amba-pl022.c 56.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * drivers/spi/amba-pl022.c
 *
 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
 *
 * Copyright (C) 2008-2009 ST-Ericsson AB
 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
 *
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * Initial version inspired by:
 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
 * Initial adoption to PL022 by:
 *      Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 * TODO:
 * - add timeout on polled transfers
 * - add generic DMA framework support
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/amba/bus.h>
#include <linux/amba/pl022.h>
#include <linux/io.h>
47
#include <linux/slab.h>
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

/*
 * This macro is used to define some register default values.
 * reg is masked with mask, the OR:ed with an (again masked)
 * val shifted sb steps to the left.
 */
#define SSP_WRITE_BITS(reg, val, mask, sb) \
 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))

/*
 * This macro is also used to define some default values.
 * It will just shift val by sb steps to the left and mask
 * the result with mask.
 */
#define GEN_MASK_BITS(val, mask, sb) \
 (((val)<<(sb)) & (mask))

#define DRIVE_TX		0
#define DO_NOT_DRIVE_TX		1

#define DO_NOT_QUEUE_DMA	0
#define QUEUE_DMA		1

#define RX_TRANSFER		1
#define TX_TRANSFER		2

/*
 * Macros to access SSP Registers with their offsets
 */
#define SSP_CR0(r)	(r + 0x000)
#define SSP_CR1(r)	(r + 0x004)
#define SSP_DR(r)	(r + 0x008)
#define SSP_SR(r)	(r + 0x00C)
#define SSP_CPSR(r)	(r + 0x010)
#define SSP_IMSC(r)	(r + 0x014)
#define SSP_RIS(r)	(r + 0x018)
#define SSP_MIS(r)	(r + 0x01C)
#define SSP_ICR(r)	(r + 0x020)
#define SSP_DMACR(r)	(r + 0x024)
#define SSP_ITCR(r)	(r + 0x080)
#define SSP_ITIP(r)	(r + 0x084)
#define SSP_ITOP(r)	(r + 0x088)
#define SSP_TDR(r)	(r + 0x08C)

#define SSP_PID0(r)	(r + 0xFE0)
#define SSP_PID1(r)	(r + 0xFE4)
#define SSP_PID2(r)	(r + 0xFE8)
#define SSP_PID3(r)	(r + 0xFEC)

#define SSP_CID0(r)	(r + 0xFF0)
#define SSP_CID1(r)	(r + 0xFF4)
#define SSP_CID2(r)	(r + 0xFF8)
#define SSP_CID3(r)	(r + 0xFFC)

/*
 * SSP Control Register 0  - SSP_CR0
 */
105 106
#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
#define SSP_CR0_MASK_FRF	(0x3UL << 4)
107 108 109
#define SSP_CR0_MASK_SPO	(0x1UL << 6)
#define SSP_CR0_MASK_SPH	(0x1UL << 7)
#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
110 111 112 113 114 115 116 117 118 119

/*
 * The ST version of this block moves som bits
 * in SSP_CR0 and extends it to 32 bits
 */
#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)

120 121 122 123 124 125 126 127 128 129

/*
 * SSP Control Register 0  - SSP_CR1
 */
#define SSP_CR1_MASK_LBM	(0x1UL << 0)
#define SSP_CR1_MASK_SSE	(0x1UL << 1)
#define SSP_CR1_MASK_MS		(0x1UL << 2)
#define SSP_CR1_MASK_SOD	(0x1UL << 3)

/*
130 131
 * The ST version of this block adds some bits
 * in SSP_CR1
132
 */
133 134 135 136 137
#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
138 139
/* This one is only in the PL023 variant */
#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
140 141 142 143 144 145 146

/*
 * SSP Status Register - SSP_SR
 */
#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
147
#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */

/*
 * SSP Clock Prescale Register  - SSP_CPSR
 */
#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)

/*
 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 */
#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */

/*
 * SSP Raw Interrupt Status Register - SSP_RIS
 */
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)

/*
 * SSP Masked Interrupt Status Register - SSP_MIS
 */
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)

/*
 * SSP Interrupt Clear Register - SSP_ICR
 */
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC		(0x1UL << 1)

/*
 * SSP DMA Control Register - SSP_DMACR
 */
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)

/*
 * SSP Integration Test control Register - SSP_ITCR
 */
#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)

/*
 * SSP Integration Test Input Register - SSP_ITIP
 */
#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)

/*
 * SSP Integration Test output Register - SSP_ITOP
 */
#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
#define ITOP_MASK_RORINTR		 (0x1UL << 5)
#define ITOP_MASK_RTINTR		 (0x1UL << 6)
#define ITOP_MASK_RXINTR		 (0x1UL << 7)
#define ITOP_MASK_TXINTR		 (0x1UL << 8)
#define ITOP_MASK_INTR			 (0x1UL << 9)
#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)

/*
 * SSP Test Data Register - SSP_TDR
 */
240
#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
241 242 243 244 245 246 247

/*
 * Message State
 * we use the spi_message.state (void *) pointer to
 * hold a single state value, that's why all this
 * (void *) casting is done here.
 */
248 249 250 251
#define STATE_START			((void *) 0)
#define STATE_RUNNING			((void *) 1)
#define STATE_DONE			((void *) 2)
#define STATE_ERROR			((void *) -1)
252 253 254 255

/*
 * Queue State
 */
256 257
#define QUEUE_RUNNING			(0)
#define QUEUE_STOPPED			(1)
258 259 260
/*
 * SSP State - Whether Enabled or Disabled
 */
261 262
#define SSP_DISABLED			(0)
#define SSP_ENABLED			(1)
263 264 265 266

/*
 * SSP DMA State - Whether DMA Enabled or Disabled
 */
267 268
#define SSP_DMA_DISABLED		(0)
#define SSP_DMA_ENABLED			(1)
269 270 271 272

/*
 * SSP Clock Defaults
 */
273 274
#define SSP_DEFAULT_CLKRATE 0x2
#define SSP_DEFAULT_PRESCALE 0x40
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

/*
 * SSP Clock Parameter ranges
 */
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF

/*
 * SSP Interrupt related Macros
 */
#define DEFAULT_SSP_REG_IMSC  0x0UL
#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)

#define CLEAR_ALL_INTERRUPTS  0x3


/*
 * The type of reading going on on this chip
 */
enum ssp_reading {
	READING_NULL,
	READING_U8,
	READING_U16,
	READING_U32
};

/**
 * The type of writing going on on this chip
 */
enum ssp_writing {
	WRITING_NULL,
	WRITING_U8,
	WRITING_U16,
	WRITING_U32
};

