huge_memory.c 85.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
20
#include <linux/dax.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

Andrea Arcangeli's avatar
Andrea Arcangeli committed
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
Andrea Arcangeli's avatar
Andrea Arcangeli committed
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
Andrea Arcangeli's avatar
Andrea Arcangeli committed
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
Andrea Arcangeli's avatar
Andrea Arcangeli committed
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308 309
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
310
	return single_hugepage_flag_show(kobj, attr, buf,
311 312 313 314 315 316
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
317
	return single_hugepage_flag_store(kobj, attr, buf, count,
318 319 320 321 322 323 324 325 326
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
327
	&use_zero_page_attr.attr,
328
	&hpage_pmd_size_attr.attr,
329
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 331
	&shmem_enabled_attr.attr,
#endif
332 333 334 335 336 337
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

338
static const struct attribute_group hugepage_attr_group = {
339
	.attrs = hugepage_attr,
Andrea Arcangeli's avatar
Andrea Arcangeli committed
340 341
};

342
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 344 345
{
	int err;

346 347
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
348
		pr_err("failed to create transparent hugepage kobject\n");
349
		return -ENOMEM;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
350 351
	}

352
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
355
		goto delete_obj;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
356 357
	}

358
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
361
		goto remove_hp_group;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
362
	}
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

400 401 402 403 404 405 406 407 408 409
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

410 411
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
412
		goto err_sysfs;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
413

414
	err = khugepaged_init();
Andrea Arcangeli's avatar
Andrea Arcangeli committed
415
	if (err)
416
		goto err_slab;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
417

418 419 420
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
421 422 423
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
424

425 426 427 428 429
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
430
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431
		transparent_hugepage_flags = 0;
432 433
		return 0;
	}
434

435
	err = start_stop_khugepaged();
436 437
	if (err)
		goto err_khugepaged;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
438

439
	return 0;
440
err_khugepaged:
441 442
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
443 444
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
445
	khugepaged_destroy();
446
err_slab:
447
	hugepage_exit_sysfs(hugepage_kobj);
448
err_sysfs:
Andrea Arcangeli's avatar
Andrea Arcangeli committed
449
	return err;
450
}
451
subsys_initcall(hugepage_init);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
479
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 481 482 483
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

484
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485
{
486
	if (likely(vma->vm_flags & VM_WRITE))
487 488 489 490
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

491 492
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493
{
494 495 496 497 498 499 500
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
501
}
502 503 504 505 506 507 508 509
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
510 511 512 513 514 515 516 517 518 519 520 521

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

522 523 524 525 526 527 528 529 530 531 532
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

533 534
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
535 536 537 538
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
539
	unsigned long len_pad, ret;
540 541 542 543 544 545 546 547

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

548
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549
					      off >> PAGE_SHIFT, flags);
550 551 552 553 554 555

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
556 557
		return 0;

558 559 560 561 562 563 564 565 566
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
567 568 569 570 571
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
572
	unsigned long ret;
573 574 575 576 577
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

578 579 580 581
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
582 583 584 585
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

586 587
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
588
{
589
	struct vm_area_struct *vma = vmf->vma;
590
	struct mem_cgroup *memcg;
591
	pgtable_t pgtable;
592
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593
	vm_fault_t ret = 0;
594

595
	VM_BUG_ON_PAGE(!PageCompound(page), page);
596

597
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 599 600 601
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
602

603
	pgtable = pte_alloc_one(vma->vm_mm);
604
	if (unlikely(!pgtable)) {
605 606
		ret = VM_FAULT_OOM;
		goto release;
607
	}
608

609
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
610 611 612 613 614
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
615 616
	__SetPageUptodate(page);

617 618
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
619
		goto unlock_release;
620 621
	} else {
		pmd_t entry;
622

623 624 625 626
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

627 628
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
629
			vm_fault_t ret2;
630

631
			spin_unlock(vmf->ptl);
632
			mem_cgroup_cancel_charge(page, memcg, true);
633
			put_page(page);
634
			pte_free(vma->vm_mm, pgtable);
635 636 637
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
638 639
		}

640
		entry = mk_huge_pmd(page, vma->vm_page_prot);
641
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642
		page_add_new_anon_rmap(page, vma, haddr, true);
643
		mem_cgroup_commit_charge(page, memcg, false, true);
644
		lru_cache_add_active_or_unevictable(page, vma);
645 646
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
647
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
648
		mm_inc_nr_ptes(vma->vm_mm);
649
		spin_unlock(vmf->ptl);
650
		count_vm_event(THP_FAULT_ALLOC);
651
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
652 653
	}

654
	return 0;
655 656 657 658 659 660 661 662 663
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

664 665
}

666
/*
667 668 669 670 671 672 673
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
674
 */
675
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
676
{
677
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
678

