sched_fair.c 34.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

Arjan van de Ven's avatar
Arjan van de Ven committed
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
Ingo Molnar's avatar
Ingo Molnar committed
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
Ingo Molnar's avatar
Ingo Molnar committed
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_BATCH wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73 74 75

/*
 * SCHED_OTHER wake-up granularity.
76
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 78 79 80 81
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
82
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
83

84 85
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

86 87 88 89
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

90
#ifdef CONFIG_FAIR_GROUP_SCHED
91

92
/* cpu runqueue to which this cfs_rq is attached */
93 94
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
95
	return cfs_rq->rq;
96 97
}

98 99
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
100

101
#else	/* CONFIG_FAIR_GROUP_SCHED */
102

103 104 105
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

122
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123
{
124 125
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
126 127 128 129 130
		min_vruntime = vruntime;

	return min_vruntime;
}

131
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
132 133 134 135 136 137 138 139
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

140
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141
{
142
	return se->vruntime - cfs_rq->min_vruntime;
143 144
}

145 146 147
/*
 * Enqueue an entity into the rb-tree:
 */
148
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 150 151 152
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
153
	s64 key = entity_key(cfs_rq, se);
154 155 156 157 158 159 160 161 162 163 164 165
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
166
		if (key < entity_key(cfs_rq, entry)) {
167 168 169 170 171 172 173 174 175 176 177 178
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
Ingo Molnar's avatar
Ingo Molnar committed
179
		cfs_rq->rb_leftmost = &se->run_node;
180 181 182 183 184

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

185
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186 187
{
	if (cfs_rq->rb_leftmost == &se->run_node)
Ingo Molnar's avatar
Ingo Molnar committed
188
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
Ingo Molnar's avatar
Ingo Molnar committed
189

190 191 192 193 194 195 196 197 198 199 200 201 202
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

218 219 220 221
/**************************************************************
 * Scheduling class statistics methods:
 */

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
238 239 240 241 242 243 244 245 246

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
247 248 249
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
250
	unsigned long nr_latency = sched_nr_latency;
251 252

	if (unlikely(nr_running > nr_latency)) {
253
		period = sysctl_sched_min_granularity;
254 255 256 257 258 259
		period *= nr_running;
	}

	return period;
}

260 261 262 263 264 265
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
266
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
267
{
268
	u64 slice = __sched_period(cfs_rq->nr_running);
269

270 271
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
272

273
	return slice;
274 275
}

276 277 278 279 280 281
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
Peter Zijlstra's avatar
Peter Zijlstra committed
282
{
283
	u64 vslice = __sched_period(nr_running);
Peter Zijlstra's avatar
Peter Zijlstra committed
284

Peter Zijlstra's avatar
Peter Zijlstra committed
285
	vslice *= NICE_0_LOAD;
286
	do_div(vslice, rq_weight);
Peter Zijlstra's avatar
Peter Zijlstra committed
287

288 289
	return vslice;
}
290

291 292 293 294 295 296 297 298 299
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
Peter Zijlstra's avatar
Peter Zijlstra committed
300 301
}

302 303 304 305 306
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
Ingo Molnar's avatar
Ingo Molnar committed
307 308
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
309
{
310
	unsigned long delta_exec_weighted;
311
	u64 vruntime;
312

313
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
314 315

	curr->sum_exec_runtime += delta_exec;
316
	schedstat_add(cfs_rq, exec_clock, delta_exec);
Ingo Molnar's avatar
Ingo Molnar committed
317 318 319 320 321 322
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
323 324 325 326 327 328

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
329 330
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
331
	} else
332
		vruntime = curr->vruntime;
333 334

	cfs_rq->min_vruntime =
335
		max_vruntime(cfs_rq->min_vruntime, vruntime);
336 337
}

338
static void update_curr(struct cfs_rq *cfs_rq)
339
{
340
	struct sched_entity *curr = cfs_rq->curr;
Ingo Molnar's avatar
Ingo Molnar committed
341
	u64 now = rq_of(cfs_rq)->clock;
342 343 344 345 346 347 348 349 350 351
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
Ingo Molnar's avatar
Ingo Molnar committed
352
	delta_exec = (unsigned long)(now - curr->exec_start);
353