/**
 * struct vendor_data - vendor-specific config parameters
 * for PL022 derivates
 * @fifodepth: depth of FIFOs (both)
 * @max_bpw: maximum number of bits per word
 * @unidir: supports unidirection transfers
320 321
 * @extended_cr: 32 bit wide control register 0 with extra
 * features and extra features in CR1 as found in the ST variants
322
 * @pl023: supports a subset of the ST extensions called "PL023"
323 324 325 326 327
 */
struct vendor_data {
	int fifodepth;
	int max_bpw;
	bool unidir;
328
	bool extended_cr;
329
	bool pl023;
330 331 332 333 334
};

/**
 * struct pl022 - This is the private SSP driver data structure
 * @adev: AMBA device model hookup
335
 * @vendor: Vendor data for the IP block
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
 * @phybase: The physical memory where the SSP device resides
 * @virtbase: The virtual memory where the SSP is mapped
 * @master: SPI framework hookup
 * @master_info: controller-specific data from machine setup
 * @regs: SSP controller register's virtual address
 * @pump_messages: Work struct for scheduling work to the workqueue
 * @lock: spinlock to syncronise access to driver data
 * @workqueue: a workqueue on which any spi_message request is queued
 * @busy: workqueue is busy
 * @run: workqueue is running
 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 * @cur_msg: Pointer to current spi_message being processed
 * @cur_transfer: Pointer to current spi_transfer
 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 * @tx: current position in TX buffer to be read
 * @tx_end: end position in TX buffer to be read
 * @rx: current position in RX buffer to be written
 * @rx_end: end position in RX buffer to be written
 * @readingtype: the type of read currently going on
 * @writingtype: the type or write currently going on
 */
struct pl022 {
	struct amba_device		*adev;
	struct vendor_data		*vendor;
	resource_size_t			phybase;
	void __iomem			*virtbase;
	struct clk			*clk;
	struct spi_master		*master;
	struct pl022_ssp_controller	*master_info;
	/* Driver message queue */
	struct workqueue_struct		*workqueue;
	struct work_struct		pump_messages;
	spinlock_t			queue_lock;
	struct list_head		queue;
	int				busy;
	int				run;
	/* Message transfer pump */
	struct tasklet_struct		pump_transfers;
	struct spi_message		*cur_msg;
	struct spi_transfer		*cur_transfer;
	struct chip_data		*cur_chip;
	void				*tx;
	void				*tx_end;
	void				*rx;
	void				*rx_end;
	enum ssp_reading		read;
	enum ssp_writing		write;
383
	u32				exp_fifo_level;
384 385 386 387
};

/**
 * struct chip_data - To maintain runtime state of SSP for each client chip
388 389
 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 *       register is 32 bits wide rather than just 16
390 391 392 393 394 395 396 397 398 399 400 401 402 403
 * @cr1: Value of control register CR1 of SSP
 * @dmacr: Value of DMA control Register of SSP
 * @cpsr: Value of Clock prescale register
 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 * @enable_dma: Whether to enable DMA or not
 * @write: function ptr to be used to write when doing xfer for this chip
 * @read: function ptr to be used to read when doing xfer for this chip
 * @cs_control: chip select callback provided by chip
 * @xfer_type: polling/interrupt/DMA
 *
 * Runtime state of the SSP controller, maintained per chip,
 * This would be set according to the current message that would be served
 */
struct chip_data {
404
	u32 cr0;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	u16 cr1;
	u16 dmacr;
	u16 cpsr;
	u8 n_bytes;
	u8 enable_dma:1;
	enum ssp_reading read;
	enum ssp_writing write;
	void (*cs_control) (u32 command);
	int xfer_type;
};

/**
 * null_cs_control - Dummy chip select function
 * @command: select/delect the chip
 *
 * If no chip select function is provided by client this is used as dummy
 * chip select
 */
static void null_cs_control(u32 command)
{
	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
}

/**
 * giveback - current spi_message is over, schedule next message and call
 * callback of this message. Assumes that caller already
 * set message->status; dma and pio irqs are blocked
 * @pl022: SSP driver private data structure
 */
static void giveback(struct pl022 *pl022)
{
	struct spi_transfer *last_transfer;
	unsigned long flags;
	struct spi_message *msg;
	void (*curr_cs_control) (u32 command);

	/*
	 * This local reference to the chip select function
	 * is needed because we set curr_chip to NULL
	 * as a step toward termininating the message.
	 */
	curr_cs_control = pl022->cur_chip->cs_control;
	spin_lock_irqsave(&pl022->queue_lock, flags);
	msg = pl022->cur_msg;
	pl022->cur_msg = NULL;
	pl022->cur_transfer = NULL;
	pl022->cur_chip = NULL;
	queue_work(pl022->workqueue, &pl022->pump_messages);
	spin_unlock_irqrestore(&pl022->queue_lock, flags);

	last_transfer = list_entry(msg->transfers.prev,
					struct spi_transfer,
					transfer_list);

	/* Delay if requested before any change in chip select */
	if (last_transfer->delay_usecs)
		/*
		 * FIXME: This runs in interrupt context.
		 * Is this really smart?
		 */
		udelay(last_transfer->delay_usecs);

	/*
	 * Drop chip select UNLESS cs_change is true or we are returning
	 * a message with an error, or next message is for another chip
	 */
	if (!last_transfer->cs_change)
		curr_cs_control(SSP_CHIP_DESELECT);
	else {
		struct spi_message *next_msg;

		/* Holding of cs was hinted, but we need to make sure
		 * the next message is for the same chip.  Don't waste
		 * time with the following tests unless this was hinted.
		 *
		 * We cannot postpone this until pump_messages, because
		 * after calling msg->complete (below) the driver that
		 * sent the current message could be unloaded, which
		 * could invalidate the cs_control() callback...
		 */

		/* get a pointer to the next message, if any */
		spin_lock_irqsave(&pl022->queue_lock, flags);
		if (list_empty(&pl022->queue))
			next_msg = NULL;
		else
			next_msg = list_entry(pl022->queue.next,
					struct spi_message, queue);
		spin_unlock_irqrestore(&pl022->queue_lock, flags);

		/* see if the next and current messages point
		 * to the same chip
		 */
		if (next_msg && next_msg->spi != msg->spi)
			next_msg = NULL;
		if (!next_msg || msg->state == STATE_ERROR)
			curr_cs_control(SSP_CHIP_DESELECT);
	}
	msg->state = NULL;
	if (msg->complete)
		msg->complete(msg->context);
506
	/* This message is completed, so let's turn off the clocks! */
507
	clk_disable(pl022->clk);
508
	amba_pclk_disable(pl022->adev);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
}