679
	/* Always do synchronous compaction */
680 681
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
682 683

	/* Kick kcompactd and fail quickly */
684
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
685
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
686 687

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
688
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
689 690 691
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
692 693

	/* Only do synchronous compaction if madvised */
694
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
695 696
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
697

698
	return GFP_TRANSHUGE_LIGHT;
699 700
}

701
/* Caller must hold page table lock. */
702
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
703
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
704
		struct page *zero_page)
705 706
{
	pmd_t entry;
707 708
	if (!pmd_none(*pmd))
		return false;
709
	entry = mk_pmd(zero_page, vma->vm_page_prot);
710
	entry = pmd_mkhuge(entry);
711 712
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
713
	set_pmd_at(mm, haddr, pmd, entry);
714
	mm_inc_nr_ptes(mm);
715
	return true;
716 717
}

718
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
719
{
720
	struct vm_area_struct *vma = vmf->vma;
721
	gfp_t gfp;
722
	struct page *page;
723
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
724

725
	if (!transhuge_vma_suitable(vma, haddr))
726
		return VM_FAULT_FALLBACK;
727 728
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
729
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
730
		return VM_FAULT_OOM;
731
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732
			!mm_forbids_zeropage(vma->vm_mm) &&
733 734 735 736
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
737
		vm_fault_t ret;
738
		pgtable = pte_alloc_one(vma->vm_mm);
739
		if (unlikely(!pgtable))
Andrea Arcangeli's avatar
Andrea Arcangeli committed
740
			return VM_FAULT_OOM;
741
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
742
		if (unlikely(!zero_page)) {
743
			pte_free(vma->vm_mm, pgtable);
744
			count_vm_event(THP_FAULT_FALLBACK);
745
			return VM_FAULT_FALLBACK;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
746
		}
747
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 749
		ret = 0;
		set = false;
750
		if (pmd_none(*vmf->pmd)) {
751 752 753 754
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
755 756
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 758
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
759
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 761
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
762 763 764
				set = true;
			}
		} else
765
			spin_unlock(vmf->ptl);
766
		if (!set)
767
			pte_free(vma->vm_mm, pgtable);
768
		return ret;
769
	}
770 771
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
772 773
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
774
		return VM_FAULT_FALLBACK;
775
	}
776
	prep_transhuge_page(page);
777
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
778 779
}

780
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 782
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
783 784 785 786 787 788
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

804 805 806
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
807
	if (write) {
808 809
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
810
	}
811 812 813

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
814
		mm_inc_nr_ptes(mm);
815
		pgtable = NULL;
816 817
	}

818 819
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
820 821

out_unlock:
822
	spin_unlock(ptl);
823 824
	if (pgtable)
		pte_free(mm, pgtable);
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
842
{
843 844
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
845
	pgtable_t pgtable = NULL;
846

847 848 849 850 851
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
852 853
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
854 855 856 857 858 859
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
860

861
	if (arch_needs_pgtable_deposit()) {
862
		pgtable = pte_alloc_one(vma->vm_mm);
863 864 865 866
		if (!pgtable)
			return VM_FAULT_OOM;
	}

867 868
	track_pfn_insert(vma, &pgprot, pfn);

869
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
870
	return VM_FAULT_NOPAGE;
871
}
872
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
873

874
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
875
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
876
{
877
	if (likely(vma->vm_flags & VM_WRITE))
878 879 880 881 882 883 884 885 886 887 888 889
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
890 891 892 893 894 895 896 897 898 899 900 901 902 903
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

904 905 906 907
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
908 909
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
910 911 912
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
913 914

out_unlock:
915 916 917
	spin_unlock(ptl);
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
933
{
934 935 936
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

937 938 939 940 941
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
942 943
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
944 945 946 947 948 949 950 951 952
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

953
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
954 955
	return VM_FAULT_NOPAGE;
}
956
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
957 958
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

959
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
960
		pmd_t *pmd, int flags)
961 962 963
{
	pmd_t _pmd;

964 965 966
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
967
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
968
				pmd, _pmd, flags & FOLL_WRITE))
969 970 971 972
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
973
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
974 975 976 977 978 979 980
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

981 982 983 984 985 986
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

987
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 989 990 991 992 993 994 995
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
996
		touch_pmd(vma, addr, pmd, flags);
997 998 999 1000 1001 1002 1003 1004 1005

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 1007
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1008 1009 1010 1011 1012 1013 1014
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

1015 1016 1017 1018
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1019
	spinlock_t *dst_ptl, *src_ptl;
1020 1021
	struct page *src_page;
	pmd_t pmd;
1022
	pgtable_t pgtable = NULL;
1023
	int ret = -ENOMEM;
1024

1025 1026 1027 1028
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1029
	pgtable = pte_alloc_one(dst_mm);
1030 1031
	if (unlikely(!pgtable))
		goto out;
1032