Ingo Molnar's avatar
Ingo Molnar committed
354 355
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
356 357 358 359 360 361

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
362 363 364
}

static inline void
365
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
366
{
367
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
368 369 370 371 372
}

/*
 * Task is being enqueued - update stats:
 */
373
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 375 376 377 378
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
379
	if (se != cfs_rq->curr)
380
		update_stats_wait_start(cfs_rq, se);
381 382 383
}

static void
384
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
385
{
386 387
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
388
	schedstat_set(se->wait_start, 0);
389 390 391
}

static inline void
392
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 394 395 396 397
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
398
	if (se != cfs_rq->curr)
399
		update_stats_wait_end(cfs_rq, se);
400 401 402 403 404 405
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
406
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 408 409 410
{
	/*
	 * We are starting a new run period:
	 */
411
	se->exec_start = rq_of(cfs_rq)->clock;
412 413 414 415 416 417
}

/**************************************************
 * Scheduling class queueing methods:
 */

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

434
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
435 436 437
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
438
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
Arjan van de Ven's avatar
Arjan van de Ven committed
439
		struct task_struct *tsk = task_of(se);
440 441 442 443 444 445 446 447 448

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
Arjan van de Ven's avatar
Arjan van de Ven committed
449 450

		account_scheduler_latency(tsk, delta >> 10, 1);
451 452
	}
	if (se->block_start) {
453
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
Arjan van de Ven's avatar
Arjan van de Ven committed
454
		struct task_struct *tsk = task_of(se);
455 456 457 458 459 460 461 462 463

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
Ingo Molnar's avatar
Ingo Molnar committed
464 465 466 467 468 469 470

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
471

Ingo Molnar's avatar
Ingo Molnar committed
472 473 474
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
Arjan van de Ven's avatar
Arjan van de Ven committed
475
		account_scheduler_latency(tsk, delta >> 10, 0);
476 477 478 479
	}
#endif
}

Peter Zijlstra's avatar
Peter Zijlstra committed
480 481 482 483 484 485 486 487 488 489 490 491 492
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

493 494 495
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
Peter Zijlstra's avatar
Peter Zijlstra committed
496
	u64 vruntime;
497

Peter Zijlstra's avatar
Peter Zijlstra committed
498
	vruntime = cfs_rq->min_vruntime;
499

500
	if (sched_feat(TREE_AVG)) {
501 502
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
Peter Zijlstra's avatar
Peter Zijlstra committed
503 504
			vruntime += last->vruntime;
			vruntime >>= 1;
505
		}
Peter Zijlstra's avatar
Peter Zijlstra committed
506
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
507
		vruntime += sched_vslice(cfs_rq)/2;
508

509 510 511 512 513 514
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
515
	if (initial && sched_feat(START_DEBIT))
516
		vruntime += sched_vslice_add(cfs_rq, se);
517

Ingo Molnar's avatar
Ingo Molnar committed
518
	if (!initial) {
519
		/* sleeps upto a single latency don't count. */
520
		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
521 522
			vruntime -= sysctl_sched_latency;

523 524
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
525 526
	}

Peter Zijlstra's avatar
Peter Zijlstra committed
527
	se->vruntime = vruntime;
528 529
}

530
static void
531
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
532 533
{
	/*
534
	 * Update run-time statistics of the 'current'.
535
	 */
536
	update_curr(cfs_rq);
537

Ingo Molnar's avatar
Ingo Molnar committed
538
	if (wakeup) {
539
		place_entity(cfs_rq, se, 0);
540
		enqueue_sleeper(cfs_rq, se);
Ingo Molnar's avatar
Ingo Molnar committed
541
	}
542

543
	update_stats_enqueue(cfs_rq, se);
Peter Zijlstra's avatar
Peter Zijlstra committed
544
	check_spread(cfs_rq, se);
545 546
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
547
	account_entity_enqueue(cfs_rq, se);
548 549 550
}

static void
551
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
552
{
553 554 555 556 557
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