/**
 * flush - flush the FIFO to reach a clean state
 * @pl022: SSP driver private data structure
 */
static int flush(struct pl022 *pl022)
{
	unsigned long limit = loops_per_jiffy << 1;

	dev_dbg(&pl022->adev->dev, "flush\n");
	do {
		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
			readw(SSP_DR(pl022->virtbase));
	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
524 525 526

	pl022->exp_fifo_level = 0;

527 528 529 530 531 532 533 534 535 536 537
	return limit;
}

/**
 * restore_state - Load configuration of current chip
 * @pl022: SSP driver private data structure
 */
static void restore_state(struct pl022 *pl022)
{
	struct chip_data *chip = pl022->cur_chip;

538 539 540 541
	if (pl022->vendor->extended_cr)
		writel(chip->cr0, SSP_CR0(pl022->virtbase));
	else
		writew(chip->cr0, SSP_CR0(pl022->virtbase));
542 543 544 545 546 547 548 549 550 551 552 553
	writew(chip->cr1, SSP_CR1(pl022->virtbase));
	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/*
 * Default SSP Register Values
 */
#define DEFAULT_SSP_REG_CR0 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
554 555 556 557 558 559 560 561 562 563
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

/* ST versions have slightly different bit layout */
#define DEFAULT_SSP_REG_CR0_ST ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
564
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
565
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
566 567 568
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
569 570
)

571 572 573 574 575 576 577 578
/* The PL023 version is slightly different again */
#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

579 580 581 582
#define DEFAULT_SSP_REG_CR1 ( \
	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
583
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
584 585
)

586 587 588 589 590 591 592 593 594 595
/* ST versions extend this register to use all 16 bits */
#define DEFAULT_SSP_REG_CR1_ST ( \
	DEFAULT_SSP_REG_CR1 | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
)

596 597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * The PL023 variant has further differences: no loopback mode, no microwire
 * support, and a new clock feedback delay setting.
 */
#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
)
610

611
#define DEFAULT_SSP_REG_CPSR ( \
612
	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
613 614 615 616 617 618 619
)

#define DEFAULT_SSP_REG_DMACR (\
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
)

620 621 622 623
/**
 * load_ssp_default_config - Load default configuration for SSP
 * @pl022: SSP driver private data structure
 */
624 625
static void load_ssp_default_config(struct pl022 *pl022)
{
626 627 628 629
	if (pl022->vendor->pl023) {
		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
	} else if (pl022->vendor->extended_cr) {
630 631 632 633 634 635
		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
	} else {
		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
	}
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/**
 * This will write to TX and read from RX according to the parameters
 * set in pl022.
 */
static void readwriter(struct pl022 *pl022)
{

	/*
	 * The FIFO depth is different inbetween primecell variants.
	 * I believe filling in too much in the FIFO might cause
	 * errons in 8bit wide transfers on ARM variants (just 8 words
	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
	 *
655 656 657
	 * To prevent this issue, the TX FIFO is only filled to the
	 * unused RX FIFO fill length, regardless of what the TX
	 * FIFO status flag indicates.
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	 */
	dev_dbg(&pl022->adev->dev,
		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);

	/* Read as much as you can */
	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
	       && (pl022->rx < pl022->rx_end)) {
		switch (pl022->read) {
		case READING_NULL:
			readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U8:
			*(u8 *) (pl022->rx) =
				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
			break;
		case READING_U16:
			*(u16 *) (pl022->rx) =
				(u16) readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U32:
			*(u32 *) (pl022->rx) =
				readl(SSP_DR(pl022->virtbase));
			break;
		}
		pl022->rx += (pl022->cur_chip->n_bytes);
684
		pl022->exp_fifo_level--;
685 686
	}
	/*
687
	 * Write as much as possible up to the RX FIFO size
688
	 */
689
	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	       && (pl022->tx < pl022->tx_end)) {
		switch (pl022->write) {
		case WRITING_NULL:
			writew(0x0, SSP_DR(pl022->virtbase));
			break;
		case WRITING_U8:
			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U16:
			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U32:
			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		}
		pl022->tx += (pl022->cur_chip->n_bytes);
706
		pl022->exp_fifo_level++;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		/*
		 * This inner reader takes care of things appearing in the RX
		 * FIFO as we're transmitting. This will happen a lot since the
		 * clock starts running when you put things into the TX FIFO,
		 * and then things are continously clocked into the RX FIFO.
		 */
		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
		       && (pl022->rx < pl022->rx_end)) {
			switch (pl022->read) {
			case READING_NULL:
				readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U8:
				*(u8 *) (pl022->rx) =
					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
				break;
			case READING_U16:
				*(u16 *) (pl022->rx) =
					(u16) readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U32:
				*(u32 *) (pl022->rx) =
					readl(SSP_DR(pl022->virtbase));
				break;
			}
			pl022->rx += (pl022->cur_chip->n_bytes);
733
			pl022->exp_fifo_level--;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		}
	}
	/*
	 * When we exit here the TX FIFO should be full and the RX FIFO
	 * should be empty
	 */
}


/**
 * next_transfer - Move to the Next transfer in the current spi message
 * @pl022: SSP driver private data structure
 *
 * This function moves though the linked list of spi transfers in the
 * current spi message and returns with the state of current spi
 * message i.e whether its last transfer is done(STATE_DONE) or
 * Next transfer is ready(STATE_RUNNING)
 */
static void *next_transfer(struct pl022 *pl022)
{
	struct spi_message *msg = pl022->cur_msg;
	struct spi_transfer *trans = pl022->cur_transfer;

	/* Move to next transfer */
	if (trans->transfer_list.next != &msg->transfers) {
		pl022->cur_transfer =
		    list_entry(trans->transfer_list.next,
			       struct spi_transfer, transfer_list);
		return STATE_RUNNING;
	}
	return STATE_DONE;
}
/**
 * pl022_interrupt_handler - Interrupt handler for SSP controller
 *
 * This function handles interrupts generated for an interrupt based transfer.
 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 * current message's state as STATE_ERROR and schedule the tasklet
 * pump_transfers which will do the postprocessing of the current message by
 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 * more data, and writes data in TX FIFO till it is not full. If we complete
 * the transfer we move to the next transfer and schedule the tasklet.
 */
static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
{
	struct pl022 *pl022 = dev_id;
	struct spi_message *msg = pl022->cur_msg;
	u16 irq_status = 0;
	u16 flag = 0;

	if (unlikely(!msg)) {
		dev_err(&pl022->adev->dev,
			"bad message state in interrupt handler");
		/* Never fail */
		return IRQ_HANDLED;
	}

	/* Read the Interrupt Status Register */
	irq_status = readw(SSP_MIS(pl022->virtbase));

	if (unlikely(!irq_status))
		return IRQ_NONE;