1033 1034 1035
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1036 1037 1038

	ret = -EAGAIN;
	pmd = *src_pmd;
1039 1040 1041 1042 1043 1044 1045 1046 1047

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1048 1049
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1050 1051
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1052
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1053
		mm_inc_nr_ptes(dst_mm);
1054
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1055 1056 1057 1058 1059 1060
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1061
	if (unlikely(!pmd_trans_huge(pmd))) {
1062 1063 1064
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1065
	/*
1066
	 * When page table lock is held, the huge zero pmd should not be
1067 1068 1069 1070
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1071
		struct page *zero_page;
1072 1073 1074 1075 1076
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1077
		zero_page = mm_get_huge_zero_page(dst_mm);
1078
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1079
				zero_page);
1080 1081 1082
		ret = 0;
		goto out_unlock;
	}
1083

1084 1085 1086 1087 1088
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1089
	mm_inc_nr_ptes(dst_mm);
1090
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1091 1092 1093 1094 1095 1096 1097

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1098 1099
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1100 1101 1102 1103
out:
	return ret;
}

1104 1105
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1106
		pud_t *pud, int flags)
1107 1108 1109
{
	pud_t _pud;

1110 1111 1112
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1113
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1114
				pud, _pud, flags & FOLL_WRITE))
1115 1116 1117 1118
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1119
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1120 1121 1122 1123 1124 1125 1126
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1127
	if (flags & FOLL_WRITE && !pud_write(*pud))
1128 1129 1130 1131 1132 1133 1134 1135
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1136
		touch_pud(vma, addr, pud, flags);
1137 1138 1139 1140 1141 1142 1143 1144 1145

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1146 1147
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1214
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1215 1216 1217
{
	pmd_t entry;
	unsigned long haddr;
1218
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1219

1220 1221
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1222 1223 1224
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1225 1226
	if (write)
		entry = pmd_mkdirty(entry);
1227
	haddr = vmf->address & HPAGE_PMD_MASK;
1228
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1229
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1230 1231

unlock:
1232
	spin_unlock(vmf->ptl);
1233 1234
}

1235 1236
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1237
{
1238 1239
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1240
	struct mem_cgroup *memcg;
1241 1242
	pgtable_t pgtable;
	pmd_t _pmd;
1243 1244
	int i;
	vm_fault_t ret = 0;
1245
	struct page **pages;
1246
	struct mmu_notifier_range range;
1247

1248 1249
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1250 1251 1252 1253 1254 1255
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
1256
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1257
					       vmf->address, page_to_nid(page));
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1258
		if (unlikely(!pages[i] ||
1259
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1260
				     GFP_KERNEL, &memcg, false))) {
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1261
			if (pages[i])
1262
				put_page(pages[i]);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1263
			while (--i >= 0) {
1264 1265
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1266 1267
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1268 1269
				put_page(pages[i]);
			}
1270 1271 1272 1273
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1274
		set_page_private(pages[i], (unsigned long)memcg);
1275 1276 1277 1278
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1279
				   haddr + PAGE_SIZE * i, vma);
1280 1281 1282 1283
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1284 1285
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1286
	mmu_notifier_invalidate_range_start(&range);
1287

1288 1289
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1290
		goto out_free_pages;
1291
	VM_BUG_ON_PAGE(!PageHead(page), page);
1292

1293 1294 1295 1296 1297 1298
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1299
	 * See Documentation/vm/mmu_notifier.rst
1300
	 */
1301
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1302

1303
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1304
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1305 1306

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1307
		pte_t entry;
1308 1309
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1310 1311
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1312
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1313
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1314
		lru_cache_add_active_or_unevictable(pages[i], vma);
1315 1316 1317 1318
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1319 1320 1321 1322
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
1323
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1324
	page_remove_rmap(page, true);
1325
	spin_unlock(vmf->ptl);
1326

1327 1328 1329 1330
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1331
	mmu_notifier_invalidate_range_only_end(&range);
1332

1333 1334 1335 1336 1337 1338 1339
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
1340
	spin_unlock(vmf->ptl);
1341
	mmu_notifier_invalidate_range_end(&range);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1342
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1343 1344
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1345
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1346
		put_page(pages[i]);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1347
	}
1348 1349 1350 1351
	kfree(pages);
	goto out;
}

1352
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1353
{
1354
	struct vm_area_struct *vma = vmf->vma;
1355
	struct page *page = NULL, *new_page;
1356
	struct mem_cgroup *memcg;
1357
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1358
	struct mmu_notifier_range range;
1359
	gfp_t huge_gfp;			/* for allocation and charge */
1360
	vm_fault_t ret = 0;
1361