558
	update_stats_dequeue(cfs_rq, se);
559
	if (sleep) {
Peter Zijlstra's avatar
Peter Zijlstra committed
560
#ifdef CONFIG_SCHEDSTATS
561 562 563 564
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
565
				se->sleep_start = rq_of(cfs_rq)->clock;
566
			if (tsk->state & TASK_UNINTERRUPTIBLE)
567
				se->block_start = rq_of(cfs_rq)->clock;
568
		}
569
#endif
Peter Zijlstra's avatar
Peter Zijlstra committed
570 571
	}

572
	if (se != cfs_rq->curr)
573 574
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
575 576 577 578 579
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
580
static void
581
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
582
{
583 584
	unsigned long ideal_runtime, delta_exec;

585
	ideal_runtime = sched_slice(cfs_rq, curr);
586
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Ingo Molnar's avatar
Ingo Molnar committed
587
	if (delta_exec > ideal_runtime)
588 589 590
		resched_task(rq_of(cfs_rq)->curr);
}

591
static void
592
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593
{
594 595 596 597 598 599 600 601 602 603 604
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

605
	update_stats_curr_start(cfs_rq, se);
606
	cfs_rq->curr = se;
607 608 609 610 611 612
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
613
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
614 615 616 617
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
618
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
619 620
}

621
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
622
{
623
	struct sched_entity *se = NULL;
624

625 626 627 628
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
629 630 631 632

	return se;
}

633
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
634 635 636 637 638 639
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
640
		update_curr(cfs_rq);
641

Peter Zijlstra's avatar
Peter Zijlstra committed
642
	check_spread(cfs_rq, prev);
643
	if (prev->on_rq) {
644
		update_stats_wait_start(cfs_rq, prev);
645 646 647
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
648
	cfs_rq->curr = NULL;
649 650
}

651 652
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
653 654
{
	/*
655
	 * Update run-time statistics of the 'current'.
656
	 */
657
	update_curr(cfs_rq);
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

674
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
675
		check_preempt_tick(cfs_rq, curr);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
710
	return cfs_rq->tg->cfs_rq[this_cpu];
711 712 713 714
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
715
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
716

717 718 719
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
720
{
721
	if (se->cfs_rq == pse->cfs_rq)
722 723 724 725 726
		return 1;

	return 0;
}

727 728 729 730 731
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

732 733
#define GROUP_IMBALANCE_PCT	20

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

766 767
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
768 769 770 771
{
	return 1;
}

772 773 774 775 776
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

777 778
#endif	/* CONFIG_FAIR_GROUP_SCHED */

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

816 817 818 819 820
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
821
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
822 823
{
	struct cfs_rq *cfs_rq;
824 825 826
	struct sched_entity *se = &p->se,
			    *topse = NULL;	/* Highest schedulable entity */
	int incload = 1;
827 828

	for_each_sched_entity(se) {
829 830 831
		topse = se;
		if (se->on_rq) {
			incload = 0;
832
			break;
833
		}
834
		cfs_rq = cfs_rq_of(se);
835
		enqueue_entity(cfs_rq, se, wakeup);
836
		wakeup = 1;
837
	}
838 839 840 841 842 843
	/* Increment cpu load if we just enqueued the first task of a group on
	 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
	 * at the highest grouping level.
	 */
	if (incload)
		inc_cpu_load(rq, topse->load.weight);
844 845

	hrtick_start_fair(rq, rq->curr);
846 847 848 849 850 851 852
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
853
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
854 855
{
	struct cfs_rq *cfs_rq;
856 857 858
	struct sched_entity *se = &p->se,
			    *topse = NULL; 	/* Highest schedulable entity */
	int decload = 1;
859 860

	for_each_sched_entity(se) {
861
		topse = se;
862
		cfs_rq = cfs_rq_of(se);
863
		dequeue_entity(cfs_rq, se, sleep);
864
		/* Don't dequeue parent if it has other entities besides us */
865 866 867
		if (cfs_rq->load.weight) {
			if (parent_entity(se))
				decload = 0;
868
			break;
869
		}
870
		sleep = 1;
871
	}
872 873 874 875 876 877
	/* Decrement cpu load if we just dequeued the last task of a group on
	 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
	 * at the highest grouping level.
	 */
	if (decload)
		dec_cpu_load(rq, topse->load.weight);
878 879

	hrtick_start_fair(rq, rq->curr);
880 881 882
}

/*
883 884 885
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
886
 */
887
static void yield_task_fair(struct rq *rq)
888
{
889 890 891
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
892 893