	/* This handles the error code interrupts */
	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
		/*
		 * Overrun interrupt - bail out since our Data has been
		 * corrupted
		 */
		dev_err(&pl022->adev->dev,
			"FIFO overrun\n");
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
			dev_err(&pl022->adev->dev,
				"RXFIFO is full\n");
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
			dev_err(&pl022->adev->dev,
				"TXFIFO is full\n");

		/*
		 * Disable and clear interrupts, disable SSP,
		 * mark message with bad status so it can be
		 * retried.
		 */
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		writew((readw(SSP_CR1(pl022->virtbase)) &
			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
		msg->state = STATE_ERROR;

		/* Schedule message queue handler */
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	readwriter(pl022);

	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
		flag = 1;
		/* Disable Transmit interrupt */
		writew(readw(SSP_IMSC(pl022->virtbase)) &
		       (~SSP_IMSC_MASK_TXIM),
		       SSP_IMSC(pl022->virtbase));
	}

	/*
	 * Since all transactions must write as much as shall be read,
	 * we can conclude the entire transaction once RX is complete.
	 * At this point, all TX will always be finished.
	 */
	if (pl022->rx >= pl022->rx_end) {
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		if (unlikely(pl022->rx > pl022->rx_end)) {
			dev_warn(&pl022->adev->dev, "read %u surplus "
				 "bytes (did you request an odd "
				 "number of bytes on a 16bit bus?)\n",
				 (u32) (pl022->rx - pl022->rx_end));
		}
		/* Update total bytes transfered */
		msg->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
			pl022->cur_chip->
				cs_control(SSP_CHIP_DESELECT);
		/* Move to next transfer */
		msg->state = next_transfer(pl022);
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	return IRQ_HANDLED;
}

/**
 * This sets up the pointers to memory for the next message to
 * send out on the SPI bus.
 */
static int set_up_next_transfer(struct pl022 *pl022,
				struct spi_transfer *transfer)
{
	int residue;

	/* Sanity check the message for this bus width */
	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
	if (unlikely(residue != 0)) {
		dev_err(&pl022->adev->dev,
			"message of %u bytes to transmit but the current "
			"chip bus has a data width of %u bytes!\n",
			pl022->cur_transfer->len,
			pl022->cur_chip->n_bytes);
		dev_err(&pl022->adev->dev, "skipping this message\n");
		return -EIO;
	}
	pl022->tx = (void *)transfer->tx_buf;
	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
	pl022->rx = (void *)transfer->rx_buf;
	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
	pl022->write =
	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
	return 0;
}

/**
 * pump_transfers - Tasklet function which schedules next interrupt transfer
 * when running in interrupt transfer mode.
 * @data: SSP driver private data structure
 *
 */
static void pump_transfers(unsigned long data)
{
	struct pl022 *pl022 = (struct pl022 *) data;
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;

	/* Get current state information */
	message = pl022->cur_msg;
	transfer = pl022->cur_transfer;

	/* Handle for abort */
	if (message->state == STATE_ERROR) {
		message->status = -EIO;
		giveback(pl022);
		return;
	}

	/* Handle end of message */
	if (message->state == STATE_DONE) {
		message->status = 0;
		giveback(pl022);
		return;
	}

	/* Delay if requested at end of transfer before CS change */
	if (message->state == STATE_RUNNING) {
		previous = list_entry(transfer->transfer_list.prev,
					struct spi_transfer,
					transfer_list);
		if (previous->delay_usecs)
			/*
			 * FIXME: This runs in interrupt context.
			 * Is this really smart?
			 */
			udelay(previous->delay_usecs);

		/* Drop chip select only if cs_change is requested */
		if (previous->cs_change)
			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
	} else {
		/* STATE_START */
		message->state = STATE_RUNNING;
	}

	if (set_up_next_transfer(pl022, transfer)) {
		message->state = STATE_ERROR;
		message->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Flush the FIFOs and let's go! */
	flush(pl022);
	writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
}

/**
 * NOT IMPLEMENTED
 * configure_dma - It configures the DMA pipes for DMA transfers
 * @data: SSP driver's private data structure
 *
 */
static int configure_dma(void *data)
{
	struct pl022 *pl022 = data;
	dev_dbg(&pl022->adev->dev, "configure DMA\n");
	return -ENOTSUPP;
}

/**
 * do_dma_transfer - It handles transfers of the current message
 * if it is DMA xfer.
 * NOT FULLY IMPLEMENTED
 * @data: SSP driver's private data structure
 */
static void do_dma_transfer(void *data)
{
	struct pl022 *pl022 = data;

	if (configure_dma(data)) {
		dev_dbg(&pl022->adev->dev, "configuration of DMA Failed!\n");
		goto err_config_dma;
	}

	/* TODO: Implememt DMA setup of pipes here */

	/* Enable target chip, set up transfer */
	pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
		/* Error path */
		pl022->cur_msg->state = STATE_ERROR;
		pl022->cur_msg->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Enable SSP */
	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
	       SSP_CR1(pl022->virtbase));

	/* TODO: Enable the DMA transfer here */
	return;

 err_config_dma:
	pl022->cur_msg->state = STATE_ERROR;
	pl022->cur_msg->status = -EIO;
	giveback(pl022);
	return;
}

static void do_interrupt_transfer(void *data)
{
	struct pl022 *pl022 = data;

	/* Enable target chip */
	pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
		/* Error path */
		pl022->cur_msg->state = STATE_ERROR;
		pl022->cur_msg->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Enable SSP, turn on interrupts */
	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
	       SSP_CR1(pl022->virtbase));
	writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
}

static void do_polling_transfer(void *data)
{
	struct pl022 *pl022 = data;
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;
	struct chip_data *chip;

	chip = pl022->cur_chip;
	message = pl022->cur_msg;

	while (message->state != STATE_DONE) {
		/* Handle for abort */
		if (message->state == STATE_ERROR)
			break;
		transfer = pl022->cur_transfer;

		/* Delay if requested at end of transfer */
		if (message->state == STATE_RUNNING) {
			previous =
			    list_entry(transfer->transfer_list.prev,
				       struct spi_transfer, transfer_list);
			if (previous->delay_usecs)
				udelay(previous->delay_usecs);
			if (previous->cs_change)
				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
		} else {
			/* STATE_START */
			message->state = STATE_RUNNING;
			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
		}

		/* Configuration Changing Per Transfer */
		if (set_up_next_transfer(pl022, transfer)) {
			/* Error path */
			message->state = STATE_ERROR;
			break;
		}
		/* Flush FIFOs and enable SSP */
		flush(pl022);
		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
		       SSP_CR1(pl022->virtbase));