1362
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1363
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1364 1365
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
1366 1367
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1368 1369 1370
		goto out_unlock;

	page = pmd_page(orig_pmd);
1371
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1372 1373
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1374
	 * part.
1375
	 */
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1389 1390
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1391
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1392 1393
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1394
		ret |= VM_FAULT_WRITE;
1395
		unlock_page(page);
1396 1397
		goto out_unlock;
	}
1398
	unlock_page(page);
1399
	get_page(page);
1400
	spin_unlock(vmf->ptl);
1401
alloc:
1402
	if (__transparent_hugepage_enabled(vma) &&
1403
	    !transparent_hugepage_debug_cow()) {
1404 1405
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1406
	} else
1407 1408
		new_page = NULL;

1409 1410 1411
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1412
		if (!page) {
1413
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1414
			ret |= VM_FAULT_FALLBACK;
1415
		} else {
1416
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1417
			if (ret & VM_FAULT_OOM) {
1418
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1419 1420
				ret |= VM_FAULT_FALLBACK;
			}
1421
			put_page(page);
1422
		}
1423
		count_vm_event(THP_FAULT_FALLBACK);
1424 1425 1426
		goto out;
	}

1427
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1428
					huge_gfp, &memcg, true))) {
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1429
		put_page(new_page);
1430
		split_huge_pmd(vma, vmf->pmd, vmf->address);
1431
		if (page)
1432
			put_page(page);
1433
		ret |= VM_FAULT_FALLBACK;
1434
		count_vm_event(THP_FAULT_FALLBACK);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1435 1436 1437
		goto out;
	}

1438
	count_vm_event(THP_FAULT_ALLOC);
1439
	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1440

1441
	if (!page)
1442
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1443
	else
1444 1445
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1446 1447
	__SetPageUptodate(new_page);

1448 1449
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1450
	mmu_notifier_invalidate_range_start(&range);
1451

1452
	spin_lock(vmf->ptl);
1453
	if (page)
1454
		put_page(page);
1455 1456
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1457
		mem_cgroup_cancel_charge(new_page, memcg, true);
1458
		put_page(new_page);
1459
		goto out_mn;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1460
	} else {
1461
		pmd_t entry;
1462
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1463
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1464
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1465
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1466
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1467
		lru_cache_add_active_or_unevictable(new_page, vma);
1468 1469
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1470
		if (!page) {
1471
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1472
		} else {
1473
			VM_BUG_ON_PAGE(!PageHead(page), page);
1474
			page_remove_rmap(page, true);
1475 1476
			put_page(page);
		}
1477 1478
		ret |= VM_FAULT_WRITE;
	}
1479
	spin_unlock(vmf->ptl);
1480
out_mn:
1481 1482 1483 1484
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1485
	mmu_notifier_invalidate_range_only_end(&range);
1486 1487
out:
	return ret;
1488
out_unlock:
1489
	spin_unlock(vmf->ptl);
1490
	return ret;
1491 1492
}

1493 1494 1495 1496 1497 1498
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1499
	return pmd_write(pmd) ||
1500 1501 1502
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1503
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1504 1505 1506 1507
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1508
	struct mm_struct *mm = vma->vm_mm;
1509 1510
	struct page *page = NULL;

1511
	assert_spin_locked(pmd_lockptr(mm, pmd));
1512

1513
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1514 1515
		goto out;

1516 1517 1518 1519
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1520
	/* Full NUMA hinting faults to serialise migration in fault paths */
1521
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1522 1523
		goto out;

1524
	page = pmd_page(*pmd);
1525
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1526
	if (flags & FOLL_TOUCH)
1527
		touch_pmd(vma, addr, pmd, flags);
1528
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1529 1530 1531 1532
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1533 1534
		 * For anon THP:
		 *
1535 1536 1537 1538 1539 1540 1541
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1542 1543 1544 1545 1546 1547
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1548
		 */
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1560
	}
1561
skip_mlock:
1562
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1563
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1564
	if (flags & FOLL_GET)
1565
		get_page(page);
1566 1567 1568 1569 1570

out:
	return page;
}

1571
/* NUMA hinting page fault entry point for trans huge pmds */
1572
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1573
{
1574
	struct vm_area_struct *vma = vmf->vma;
1575
	struct anon_vma *anon_vma = NULL;
1576
	struct page *page;
1577
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1578
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1579
	int target_nid, last_cpupid = -1;
1580 1581
	bool page_locked;
	bool migrated = false;
1582
	bool was_writable;
1583
	int flags = 0;
1584

1585 1586
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1587 1588
		goto out_unlock;

1589 1590 1591 1592 1593
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
1594 1595
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1596 1597
		if (!get_page_unless_zero(page))
			goto out_unlock;
1598
		spin_unlock(vmf->ptl);
1599
		put_and_wait_on_page_locked(page);
1600 1601 1602
		goto out;
	}