	/*
894 895 896 897 898
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

899
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
900 901
		__update_rq_clock(rq);
		/*
902
		 * Update run-time statistics of the 'current'.
903
		 */
Dmitry Adamushko's avatar
Dmitry Adamushko committed
904
		update_curr(cfs_rq);
905 906 907 908 909

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
910
	 */
Dmitry Adamushko's avatar
Dmitry Adamushko committed
911
	rightmost = __pick_last_entity(cfs_rq);
912 913 914
	/*
	 * Already in the rightmost position?
	 */
Dmitry Adamushko's avatar
Dmitry Adamushko committed
915
	if (unlikely(rightmost->vruntime < se->vruntime))
916 917 918 919
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
Dmitry Adamushko's avatar
Dmitry Adamushko committed
920 921
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
922
	 */
923
	se->vruntime = rightmost->vruntime + 1;
924 925
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	int cpu, this_cpu;
	struct rq *rq;
	struct sched_domain *sd, *this_sd = NULL;
	int new_cpu;

	cpu      = task_cpu(p);
	rq       = task_rq(p);
	this_cpu = smp_processor_id();
	new_cpu  = cpu;

991 992 993
	if (cpu == this_cpu)
		goto out_set_cpu;

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
		goto out_set_cpu;

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
		unsigned long load, this_load;

		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);

		new_cpu = this_cpu; /* Wake to this CPU if we can */

		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
			unsigned long tl_per_task;

			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

			schedstat_inc(p, se.nr_wakeups_affine_attempts);
			tl_per_task = cpu_avg_load_per_task(this_cpu);

			/*
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
			 */
			if (sync)
				tl -= current->se.load.weight;

			if ((tl <= load &&
				tl + target_load(cpu, idx) <= tl_per_task) ||
			       100*(tl + p->se.load.weight) <= imbalance*load) {
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				schedstat_inc(p, se.nr_wakeups_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				schedstat_inc(p, se.nr_wakeups_passive);
				goto out_set_cpu;
			}
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */


1074 1075 1076
/*
 * Preempt the current task with a newly woken task if needed:
 */
1077
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1078 1079
{
	struct task_struct *curr = rq->curr;
1080
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1081
	struct sched_entity *se = &curr->se, *pse = &p->se;
1082
	unsigned long gran;
1083 1084

	if (unlikely(rt_prio(p->prio))) {
1085
		update_rq_clock(rq);
1086
		update_curr(cfs_rq);
1087 1088 1089
		resched_task(curr);
		return;
	}
1090 1091 1092 1093 1094 1095
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1096

1097 1098
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1099

1100 1101 1102
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1103
	}
1104 1105 1106 1107 1108

	gran = sysctl_sched_wakeup_granularity;
	if (unlikely(se->load.weight != NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);

1109
	if (pse->vruntime + gran < se->vruntime)
1110
		resched_task(curr);
1111 1112
}

1113
static struct task_struct *pick_next_task_fair(struct rq *rq)
1114
{
1115
	struct task_struct *p;
1116 1117 1118 1119 1120 1121 1122
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1123
		se = pick_next_entity(cfs_rq);
1124 1125 1126
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

1127 1128 1129 1130
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1131 1132 1133 1134 1135
}

/*
 * Account for a descheduled task:
 */
1136
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1137 1138 1139 1140 1141 1142
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1143
		put_prev_entity(cfs_rq, se);
1144 1145 1146
	}
}

1147
#ifdef CONFIG_SMP
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
Alexey Dobriyan's avatar
Alexey Dobriyan committed
1159
static struct task_struct *
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1187
static unsigned long
1188
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1189
		  unsigned long max_load_move,
1190 1191
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1192 1193 1194 1195
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;
1196
	unsigned long load_moved;
1197 1198 1199 1200 1201