1075
		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		/* FIXME: insert a timeout so we don't hang here indefinately */
		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end)
			readwriter(pl022);

		/* Update total byte transfered */
		message->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
		/* Move to next transfer */
		message->state = next_transfer(pl022);
	}

	/* Handle end of message */
	if (message->state == STATE_DONE)
		message->status = 0;
	else
		message->status = -EIO;

	giveback(pl022);
	return;
}

/**
 * pump_messages - Workqueue function which processes spi message queue
 * @data: pointer to private data of SSP driver
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and delegate control to appropriate function
 * do_polling_transfer()/do_interrupt_transfer()/do_dma_transfer()
 * based on the kind of the transfer
 *
 */
static void pump_messages(struct work_struct *work)
{
	struct pl022 *pl022 =
		container_of(work, struct pl022, pump_messages);
	unsigned long flags;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&pl022->queue_lock, flags);
	if (list_empty(&pl022->queue) || pl022->run == QUEUE_STOPPED) {
		pl022->busy = 0;
		spin_unlock_irqrestore(&pl022->queue_lock, flags);
		return;
	}
	/* Make sure we are not already running a message */
	if (pl022->cur_msg) {
		spin_unlock_irqrestore(&pl022->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	pl022->cur_msg =
	    list_entry(pl022->queue.next, struct spi_message, queue);

	list_del_init(&pl022->cur_msg->queue);
	pl022->busy = 1;
	spin_unlock_irqrestore(&pl022->queue_lock, flags);

	/* Initial message state */
	pl022->cur_msg->state = STATE_START;
	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
					    struct spi_transfer,
					    transfer_list);

	/* Setup the SPI using the per chip configuration */
	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
	/*
1143
	 * We enable the clocks here, then the clocks will be disabled when
1144 1145
	 * giveback() is called in each method (poll/interrupt/DMA)
	 */
1146
	amba_pclk_enable(pl022->adev);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	clk_enable(pl022->clk);
	restore_state(pl022);
	flush(pl022);

	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
		do_polling_transfer(pl022);
	else if (pl022->cur_chip->xfer_type == INTERRUPT_TRANSFER)
		do_interrupt_transfer(pl022);
	else
		do_dma_transfer(pl022);
}


static int __init init_queue(struct pl022 *pl022)
{
	INIT_LIST_HEAD(&pl022->queue);
	spin_lock_init(&pl022->queue_lock);

	pl022->run = QUEUE_STOPPED;
	pl022->busy = 0;

	tasklet_init(&pl022->pump_transfers,
			pump_transfers,	(unsigned long)pl022);

	INIT_WORK(&pl022->pump_messages, pump_messages);
	pl022->workqueue = create_singlethread_workqueue(
					dev_name(pl022->master->dev.parent));
	if (pl022->workqueue == NULL)
		return -EBUSY;

	return 0;
}


static int start_queue(struct pl022 *pl022)
{
	unsigned long flags;

	spin_lock_irqsave(&pl022->queue_lock, flags);

	if (pl022->run == QUEUE_RUNNING || pl022->busy) {
		spin_unlock_irqrestore(&pl022->queue_lock, flags);
		return -EBUSY;
	}

	pl022->run = QUEUE_RUNNING;
	pl022->cur_msg = NULL;
	pl022->cur_transfer = NULL;
	pl022->cur_chip = NULL;
	spin_unlock_irqrestore(&pl022->queue_lock, flags);

	queue_work(pl022->workqueue, &pl022->pump_messages);

	return 0;
}


static int stop_queue(struct pl022 *pl022)
{
	unsigned long flags;
	unsigned limit = 500;
	int status = 0;

	spin_lock_irqsave(&pl022->queue_lock, flags);

	/* This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the pl022->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead */
	while (!list_empty(&pl022->queue) && pl022->busy && limit--) {
		spin_unlock_irqrestore(&pl022->queue_lock, flags);
		msleep(10);
		spin_lock_irqsave(&pl022->queue_lock, flags);
	}

	if (!list_empty(&pl022->queue) || pl022->busy)
		status = -EBUSY;
1224
	else pl022->run = QUEUE_STOPPED;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

	spin_unlock_irqrestore(&pl022->queue_lock, flags);

	return status;
}

static int destroy_queue(struct pl022 *pl022)
{
	int status;

	status = stop_queue(pl022);
	/* we are unloading the module or failing to load (only two calls
	 * to this routine), and neither call can handle a return value.
	 * However, destroy_workqueue calls flush_workqueue, and that will
	 * block until all work is done.  If the reason that stop_queue
	 * timed out is that the work will never finish, then it does no
	 * good to call destroy_workqueue, so return anyway. */
	if (status != 0)
		return status;

	destroy_workqueue(pl022->workqueue);

	return 0;
}

static int verify_controller_parameters(struct pl022 *pl022,
					struct pl022_config_chip *chip_info)
{
	if ((chip_info->lbm != LOOPBACK_ENABLED)
	    && (chip_info->lbm != LOOPBACK_DISABLED)) {
		dev_err(chip_info->dev,
			"loopback Mode is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
		dev_err(chip_info->dev,
			"interface is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
	    (!pl022->vendor->unidir)) {
		dev_err(chip_info->dev,
			"unidirectional mode not supported in this "
			"hardware version\n");
		return -EINVAL;
	}
	if ((chip_info->hierarchy != SSP_MASTER)
	    && (chip_info->hierarchy != SSP_SLAVE)) {
		dev_err(chip_info->dev,
			"hierarchy is configured incorrectly\n");
		return -EINVAL;
	}
	if (((chip_info->clk_freq).cpsdvsr < CPSDVR_MIN)
	    || ((chip_info->clk_freq).cpsdvsr > CPSDVR_MAX)) {
		dev_err(chip_info->dev,
			"cpsdvsr is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->endian_rx != SSP_RX_MSB)
	    && (chip_info->endian_rx != SSP_RX_LSB)) {
		dev_err(chip_info->dev,
			"RX FIFO endianess is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->endian_tx != SSP_TX_MSB)
	    && (chip_info->endian_tx != SSP_TX_LSB)) {
		dev_err(chip_info->dev,
			"TX FIFO endianess is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->data_size < SSP_DATA_BITS_4)
	    || (chip_info->data_size > SSP_DATA_BITS_32)) {
		dev_err(chip_info->dev,
			"DATA Size is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
	    && (chip_info->com_mode != DMA_TRANSFER)
	    && (chip_info->com_mode != POLLING_TRANSFER)) {
		dev_err(chip_info->dev,
			"Communication mode is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
	    || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
		dev_err(chip_info->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
	    || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
		dev_err(chip_info->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
	}
	if (chip_info->iface == SSP_INTERFACE_MOTOROLA_SPI) {
1322 1323
		if ((chip_info->clk_phase != SSP_CLK_FIRST_EDGE)
		    && (chip_info->clk_phase != SSP_CLK_SECOND_EDGE)) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
			dev_err(chip_info->dev,
				"Clock Phase is configured incorrectly\n");
			return -EINVAL;
		}
		if ((chip_info->clk_pol != SSP_CLK_POL_IDLE_LOW)
		    && (chip_info->clk_pol != SSP_CLK_POL_IDLE_HIGH)) {
			dev_err(chip_info->dev,
				"Clock Polarity is configured incorrectly\n");
			return -EINVAL;
		}
	}
	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
		if ((chip_info->ctrl_len < SSP_BITS_4)
		    || (chip_info->ctrl_len > SSP_BITS_32)) {
			dev_err(chip_info->dev,
				"CTRL LEN is configured incorrectly\n");
			return -EINVAL;
		}
		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
			dev_err(chip_info->dev,
				"Wait State is configured incorrectly\n");
			return -EINVAL;
		}
1348 1349 1350 1351 1352
		/* Half duplex is only available in the ST Micro version */
		if (pl022->vendor->extended_cr) {
			if ((chip_info->duplex !=
			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
			    && (chip_info->duplex !=
1353
				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1354 1355 1356
				dev_err(chip_info->dev,
					"Microwire duplex mode is configured incorrectly\n");
				return -EINVAL;
1357
			}
1358 1359 1360 1361 1362 1363
		} else {
			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
				dev_err(chip_info->dev,
					"Microwire half duplex mode requested,"
					" but this is only available in the"
					" ST version of PL022\n");
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
			return -EINVAL;
		}
	}
	if (chip_info->cs_control == NULL) {
		dev_warn(chip_info->dev,
			"Chip Select Function is NULL for this chip\n");
		chip_info->cs_control = null_cs_control;
	}
	return 0;
}