1603
	page = pmd_page(pmd);
1604
	BUG_ON(is_huge_zero_page(page));
1605
	page_nid = page_to_nid(page);
1606
	last_cpupid = page_cpupid_last(page);
1607
	count_vm_numa_event(NUMA_HINT_FAULTS);
1608
	if (page_nid == this_nid) {
1609
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1610 1611
		flags |= TNF_FAULT_LOCAL;
	}
1612

1613
	/* See similar comment in do_numa_page for explanation */
1614
	if (!pmd_savedwrite(pmd))
1615 1616
		flags |= TNF_NO_GROUP;

1617 1618 1619 1620
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1621 1622
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1623
	if (target_nid == NUMA_NO_NODE) {
1624
		/* If the page was locked, there are no parallel migrations */
1625
		if (page_locked)
1626
			goto clear_pmdnuma;
1627
	}
1628

1629
	/* Migration could have started since the pmd_trans_migrating check */
1630
	if (!page_locked) {
1631
		page_nid = NUMA_NO_NODE;
1632 1633
		if (!get_page_unless_zero(page))
			goto out_unlock;
1634
		spin_unlock(vmf->ptl);
1635
		put_and_wait_on_page_locked(page);
1636 1637 1638
		goto out;
	}

1639 1640 1641 1642
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1643
	get_page(page);
1644
	spin_unlock(vmf->ptl);
1645
	anon_vma = page_lock_anon_vma_read(page);
1646

Peter Zijlstra's avatar
Peter Zijlstra committed
1647
	/* Confirm the PMD did not change while page_table_lock was released */
1648 1649
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1650 1651
		unlock_page(page);
		put_page(page);
1652
		page_nid = NUMA_NO_NODE;
1653
		goto out_unlock;
1654
	}
1655

1656 1657 1658
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1659
		page_nid = NUMA_NO_NODE;
1660 1661 1662
		goto clear_pmdnuma;
	}

1663 1664 1665 1666 1667 1668
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1669 1670 1671 1672
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1673
	 */
1674
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1675
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1688

1689 1690
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1691
	 * and access rights restored.
1692
	 */
1693
	spin_unlock(vmf->ptl);
1694

1695
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1696
				vmf->pmd, pmd, vmf->address, page, target_nid);
1697 1698
	if (migrated) {
		flags |= TNF_MIGRATED;
1699
		page_nid = target_nid;
1700 1701
	} else
		flags |= TNF_MIGRATE_FAIL;
1702

1703
	goto out;
1704
clear_pmdnuma:
1705
	BUG_ON(!PageLocked(page));
1706
	was_writable = pmd_savedwrite(pmd);
1707
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1708
	pmd = pmd_mkyoung(pmd);
1709 1710
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
1711 1712
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1713
	unlock_page(page);
1714
out_unlock:
1715
	spin_unlock(vmf->ptl);
1716 1717 1718 1719 1720

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1721
	if (page_nid != NUMA_NO_NODE)
1722
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1723
				flags);
1724

1725 1726 1727
	return 0;
}

1728 1729 1730 1731 1732
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1733 1734 1735 1736 1737 1738
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1739
	bool ret = false;
1740

1741
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1742

1743 1744
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1745
		goto out_unlocked;
1746 1747

	orig_pmd = *pmd;
1748
	if (is_huge_zero_pmd(orig_pmd))
1749 1750
		goto out;

1751 1752 1753 1754 1755 1756
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1775
		split_huge_page(page);
1776
		unlock_page(page);
1777
		put_page(page);
1778 1779 1780 1781 1782 1783 1784 1785
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1786
		pmdp_invalidate(vma, addr, pmd);
1787 1788 1789 1790 1791 1792
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
Shaohua Li's avatar
Shaohua Li committed
1793 1794

	mark_page_lazyfree(page);
1795
	ret = true;
1796 1797 1798 1799 1800 1801
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1802 1803 1804 1805 1806 1807
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1808
	mm_dec_nr_ptes(mm);
1809 1810
}

1811
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1812
		 pmd_t *pmd, unsigned long addr)
1813
{
1814
	pmd_t orig_pmd;
1815
	spinlock_t *ptl;
1816

1817
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1818

1819 1820
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1831
	if (vma_is_special_huge(vma)) {
1832 1833
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1834 1835
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1836
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1837
	} else if (is_huge_zero_pmd(orig_pmd)) {
1838
		zap_deposited_table(tlb->mm, pmd);
1839
		spin_unlock(ptl);
1840
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1841
	} else {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1860
		if (PageAnon(page)) {
1861
			zap_deposited_table(tlb->mm, pmd);
1862 1863
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1864 1865
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1866
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1867
		}
1868