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1202
#ifdef CONFIG_FAIR_GROUP_SCHED
1203 1204 1205 1206
		struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
		unsigned long maxload, task_load, group_weight;
		unsigned long thisload, per_task_load;
		struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1207

1208 1209
		task_load = busy_cfs_rq->load.weight;
		group_weight = se->load.weight;
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		/*
		 * 'group_weight' is contributed by tasks of total weight
		 * 'task_load'. To move 'rem_load_move' worth of weight only,
		 * we need to move a maximum task load of:
		 *
		 * 	maxload = (remload / group_weight) * task_load;
		 */
		maxload = (rem_load_move * task_load) / group_weight;

		if (!maxload || !task_load)
1221 1222
			continue;

1223 1224 1225 1226 1227 1228 1229 1230
		per_task_load = task_load / busy_cfs_rq->nr_running;
		/*
		 * balance_tasks will try to forcibly move atleast one task if
		 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
		 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
		 */
		 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
			continue;
1231

1232 1233 1234
		/* Disable priority-based load balance */
		*this_best_prio = 0;
		thisload = this_cfs_rq->load.weight;
1235
#else
1236
# define maxload rem_load_move
1237
#endif
1238 1239
		/*
		 * pass busy_cfs_rq argument into
1240 1241 1242
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1243
		load_moved = balance_tasks(this_rq, this_cpu, busiest,
1244 1245 1246
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
#ifdef CONFIG_FAIR_GROUP_SCHED
		/*
		 * load_moved holds the task load that was moved. The
		 * effective (group) weight moved would be:
		 * 	load_moved_eff = load_moved/task_load * group_weight;
		 */
		load_moved = (group_weight * load_moved) / task_load;

		/* Adjust shares on both cpus to reflect load_moved */
		group_weight -= load_moved;
		set_se_shares(se, group_weight);

		se = busy_cfs_rq->tg->se[this_cpu];
		if (!thisload)
			group_weight = load_moved;
		else
			group_weight = se->load.weight + load_moved;
		set_se_shares(se, group_weight);
#endif

		rem_load_move -= load_moved;

1270
		if (rem_load_move <= 0)
1271 1272 1273
			break;
	}

1274
	return max_load_move - rem_load_move;
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1300
#endif
1301

1302 1303 1304
/*
 * scheduler tick hitting a task of our scheduling class:
 */
1305
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1306 1307 1308 1309 1310 1311
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1312
		entity_tick(cfs_rq, se, queued);
1313 1314 1315
	}
}

1316
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1317

1318 1319 1320 1321 1322 1323 1324
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1325
static void task_new_fair(struct rq *rq, struct task_struct *p)
1326 1327
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1328
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1329
	int this_cpu = smp_processor_id();
1330 1331 1332

	sched_info_queued(p);

1333
	update_curr(cfs_rq);
1334
	place_entity(cfs_rq, se, 1);
1335

1336
	/* 'curr' will be NULL if the child belongs to a different group */
1337
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1338
			curr && curr->vruntime < se->vruntime) {
1339
		/*
1340 1341 1342
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1343 1344
		swap(curr->vruntime, se->vruntime);
	}
1345

1346
	enqueue_task_fair(rq, p, 0);
1347
	resched_task(rq->curr);
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1399 1400 1401
/*
 * All the scheduling class methods:
 */
1402 1403
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1404 1405 1406
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1407 1408 1409
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1410

1411
	.check_preempt_curr	= check_preempt_wakeup,
1412 1413 1414 1415

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1416
#ifdef CONFIG_SMP
1417
	.load_balance		= load_balance_fair,
1418
	.move_one_task		= move_one_task_fair,
1419
#endif
1420

1421
	.set_curr_task          = set_curr_task_fair,
1422 1423
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1424 1425 1426

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
1427 1428 1429
};

#ifdef CONFIG_SCHED_DEBUG
1430
static void print_cfs_stats(struct seq_file *m, int cpu)
1431 1432 1433
{
	struct cfs_rq *cfs_rq;

1434 1435 1436
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1437
	lock_task_group_list();
1438
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1439
		print_cfs_rq(m, cpu, cfs_rq);
1440
	unlock_task_group_list();
1441 1442
}
#endif