/**
 * pl022_transfer - transfer function registered to SPI master framework
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. It will queue the spi_message in the queue of driver if
 * the queue is not stopped and return.
 */
static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
	unsigned long flags;

	spin_lock_irqsave(&pl022->queue_lock, flags);

	if (pl022->run == QUEUE_STOPPED) {
		spin_unlock_irqrestore(&pl022->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;
	msg->state = STATE_START;

	list_add_tail(&msg->queue, &pl022->queue);
	if (pl022->run == QUEUE_RUNNING && !pl022->busy)
		queue_work(pl022->workqueue, &pl022->pump_messages);

	spin_unlock_irqrestore(&pl022->queue_lock, flags);
	return 0;
}

static int calculate_effective_freq(struct pl022 *pl022,
				    int freq,
				    struct ssp_clock_params *clk_freq)
{
	/* Lets calculate the frequency parameters */
	u16 cpsdvsr = 2;
	u16 scr = 0;
	bool freq_found = false;
	u32 rate;
	u32 max_tclk;
	u32 min_tclk;

	rate = clk_get_rate(pl022->clk);
	/* cpsdvscr = 2 & scr 0 */
	max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
	/* cpsdvsr = 254 & scr = 255 */
	min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));

	if ((freq <= max_tclk) && (freq >= min_tclk)) {
		while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
			while (scr <= SCR_MAX && !freq_found) {
				if ((rate /
				     (cpsdvsr * (1 + scr))) > freq)
					scr += 1;
				else {
					/*
					 * This bool is made true when
					 * effective frequency >=
					 * target frequency is found
					 */
					freq_found = true;
					if ((rate /
					     (cpsdvsr * (1 + scr))) != freq) {
						if (scr == SCR_MIN) {
							cpsdvsr -= 2;
							scr = SCR_MAX;
						} else
							scr -= 1;
					}
				}
			}
			if (!freq_found) {
				cpsdvsr += 2;
				scr = SCR_MIN;
			}
		}
		if (cpsdvsr != 0) {
			dev_dbg(&pl022->adev->dev,
				"SSP Effective Frequency is %u\n",
				(rate / (cpsdvsr * (1 + scr))));
			clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
			clk_freq->scr = (u8) (scr & 0xFF);
			dev_dbg(&pl022->adev->dev,
				"SSP cpsdvsr = %d, scr = %d\n",
				clk_freq->cpsdvsr, clk_freq->scr);
		}
	} else {
		dev_err(&pl022->adev->dev,
			"controller data is incorrect: out of range frequency");
		return -EINVAL;
	}
	return 0;
}

/**
 * NOT IMPLEMENTED
 * process_dma_info - Processes the DMA info provided by client drivers
 * @chip_info: chip info provided by client device
 * @chip: Runtime state maintained by the SSP controller for each spi device
 *
 * This function processes and stores DMA config provided by client driver
 * into the runtime state maintained by the SSP controller driver
 */
static int process_dma_info(struct pl022_config_chip *chip_info,
			    struct chip_data *chip)
{
	dev_err(chip_info->dev,
		"cannot process DMA info, DMA not implemented!\n");
	return -ENOTSUPP;
}

/**
 * pl022_setup - setup function registered to SPI master framework
 * @spi: spi device which is requesting setup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. If it is the first time when setup is called by this device,
 * this function will initialize the runtime state for this chip and save
 * the same in the device structure. Else it will update the runtime info
 * with the updated chip info. Nothing is really being written to the
 * controller hardware here, that is not done until the actual transfer
 * commence.
 */

/* FIXME: JUST GUESSING the spi->mode bits understood by this driver */
#define MODEBITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
			| SPI_LSB_FIRST | SPI_LOOP)

static int pl022_setup(struct spi_device *spi)
{
	struct pl022_config_chip *chip_info;
	struct chip_data *chip;
	int status = 0;
	struct pl022 *pl022 = spi_master_get_devdata(spi->master);

	if (spi->mode & ~MODEBITS) {
		dev_dbg(&spi->dev, "unsupported mode bits %x\n",
			spi->mode & ~MODEBITS);
		return -EINVAL;
	}

	if (!spi->max_speed_hz)
		return -EINVAL;

	/* Get controller_state if one is supplied */
	chip = spi_get_ctldata(spi);

	if (chip == NULL) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
		if (!chip) {
			dev_err(&spi->dev,
				"cannot allocate controller state\n");
			return -ENOMEM;
		}
		dev_dbg(&spi->dev,
			"allocated memory for controller's runtime state\n");
	}