1869
		spin_unlock(ptl);
1870 1871
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1872
	}
1873
	return 1;
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1902
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1903
		  unsigned long new_addr, unsigned long old_end,
1904
		  pmd_t *old_pmd, pmd_t *new_pmd)
1905
{
1906
	spinlock_t *old_ptl, *new_ptl;
1907 1908
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1909
	bool force_flush = false;
1910 1911 1912

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1913
	    old_end - old_addr < HPAGE_PMD_SIZE)
1914
		return false;
1915 1916 1917 1918 1919 1920 1921

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1922
		return false;
1923 1924
	}

1925 1926 1927 1928
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1929 1930
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1931 1932 1933
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1934
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1935
		if (pmd_present(pmd))
1936
			force_flush = true;
1937
		VM_BUG_ON(!pmd_none(*new_pmd));
1938

1939
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1940
			pgtable_t pgtable;
1941 1942 1943
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1944 1945
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1946 1947
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1948 1949
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1950
		spin_unlock(old_ptl);
1951
		return true;
1952
	}
1953
	return false;
1954 1955
}

1956 1957 1958 1959 1960 1961
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1962
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1963
		unsigned long addr, pgprot_t newprot, int prot_numa)
1964 1965
{
	struct mm_struct *mm = vma->vm_mm;
1966
	spinlock_t *ptl;
1967 1968 1969
	pmd_t entry;
	bool preserve_write;
	int ret;
1970

1971
	ptl = __pmd_trans_huge_lock(pmd, vma);
1972 1973
	if (!ptl)
		return 0;
1974

1975 1976
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1991 1992
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1993 1994 1995 1996 1997 1998
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1999 2000 2001 2002 2003 2004 2005
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
2006

2007 2008 2009
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
2031
	entry = pmdp_invalidate(vma, addr, pmd);
2032

2033 2034 2035 2036 2037 2038 2039 2040
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
2041 2042 2043 2044
	return ret;
}

/*
2045
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2046
 *
2047 2048
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2049
 */
2050
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2051
{
2052 2053
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2054 2055
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2056 2057 2058
		return ptl;
	spin_unlock(ptl);
	return NULL;
2059 2060
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
2093
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2094
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2095
	if (vma_is_special_huge(vma)) {
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2113
	count_vm_event(THP_SPLIT_PUD);
2114 2115 2116 2117 2118 2119 2120 2121

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
2122
	struct mmu_notifier_range range;
2123

2124
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2125
				address & HPAGE_PUD_MASK,
2126 2127 2128
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
2129 2130
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
2131
	__split_huge_pud_locked(vma, pud, range.start);
2132 2133 2134

out:
	spin_unlock(ptl);
2135 2136 2137 2138
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
2139
	mmu_notifier_invalidate_range_only_end(&range);
2140 2141 2142
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2143 2144 2145 2146 2147 2148 2149 2150
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2151 2152 2153 2154 2155 2156
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2157
	 * See Documentation/vm/mmu_notifier.rst
2158 2159
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2178
		unsigned long haddr, bool freeze)
2179 2180 2181 2182
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2183
	pmd_t old_pmd, _pmd;
2184
	bool young, write, soft_dirty, pmd_migration = false;
2185
	unsigned long addr;
2186 2187 2188 2189 2190
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2191 2192
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2193 2194 2195

	count_vm_event(THP_SPLIT_PMD);

2196 2197
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2198 2199 2200 2201 2202 2203
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2204
		if (vma_is_special_huge(vma))
2205 2206
			return;
		page = pmd_page(_pmd);
2207 2208
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2209 2210 2211 2212
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2213
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2214 2215
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2216 2217 2218 2219 2220 2221 2222 2223 2224
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2225 2226 2227
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2251
	if (unlikely(pmd_migration)) {
2252 2253
		swp_entry_t entry;

2254
		entry = pmd_to_swp_entry(old_pmd);
2255
		page = pfn_to_page(swp_offset(entry));
2256 2257 2258 2259
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2260
		page = pmd_page(old_pmd);
2261 2262 2263 2264 2265 2266
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2267
	VM_BUG_ON_PAGE(!page_count(page), page);
2268
	page_ref_add(page, HPAGE_PMD_NR - 1);
2269

2270 2271 2272 2273
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2274 2275 2276
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2277
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2278 2279 2280 2281 2282 2283
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2284
		if (freeze || pmd_migration) {
2285 2286 2287
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2288 2289
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2290
		} else {
2291
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2292
			entry = maybe_mkwrite(entry, vma);
2293 2294 2295 2296
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2297 2298
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2299
		}
2300
		pte = pte_offset_map(&_pmd, addr);
2301
		BUG_ON(!pte_none(*pte));
2302
		set_pte_at(mm, addr, pte, entry);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2318
		__dec_node_page_state(page, NR_ANON_THPS);
2319 2320 2321 2322 2323 2324 2325 2326 2327
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2328 2329

	if (freeze) {
2330
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2331 2332 2333 2334
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2335 2336 2337
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2338
		unsigned long address, bool freeze, struct page *page)
2339 2340
{
	spinlock_t *ptl;
2341
	struct mmu_notifier_range range;
2342

