx->net_dev,
			   "quenching already scheduled reset\n");
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
1952
	case RESET_TYPE_MC_FAILURE:
1953 1954 1955 1956 1957 1958
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
1959 1960 1961
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
1962
	else
1963 1964
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
1965 1966 1967

	efx->reset_pending = method;

1968 1969 1970 1971
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

1972
	queue_work(reset_workqueue, &efx->reset_work);
1973 1974 1975 1976 1977 1978 1979 1980 1981
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
1982
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
1983
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1984
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
1985
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1986
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
1987 1988 1989 1990
	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
1991 1992 1993 1994 1995
	{0}			/* end of list */
};

/**************************************************************************
 *
1996
 * Dummy PHY/MAC operations
1997
 *
1998
 * Can be used for some unimplemented operations
1999 2000 2001 2002 2003 2004 2005 2006 2007
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
2008 2009 2010
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
Steve Hodgson's avatar
Steve Hodgson committed
2011 2012 2013 2014
bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
	return false;
}
2015 2016 2017

static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
2018
	.reconfigure	 = efx_port_dummy_op_int,
Steve Hodgson's avatar
Steve Hodgson committed
2019
	.poll		 = efx_port_dummy_op_poll,
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
2038
	int i;
2039 2040 2041 2042

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2043
	mutex_init(&efx->mdio_lock);
2044
	mutex_init(&efx->spi_lock);
2045 2046 2047
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2048 2049 2050
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2051
	efx->msg_enable = debug;
2052 2053 2054 2055 2056
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2057
	efx->rx_checksum_enabled = true;
2058 2059
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
2060
	efx->mac_op = type->default_mac_ops;
2061
	efx->phy_op = &efx_dummy_phy_operations;
2062
	efx->mdio.dev = net_dev;
2063
	INIT_WORK(&efx->mac_work, efx_mac_work);
2064 2065 2066 2067 2068

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
2069
		channel->work_pending = false;
2070 2071
		spin_lock_init(&channel->tx_stop_lock);
		atomic_set(&channel->tx_stop_count, 1);
2072
	}
2073
	for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
2074 2075 2076 2077 2078
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
2079
		tx_queue->tso_headers_free = NULL;
2080 2081 2082 2083 2084 2085 2086
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
2087 2088
		setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
			    (unsigned long)rx_queue);
2089 2090 2091 2092 2093
	}

	efx->type = type;

	/* As close as we can get to guaranteeing that we don't overflow */
2094 2095
	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);

2096 2097 2098 2099 2100 2101
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2102 2103 2104 2105
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2106 2107
	if (!efx->workqueue)
		return -ENOMEM;
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	return 0;
}

static void efx_fini_struct(struct efx_nic *efx)
{
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2131
	efx_nic_fini_interrupt(efx);
2132 2133
	efx_fini_channels(efx);
	efx_fini_port(efx);
2134
	efx->type->fini(efx);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2160 2161
	efx_mtd_remove(efx);

2162 2163 2164 2165
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2166
	cancel_work_sync(&efx->reset_work);
2167 2168 2169 2170

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2171
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

2194
	rc = efx->type->init(efx);
2195
	if (rc) {
2196 2197
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2198
		goto fail3;
2199 2200 2201 2202
	}

	rc = efx_init_port(efx);
	if (rc) {
2203 2204
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2205
		goto fail4;
2206 2207
	}

2208
	efx_init_channels(efx);
2209

2210
	rc = efx_nic_init_interrupt(efx);
2211
	if (rc)
2212
		goto fail5;
2213 2214 2215

	return 0;

2216
 fail5:
2217
	efx_fini_channels(efx);
2218 2219
	efx_fini_port(efx);
 fail4:
2220
	efx->type->fini(efx);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
2247
	net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2248 2249
	if (!net_dev)
		return -ENOMEM;
2250
	net_dev->features |= (type->offload_features | NETIF_F_SG |
2251 2252
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
			      NETIF_F_GRO);
2253 2254
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2255 2256
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2257
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2258
	efx = netdev_priv(net_dev);
2259
	pci_set_drvdata(pci_dev, efx);
2260
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2261 2262 2263 2264
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2265 2266
	netif_info(efx, probe, efx->net_dev,
		   "Solarflare Communications NIC detected\n");
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2282
		cancel_work_sync(&efx->reset_work);
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2295 2296 2297 2298 2299 2300 2301 2302 2303
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
2304
		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2305 2306 2307
		goto fail4;
	}

2308 2309
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2310
	efx->state = STATE_RUNNING;
2311

2312 2313 2314 2315
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

2316
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2317 2318 2319 2320

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2331
	WARN_ON(rc > 0);
2332
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2333 2334 2335 2336
	free_netdev(net_dev);
	return rc;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2371 2372 2373
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

	efx->reset_pending = RESET_TYPE_NONE;

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

static struct dev_pm_ops efx_pm_ops = {
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2435
static struct pci_driver efx_pci_driver = {
2436
	.name		= KBUILD_MODNAME,
2437 2438 2439
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2440
	.driver.pm	= &efx_pm_ops,
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2463 2464 2465 2466 2467
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2468 2469 2470 2471 2472 2473 2474 2475

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2476 2477
	destroy_workqueue(reset_workqueue);
 err_reset:
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2488
	destroy_workqueue(reset_workqueue);
2489 2490 2491 2492 2493 2494 2495
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2496 2497
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2498 2499 2500
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);