	/* Get controller data if one is supplied */
	chip_info = spi->controller_data;

	if (chip_info == NULL) {
		/* spi_board_info.controller_data not is supplied */
		dev_dbg(&spi->dev,
			"using default controller_data settings\n");

		chip_info =
			kzalloc(sizeof(struct pl022_config_chip), GFP_KERNEL);

		if (!chip_info) {
			dev_err(&spi->dev,
				"cannot allocate controller data\n");
			status = -ENOMEM;
			goto err_first_setup;
		}

		dev_dbg(&spi->dev, "allocated memory for controller data\n");

		/* Pointer back to the SPI device */
		chip_info->dev = &spi->dev;
		/*
		 * Set controller data default values:
		 * Polling is supported by default
		 */
		chip_info->lbm = LOOPBACK_DISABLED;
		chip_info->com_mode = POLLING_TRANSFER;
		chip_info->iface = SSP_INTERFACE_MOTOROLA_SPI;
		chip_info->hierarchy = SSP_SLAVE;
		chip_info->slave_tx_disable = DO_NOT_DRIVE_TX;
		chip_info->endian_tx = SSP_TX_LSB;
		chip_info->endian_rx = SSP_RX_LSB;
		chip_info->data_size = SSP_DATA_BITS_12;
		chip_info->rx_lev_trig = SSP_RX_1_OR_MORE_ELEM;
		chip_info->tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC;
1571
		chip_info->clk_phase = SSP_CLK_SECOND_EDGE;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		chip_info->clk_pol = SSP_CLK_POL_IDLE_LOW;
		chip_info->ctrl_len = SSP_BITS_8;
		chip_info->wait_state = SSP_MWIRE_WAIT_ZERO;
		chip_info->duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX;
		chip_info->cs_control = null_cs_control;
	} else {
		dev_dbg(&spi->dev,
			"using user supplied controller_data settings\n");
	}

	/*
	 * We can override with custom divisors, else we use the board
	 * frequency setting
	 */
	if ((0 == chip_info->clk_freq.cpsdvsr)
	    && (0 == chip_info->clk_freq.scr)) {
		status = calculate_effective_freq(pl022,
						  spi->max_speed_hz,
						  &chip_info->clk_freq);
		if (status < 0)
			goto err_config_params;
	} else {
		if ((chip_info->clk_freq.cpsdvsr % 2) != 0)
			chip_info->clk_freq.cpsdvsr =
				chip_info->clk_freq.cpsdvsr - 1;
	}
	status = verify_controller_parameters(pl022, chip_info);
	if (status) {
		dev_err(&spi->dev, "controller data is incorrect");
		goto err_config_params;
	}
	/* Now set controller state based on controller data */
	chip->xfer_type = chip_info->com_mode;
	chip->cs_control = chip_info->cs_control;

	if (chip_info->data_size <= 8) {
		dev_dbg(&spi->dev, "1 <= n <=8 bits per word\n");
		chip->n_bytes = 1;
		chip->read = READING_U8;
		chip->write = WRITING_U8;
	} else if (chip_info->data_size <= 16) {
		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
		chip->n_bytes = 2;
		chip->read = READING_U16;
		chip->write = WRITING_U16;
	} else {
		if (pl022->vendor->max_bpw >= 32) {
			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
			chip->n_bytes = 4;
			chip->read = READING_U32;
			chip->write = WRITING_U32;
		} else {
			dev_err(&spi->dev,
				"illegal data size for this controller!\n");
			dev_err(&spi->dev,
				"a standard pl022 can only handle "
				"1 <= n <= 16 bit words\n");
			goto err_config_params;
		}
	}

	/* Now Initialize all register settings required for this chip */
	chip->cr0 = 0;
	chip->cr1 = 0;
	chip->dmacr = 0;
	chip->cpsr = 0;
	if ((chip_info->com_mode == DMA_TRANSFER)
	    && ((pl022->master_info)->enable_dma)) {
		chip->enable_dma = 1;
		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
		status = process_dma_info(chip_info, chip);
		if (status < 0)
			goto err_config_params;
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	} else {
		chip->enable_dma = 0;
		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	}

	chip->cpsr = chip_info->clk_freq.cpsdvsr;

1660 1661
	/* Special setup for the ST micro extended control registers */
	if (pl022->vendor->extended_cr) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		if (pl022->vendor->pl023) {
			/* These bits are only in the PL023 */
			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
		} else {
			/* These bits are in the PL022 but not PL023 */
			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
				       SSP_CR0_MASK_HALFDUP_ST, 5);
			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
				       SSP_CR0_MASK_CSS_ST, 16);
			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
				       SSP_CR0_MASK_FRF_ST, 21);
			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
				       SSP_CR1_MASK_MWAIT_ST, 6);
		}
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		SSP_WRITE_BITS(chip->cr0, chip_info->data_size,
			       SSP_CR0_MASK_DSS_ST, 0);
		SSP_WRITE_BITS(chip->cr1, chip_info->endian_rx,
			       SSP_CR1_MASK_RENDN_ST, 4);
		SSP_WRITE_BITS(chip->cr1, chip_info->endian_tx,
			       SSP_CR1_MASK_TENDN_ST, 5);
		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
	} else {
		SSP_WRITE_BITS(chip->cr0, chip_info->data_size,
			       SSP_CR0_MASK_DSS, 0);
		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
			       SSP_CR0_MASK_FRF, 4);
	}
	/* Stuff that is common for all versions */
1694 1695 1696
	SSP_WRITE_BITS(chip->cr0, chip_info->clk_pol, SSP_CR0_MASK_SPO, 6);
	SSP_WRITE_BITS(chip->cr0, chip_info->clk_phase, SSP_CR0_MASK_SPH, 7);
	SSP_WRITE_BITS(chip->cr0, chip_info->clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1697 1698 1699
	/* Loopback is available on all versions except PL023 */
	if (!pl022->vendor->pl023)
		SSP_WRITE_BITS(chip->cr1, chip_info->lbm, SSP_CR1_MASK_LBM, 0);
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);

	/* Save controller_state */
	spi_set_ctldata(spi, chip);
	return status;
 err_config_params:
 err_first_setup:
	kfree(chip);
	return status;
}

/**
 * pl022_cleanup - cleanup function registered to SPI master framework
 * @spi: spi device which is requesting cleanup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. It will free the runtime state of chip.
 */
static void pl022_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	spi_set_ctldata(spi, NULL);
	kfree(chip);
}


1729
static int __devinit
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
pl022_probe(struct amba_device *adev, struct amba_id *id)
{
	struct device *dev = &adev->dev;
	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
	struct spi_master *master;
	struct pl022 *pl022 = NULL;	/*Data for this driver */
	int status = 0;

	dev_info(&adev->dev,
		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
	if (platform_info == NULL) {
		dev_err(&adev->dev, "probe - no platform data supplied\n");
		status = -ENODEV;
		goto err_no_pdata;
	}

	/* Allocate master with space for data */
	master = spi_alloc_master(dev, sizeof(struct pl022));
	if (master == NULL) {
		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
		status = -ENOMEM;
		goto err_no_master;
	}

	pl022 = spi_master_get_devdata(master);
	pl022->master = master;
	pl022->master_info = platform_info;
	pl022->adev = adev;
	pl022->vendor = id->data;

	/*
	 * Bus Number Which has been Assigned to this SSP controller
	 * on this board
	 */
	master->bus_num = platform_info->bus_id;
	master->num_chipselect = platform_info->num_chipselect;
	master->cleanup = pl022_cleanup;
	master->setup = pl022_setup;
	master->transfer = pl022_transfer;

	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);

	status = amba_request_regions(adev, NULL);
	if (status)
		goto err_no_ioregion;

	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
	if (pl022->virtbase == NULL) {
		status = -ENOMEM;
		goto err_no_ioremap;
	}
	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
	       adev->res.start, pl022->virtbase);

	pl022->clk = clk_get(&adev->dev, NULL);
	if (IS_ERR(pl022->clk)) {
		status = PTR_ERR(pl022->clk);
		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
		goto err_no_clk;
	}

	/* Disable SSP */
	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
	       SSP_CR1(pl022->virtbase));
	load_ssp_default_config(pl022);

	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
			     pl022);
	if (status < 0) {
		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
		goto err_no_irq;
	}
	/* Initialize and start queue */
	status = init_queue(pl022);
	if (status != 0) {
		dev_err(&adev->dev, "probe - problem initializing queue\n");
		goto err_init_queue;
	}
	status = start_queue(pl022);
	if (status != 0) {
		dev_err(&adev->dev, "probe - problem starting queue\n");
		goto err_start_queue;
	}
	/* Register with the SPI framework */
	amba_set_drvdata(adev, pl022);
	status = spi_register_master(master);
	if (status != 0) {
		dev_err(&adev->dev,
			"probe - problem registering spi master\n");
		goto err_spi_register;
	}
	dev_dbg(dev, "probe succeded\n");
1822 1823
	/* Disable the silicon block pclk and clock it when needed */
	amba_pclk_disable(adev);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	return 0;

 err_spi_register:
 err_start_queue:
 err_init_queue:
	destroy_queue(pl022);
	free_irq(adev->irq[0], pl022);
 err_no_irq:
	clk_put(pl022->clk);
 err_no_clk:
	iounmap(pl022->virtbase);
 err_no_ioremap:
	amba_release_regions(adev);
 err_no_ioregion:
	spi_master_put(master);
 err_no_master:
 err_no_pdata:
	return status;
}

1844
static int __devexit
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
pl022_remove(struct amba_device *adev)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
	int status = 0;
	if (!pl022)
		return 0;

	/* Remove the queue */
	status = destroy_queue(pl022);
	if (status != 0) {
		dev_err(&adev->dev,
			"queue remove failed (%d)\n", status);
		return status;
	}
	load_ssp_default_config(pl022);
	free_irq(adev->irq[0], pl022);
	clk_disable(pl022->clk);
	clk_put(pl022->clk);
	iounmap(pl022->virtbase);
	amba_release_regions(adev);
	tasklet_disable(&pl022->pump_transfers);
	spi_unregister_master(pl022->master);
	spi_master_put(pl022->master);
	amba_set_drvdata(adev, NULL);
	dev_dbg(&adev->dev, "remove succeded\n");
	return 0;
}

#ifdef CONFIG_PM
static int pl022_suspend(struct amba_device *adev, pm_message_t state)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
	int status = 0;

	status = stop_queue(pl022);
	if (status) {
		dev_warn(&adev->dev, "suspend cannot stop queue\n");
		return status;
	}

1885
	amba_pclk_enable(adev);
1886
	load_ssp_default_config(pl022);
1887
	amba_pclk_disable(adev);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	dev_dbg(&adev->dev, "suspended\n");
	return 0;
}

static int pl022_resume(struct amba_device *adev)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
	int status = 0;

	/* Start the queue running */
	status = start_queue(pl022);
	if (status)
		dev_err(&adev->dev, "problem starting queue (%d)\n", status);
	else
		dev_dbg(&adev->dev, "resumed\n");

	return status;
}
#else
#define pl022_suspend NULL
#define pl022_resume NULL
#endif	/* CONFIG_PM */

static struct vendor_data vendor_arm = {
	.fifodepth = 8,
	.max_bpw = 16,
	.unidir = false,
1915
	.extended_cr = false,
1916
	.pl023 = false,
1917 1918 1919 1920 1921 1922 1923
};


static struct vendor_data vendor_st = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
1924
	.extended_cr = true,
1925 1926 1927 1928 1929 1930 1931 1932 1933
	.pl023 = false,
};

static struct vendor_data vendor_st_pl023 = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
	.extended_cr = true,
	.pl023 = true,
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
};

static struct amba_id pl022_ids[] = {
	{
		/*
		 * ARM PL022 variant, this has a 16bit wide
		 * and 8 locations deep TX/RX FIFO
		 */
		.id	= 0x00041022,
		.mask	= 0x000fffff,
		.data	= &vendor_arm,
	},
	{
		/*
		 * ST Micro derivative, this has 32bit wide
		 * and 32 locations deep TX/RX FIFO
		 */
1951
		.id	= 0x01080022,
1952 1953 1954
		.mask	= 0xffffffff,
		.data	= &vendor_st,
	},
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	{
		/*
		 * ST-Ericsson derivative "PL023" (this is not
		 * an official ARM number), this is a PL022 SSP block
		 * stripped to SPI mode only, it has 32bit wide
		 * and 32 locations deep TX/RX FIFO but no extended
		 * CR0/CR1 register
		 */
		.id     = 0x00080023,
		.mask   = 0xffffffff,
		.data   = &vendor_st_pl023,
	},
1967 1968 1969 1970 1971 1972 1973 1974 1975
	{ 0, 0 },
};

static struct amba_driver pl022_driver = {
	.drv = {
		.name	= "ssp-pl022",
	},
	.id_table	= pl022_ids,
	.probe		= pl022_probe,
1976
	.remove		= __devexit_p(pl022_remove),
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	.suspend        = pl022_suspend,
	.resume         = pl022_resume,
};


static int __init pl022_init(void)
{
	return amba_driver_register(&pl022_driver);
}

1987
subsys_initcall(pl022_init);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

static void __exit pl022_exit(void)
{
	amba_driver_unregister(&pl022_driver);
}

module_exit(pl022_exit);

MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
MODULE_DESCRIPTION("PL022 SSP Controller Driver");
MODULE_LICENSE("GPL");