2343
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2344
				address & HPAGE_PMD_MASK,
2345 2346 2347
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2348 2349 2350 2351 2352 2353 2354 2355 2356

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2357
	if (pmd_trans_huge(*pmd)) {
2358
		page = pmd_page(*pmd);
2359
		if (PageMlocked(page))
2360
			clear_page_mlock(page);
2361
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2362
		goto out;
2363
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2364
out:
2365
	spin_unlock(ptl);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2379
	mmu_notifier_invalidate_range_only_end(&range);
2380 2381
}

2382 2383
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2384
{
2385
	pgd_t *pgd;
2386
	p4d_t *p4d;
2387
	pud_t *pud;
2388 2389
	pmd_t *pmd;

2390
	pgd = pgd_offset(vma->vm_mm, address);
2391 2392 2393
	if (!pgd_present(*pgd))
		return;

2394 2395 2396 2397 2398
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2399 2400 2401 2402
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2403

2404
	__split_huge_pmd(vma, pmd, address, freeze, page);
2405 2406
}

2407
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2420
		split_huge_pmd_address(vma, start, false, NULL);
2421 2422 2423 2424 2425 2426 2427 2428 2429

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2430
		split_huge_pmd_address(vma, end, false, NULL);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2444
			split_huge_pmd_address(next, nstart, false, NULL);
2445 2446
	}
}
2447

2448
static void unmap_page(struct page *page)
2449
{
2450
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2451
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2452
	bool unmap_success;
2453 2454 2455

	VM_BUG_ON_PAGE(!PageHead(page), page);

2456
	if (PageAnon(page))
2457
		ttu_flags |= TTU_SPLIT_FREEZE;
2458

2459 2460
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2461 2462
}

2463
static void remap_page(struct page *page)
2464
{
2465
	int i;
2466 2467 2468 2469 2470 2471
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2472 2473
}

2474
static void __split_huge_page_tail(struct page *head, int tail,
2475 2476 2477 2478
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2479
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2480 2481

	/*
2482 2483 2484 2485
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2486 2487 2488 2489 2490
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2491
			 (1L << PG_swapcache) |
2492 2493 2494
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2495
			 (1L << PG_workingset) |
2496
			 (1L << PG_locked) |
2497 2498
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2499

2500 2501 2502 2503 2504 2505
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2506
	/* Page flags must be visible before we make the page non-compound. */
2507 2508
	smp_wmb();

2509 2510 2511 2512 2513 2514
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2515 2516
	clear_compound_head(page_tail);

2517 2518 2519 2520
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2521 2522 2523 2524 2525 2526
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
Michal Hocko's avatar
Michal Hocko committed
2527 2528 2529 2530 2531 2532

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2533 2534 2535
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2536
static void __split_huge_page(struct page *page, struct list_head *list,
2537
		pgoff_t end, unsigned long flags)
2538 2539
{
	struct page *head = compound_head(page);
2540
	pg_data_t *pgdat = page_pgdat(head);
2541
	struct lruvec *lruvec;
2542 2543
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2544
	int i;
2545

2546
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2547 2548 2549 2550

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2551 2552 2553 2554 2555 2556 2557 2558
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2559
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2560
		__split_huge_page_tail(head, i, lruvec, list);
2561 2562
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2563
			ClearPageDirty(head + i);
2564
			__delete_from_page_cache(head + i, NULL);
2565 2566
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2567
			put_page(head + i);
2568 2569 2570 2571 2572 2573
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2574 2575
		}
	}
2576 2577

	ClearPageCompound(head);
2578 2579 2580

	split_page_owner(head, HPAGE_PMD_ORDER);

2581 2582
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2583
		/* Additional pin to swap cache */
2584
		if (PageSwapCache(head)) {
2585
			page_ref_add(head, 2);
2586 2587
			xa_unlock(&swap_cache->i_pages);
		} else {
2588
			page_ref_inc(head);
2589
		}
2590
	} else {
2591
		/* Additional pin to page cache */
2592
		page_ref_add(head, 2);
Matthew Wilcox's avatar
Matthew Wilcox committed
2593
		xa_unlock(&head->mapping->i_pages);
2594 2595
	}

2596
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2597

2598
	remap_page(head);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2617 2618
int total_mapcount(struct page *page)
{
2619
	int i, compound, ret;
2620 2621 2622 2623 2624 2625

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

2626
	compound = compound_mapcount(page);
2627
	if (PageHuge(page))
2628 2629
		return compound;
	ret = compound;
2630 2631
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
2632 2633 2634
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2635 2636 2637 2638 2639
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2698 2699 2700 2701 2702
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

2703
	/* Additional pins from page cache */
2704 2705 2706 2707 2708 2709 2710 2711 2712
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2735
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2736
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2737 2738 2739
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2740
	bool mlocked;
2741
	unsigned long flags;
2742
	pgoff_t end;
2743

2744
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2745 2746
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2747

2748
	if (PageWriteback(head))
2749 2750
		return -EBUSY;

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2765
		end = -1;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2779 2780 2781 2782 2783 2784 2785 2786 2787

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2788 2789 2790
	}

	/*
2791
	 * Racy check if we can split the page, before unmap_page() will
2792 2793
	 * split PMDs
	 */
2794
	if (!can_split_huge_page(head, &extra_pins)) {
2795 2796 2797 2798
		ret = -EBUSY;
		goto out_unlock;
	}

2799
	mlocked = PageMlocked(head);
2800
	unmap_page(head);
2801 2802
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2803 2804 2805 2806
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2807
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2808
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2809 2810

	if (mapping) {
2811
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2812 2813

		/*
2814
		 * Check if the head page is present in page cache.
2815 2816
		 * We assume all tail are present too, if head is there.
		 */
2817 2818
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2819 2820 2821
			goto fail;
	}

2822
	/* Prevent deferred_split_scan() touching ->_refcount */
2823
	spin_lock(&ds_queue->split_queue_lock);
2824 2825
	count = page_count(head);
	mapcount = total_mapcount(head);
2826
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2827
		if (!list_empty(page_deferred_list(head))) {
2828
			ds_queue->split_queue_len--;
2829 2830
			list_del(page_deferred_list(head));
		}
2831
		spin_unlock(&ds_queue->split_queue_lock);
2832
		if (mapping) {
2833 2834
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2835
			else
2836
				__dec_node_page_state(head, NR_FILE_THPS);
2837 2838
		}

2839
		__split_huge_page(page, list, end, flags);
2840 2841 2842 2843 2844 2845
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2846
	} else {
2847 2848 2849 2850 2851 2852 2853 2854
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2855
		spin_unlock(&ds_queue->split_queue_lock);
2856
fail:		if (mapping)
Matthew Wilcox's avatar
Matthew Wilcox committed
2857
			xa_unlock(&mapping->i_pages);
2858
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2859
		remap_page(head);
2860 2861 2862 2863
		ret = -EBUSY;
	}

out_unlock:
2864 2865 2866 2867 2868 2869
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2870 2871 2872 2873
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2874 2875 2876

void free_transhuge_page(struct page *page)
{
2877
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2878 2879
	unsigned long flags;

2880
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2881
	if (!list_empty(page_deferred_list(page))) {
2882
		ds_queue->split_queue_len--;
2883 2884
		list_del(page_deferred_list(page));
	}
2885
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2886 2887 2888 2889 2890
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2891 2892 2893 2894
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2895 2896 2897 2898
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2912
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2913
	if (list_empty(page_deferred_list(page))) {
2914
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2915 2916
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2917 2918 2919 2920 2921
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2922
	}
2923
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2924 2925 2926 2927 2928
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2929
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2930
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2931 2932 2933 2934 2935

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2936
	return READ_ONCE(ds_queue->split_queue_len);
2937 2938 2939 2940 2941
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2942
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2943
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2944 2945 2946 2947 2948
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2949 2950 2951 2952 2953
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2954
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2955
	/* Take pin on all head pages to avoid freeing them under us */
2956
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2957 2958
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2959 2960 2961 2962
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2963
			list_del_init(page_deferred_list(page));
2964
			ds_queue->split_queue_len--;
2965
		}
2966 2967
		if (!--sc->nr_to_scan)
			break;
2968
	}
2969
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2970 2971 2972

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2973 2974
		if (!trylock_page(page))
			goto next;
2975 2976 2977 2978
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2979
next:
2980 2981 2982
		put_page(page);
	}

2983 2984 2985
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2986

2987 2988 2989 2990
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2991
	if (!split && list_empty(&ds_queue->split_queue))
2992 2993
		return SHRINK_STOP;
	return split;
2994 2995 2996 2997 2998 2999
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
3000 3001
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
3002
};
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

3028
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

3041
	pr_info("%lu of %lu THP split\n", split, total);
3042 3043 3044

	return 0;
}
3045
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3046 3047 3048 3049
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
3050 3051
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3052 3053 3054 3055
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3066
	pmd_t pmdswp;
3067 3068 3069 3070 3071

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3072
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3073 3074 3075
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3076 3077 3078 3079
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3099 3100
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3101
	if (is_write_migration_entry(entry))
3102
		pmde = maybe_pmd_mkwrite(pmde, vma);
3103 3104

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3105 3106 3107 3108
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3109
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3110
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3111 3112 3113 3114
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif