workqueue.c 152 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
/*
Tejun Heo's avatar
Tejun Heo committed
2
 * kernel/workqueue.c - generic async execution with shared worker pool
Linus Torvalds's avatar
Linus Torvalds committed
3
 *
Tejun Heo's avatar
Tejun Heo committed
4
 * Copyright (C) 2002		Ingo Molnar
Linus Torvalds's avatar
Linus Torvalds committed
5
 *
Tejun Heo's avatar
Tejun Heo committed
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
Linus Torvalds's avatar
Linus Torvalds committed
11
 *
Tejun Heo's avatar
Tejun Heo committed
12
 * Made to use alloc_percpu by Christoph Lameter.
Linus Torvalds's avatar
Linus Torvalds committed
13
 *
Tejun Heo's avatar
Tejun Heo committed
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
Tejun Heo's avatar
Tejun Heo committed
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
Tejun Heo's avatar
Tejun Heo committed
23 24
 *
 * Please read Documentation/workqueue.txt for details.
Linus Torvalds's avatar
Linus Torvalds committed
25 26
 */

27
#include <linux/export.h>
Linus Torvalds's avatar
Linus Torvalds committed
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
Tejun Heo's avatar
Tejun Heo committed
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
53

Tejun Heo's avatar
Tejun Heo committed
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

Tejun Heo's avatar
Tejun Heo committed
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
Tejun Heo's avatar
Tejun Heo committed
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
Tejun Heo's avatar
Tejun Heo committed
106
};
Linus Torvalds's avatar
Linus Torvalds committed
107 108

/*
Tejun Heo's avatar
Tejun Heo committed
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
Tejun Heo's avatar
Tejun Heo committed
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
Tejun Heo's avatar
Tejun Heo committed
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
Linus Torvalds's avatar
Linus Torvalds committed
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
Tejun Heo's avatar
Tejun Heo committed
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
Tejun Heo's avatar
Tejun Heo committed
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150

151 152
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

153 154
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
155 156

	/* nr_idle includes the ones off idle_list for rebinding */
157 158 159 160 161 162
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

163
	/* a workers is either on busy_hash or idle_list, or the manager */
164 165 166
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

167
	/* see manage_workers() for details on the two manager mutexes */
168
	struct mutex		manager_arb;	/* manager arbitration */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

Linus Torvalds's avatar
Linus Torvalds committed
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
Linus Torvalds's avatar
Linus Torvalds committed
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
Tejun Heo's avatar
Tejun Heo committed
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
Tejun Heo's avatar
Tejun Heo committed
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
Tejun Heo's avatar
Tejun Heo committed
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
Tejun Heo's avatar
Tejun Heo committed
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
Linus Torvalds's avatar
Linus Torvalds committed
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

Linus Torvalds's avatar
Linus Torvalds committed
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
Linus Torvalds's avatar
Linus Torvalds committed
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
Tejun Heo's avatar
Tejun Heo committed
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
Linus Torvalds's avatar
Linus Torvalds committed
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

293 294
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

295 296 297
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

298
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300

301
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303

304 305 306 307 308
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309

310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

322
/* the per-cpu worker pools */
323
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324

325
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
326

327
/* PL: hash of all unbound pools keyed by pool->attrs */
328 329
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

330
/* I: attributes used when instantiating standard unbound pools on demand */
331 332
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

333 334 335
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

336
struct workqueue_struct *system_wq __read_mostly;
337
EXPORT_SYMBOL(system_wq);
338
struct workqueue_struct *system_highpri_wq __read_mostly;
339
EXPORT_SYMBOL_GPL(system_highpri_wq);
340
struct workqueue_struct *system_long_wq __read_mostly;
341
EXPORT_SYMBOL_GPL(system_long_wq);
342
struct workqueue_struct *system_unbound_wq __read_mostly;
343
EXPORT_SYMBOL_GPL(system_unbound_wq);
344
struct workqueue_struct *system_freezable_wq __read_mostly;
345
EXPORT_SYMBOL_GPL(system_freezable_wq);
346 347 348 349
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350

351
static int worker_thread(void *__worker);
352
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353

354 355 356
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

357
#define assert_rcu_or_pool_mutex()					\
358 359 360
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
361

362
#define assert_rcu_or_wq_mutex(wq)					\
363 364 365
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
366

367
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
368 369 370 371
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372

373 374 375
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376
	     (pool)++)
377

378 379 380
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
381
 * @pi: integer used for iteration
382
 *
383 384 385
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
386 387 388
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
389
 */
390 391
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
392
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
393
		else
394

395 396 397 398 399
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
400
 * This must be called with @pool->attach_mutex.
401 402 403 404
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
405 406
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
407
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 409
		else

410 411 412 413
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
414
 *
415
 * This must be called either with wq->mutex held or sched RCU read locked.
416 417
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
418 419 420
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
421 422
 */
#define for_each_pwq(pwq, wq)						\
423
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
424
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
425
		else
426

427 428 429 430
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

431 432 433 434 435
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
471
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
507
	.debug_hint	= work_debug_hint,
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

538 539 540 541 542 543 544
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

545 546 547 548 549
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

550 551 552 553 554 555 556
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
Tejun Heo's avatar
Tejun Heo committed
557 558 559 560
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

561
	lockdep_assert_held(&wq_pool_mutex);
562

563 564
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
565
	if (ret >= 0) {
Tejun Heo's avatar
Tejun Heo committed
566
		pool->id = ret;
567 568
		return 0;
	}
569
	return ret;
570 571
}

572 573 574 575 576
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
577 578
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
579 580
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
581 582
 *
 * Return: The unbound pool_workqueue for @node.
583 584 585 586
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
587
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588 589 590 591 592 593 594 595 596 597

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

598 599 600
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
Linus Torvalds's avatar
Linus Torvalds committed
616

617
/*
618 619
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
620
 * is cleared and the high bits contain OFFQ flags and pool ID.
621
 *
622 623
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
624 625
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
626
 *
627
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628
 * corresponding to a work.  Pool is available once the work has been
629
 * queued anywhere after initialization until it is sync canceled.  pwq is
630
 * available only while the work item is queued.
631
 *
632 633 634 635
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
636
 */
637 638
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
639
{
640
	WARN_ON_ONCE(!work_pending(work));
641 642
	atomic_long_set(&work->data, data | flags | work_static(work));
}
643

644
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 646
			 unsigned long extra_flags)
{
647 648
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 650
}

651 652 653 654 655 656 657
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

658 659
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
660
{
661 662 663 664 665 666 667
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
668
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669
}
670

671
static void clear_work_data(struct work_struct *work)
Linus Torvalds's avatar
Linus Torvalds committed
672
{
673 674
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
Linus Torvalds's avatar
Linus Torvalds committed
675 676
}

677
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
678
{
679
	unsigned long data = atomic_long_read(&work->data);
680

681
	if (data & WORK_STRUCT_PWQ)
682 683 684
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
685 686
}

687 688 689 690
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
691 692 693
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
694 695 696 697 698
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
699 700
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
701 702
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
703
{
704
	unsigned long data = atomic_long_read(&work->data);
705
	int pool_id;
706

707
	assert_rcu_or_pool_mutex();
708

709 710
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
711
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
712

713 714
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
715 716
		return NULL;

717
	return idr_find(&worker_pool_idr, pool_id);
718 719 720 721 722 723
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
724
 * Return: The worker_pool ID @work was last associated with.
725 726 727 728
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
729 730
	unsigned long data = atomic_long_read(&work->data);

731 732
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
733
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
734

735
	return data >> WORK_OFFQ_POOL_SHIFT;
736 737
}

738 739
static void mark_work_canceling(struct work_struct *work)
{
740
	unsigned long pool_id = get_work_pool_id(work);
741

742 743
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
744 745 746 747 748 749
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

750
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
751 752
}

753
/*
754 755
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
756
 * they're being called with pool->lock held.
757 758
 */

759
static bool __need_more_worker(struct worker_pool *pool)
760
{
761
	return !atomic_read(&pool->nr_running);
762 763
}

764
/*
765 766
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
767 768
 *
 * Note that, because unbound workers never contribute to nr_running, this
769
 * function will always return %true for unbound pools as long as the
770
 * worklist isn't empty.
771
 */
772
static bool need_more_worker(struct worker_pool *pool)
773
{
774
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
775
}
776

777
/* Can I start working?  Called from busy but !running workers. */
778
static bool may_start_working(struct worker_pool *pool)
779
{
780
	return pool->nr_idle;
781 782 783
}

/* Do I need to keep working?  Called from currently running workers. */
784
static bool keep_working(struct worker_pool *pool)
785
{
786 787
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
788 789 790
}

/* Do we need a new worker?  Called from manager. */
791
static bool need_to_create_worker(struct worker_pool *pool)
792
{
793
	return need_more_worker(pool) && !may_start_working(pool);
794
}
795

796
/* Do we have too many workers and should some go away? */
797
static bool too_many_workers(struct worker_pool *pool)
798
{
799
	bool managing = mutex_is_locked(&pool->manager_arb);
800 801
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
802 803

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
804 805
}

806
/*
807 808 809
 * Wake up functions.
 */

810 811
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
812
{
813
	if (unlikely(list_empty(&pool->idle_list)))
814 815
		return NULL;

816
	return list_first_entry(&pool->idle_list, struct worker, entry);
817 818 819 820
}

/**
 * wake_up_worker - wake up an idle worker
821
 * @pool: worker pool to wake worker from
822
 *
823
 * Wake up the first idle worker of @pool.
824 825
 *
 * CONTEXT:
826
 * spin_lock_irq(pool->lock).
827
 */
828
static void wake_up_worker(struct worker_pool *pool)
829
{
830
	struct worker *worker = first_idle_worker(pool);
831 832 833 834 835

	if (likely(worker))
		wake_up_process(worker->task);
}

836
/**
837 838 839 840 841 842 843 844 845 846
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
847
void wq_worker_waking_up(struct task_struct *task, int cpu)
848 849 850
{
	struct worker *worker = kthread_data(task);

851
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
852
		WARN_ON_ONCE(worker->pool->cpu != cpu);
853
		atomic_inc(&worker->pool->nr_running);
854
	}
855 856 857 858 859 860 861 862 863 864 865 866 867
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
868
 * Return:
869 870
 * Worker task on @cpu to wake up, %NULL if none.
 */
871
struct task_struct *wq_worker_sleeping(struct task_struct *task)
872 873
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
874
	struct worker_pool *pool;
875

876 877 878 879 880
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
881
	if (worker->flags & WORKER_NOT_RUNNING)
882 883
		return NULL;

884 885
	pool = worker->pool;

886
	/* this can only happen on the local cpu */
887
	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
888
		return NULL;
889 890 891 892 893 894

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
895 896 897
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
898
	 * manipulating idle_list, so dereferencing idle_list without pool
899
	 * lock is safe.
900
	 */
901 902
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
903
		to_wakeup = first_idle_worker(pool);
904 905 906 907 908
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
909
 * @worker: self
910 911
 * @flags: flags to set
 *
912
 * Set @flags in @worker->flags and adjust nr_running accordingly.
913
 *
914
 * CONTEXT:
915
 * spin_lock_irq(pool->lock)
916
 */
917
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
918
{
919
	struct worker_pool *pool = worker->pool;
920

921 922
	WARN_ON_ONCE(worker->task != current);

923
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
924 925
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
926
		atomic_dec(&pool->nr_running);
927 928
	}

929 930 931 932
	worker->flags |= flags;
}

/**
933
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
934
 * @worker: self
935 936
 * @flags: flags to clear
 *
937
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
938
 *
939
 * CONTEXT:
940
 * spin_lock_irq(pool->lock)
941 942 943
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
944
	struct worker_pool *pool = worker->pool;
945 946
	unsigned int oflags = worker->flags;

947 948
	WARN_ON_ONCE(worker->task != current);

949
	worker->flags &= ~flags;
950

951 952 953 954 955
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
956 957
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
958
			atomic_inc(&pool->nr_running);
959 960
}

961 962
/**
 * find_worker_executing_work - find worker which is executing a work
963
 * @pool: pool of interest
964 965
 * @work: work to find worker for
 *
966 967
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
968 969 970 971 972 973 974 975 976 977 978 979
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
980 981 982 983 984 985
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
986 987
 *
 * CONTEXT:
988
 * spin_lock_irq(pool->lock).
989
 *
990 991
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
992
 * otherwise.
993
 */
994
static struct worker *find_worker_executing_work(struct worker_pool *pool,
995
						 struct work_struct *work)
996
{
997 998
	struct worker *worker;

999
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1000 1001 1002
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1003 1004 1005
			return worker;

	return NULL;
1006 1007
}

1008 1009 1010 1011
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1012
 * @nextp: out parameter for nested worklist walking
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1023
 * spin_lock_irq(pool->lock).
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

Tejun Heo's avatar
Tejun Heo committed
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1107
static void pwq_activate_delayed_work(struct work_struct *work)
1108
{
1109
	struct pool_workqueue *pwq = get_work_pwq(work);
1110 1111

	trace_workqueue_activate_work(work);
1112 1113
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1114
	move_linked_works(work, &pwq->pool->worklist, NULL);
1115
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1116
	pwq->nr_active++;
1117 1118
}

1119
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1120
{
1121
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1122 1123
						    struct work_struct, entry);

1124
	pwq_activate_delayed_work(work);
1125 1126
}

1127
/**
1128 1129
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1130 1131 1132
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1133
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1134 1135
 *
 * CONTEXT:
1136
 * spin_lock_irq(pool->lock).
1137
 */
1138
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1139
{
Tejun Heo's avatar
Tejun Heo committed
1140
	/* uncolored work items don't participate in flushing or nr_active */
1141
	if (color == WORK_NO_COLOR)
Tejun Heo's avatar
Tejun Heo committed
1142
		goto out_put;
1143

1144
	pwq->nr_in_flight[color]--;
1145

1146 1147
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1148
		/* one down, submit a delayed one */
1149 1150
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1151 1152 1153
	}

	/* is flush in progress and are we at the flushing tip? */
1154
	if (likely(pwq->flush_color != color))
Tejun Heo's avatar
Tejun Heo committed
1155
		goto out_put;
1156 1157

	/* are there still in-flight works? */
1158
	if (pwq->nr_in_flight[color])
Tejun Heo's avatar
Tejun Heo committed
1159
		goto out_put;
1160

1161 1162
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1163 1164

	/*
1165
	 * If this was the last pwq, wake up the first flusher.  It
1166 1167
	 * will handle the rest.
	 */
1168 1169
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
Tejun Heo's avatar
Tejun Heo committed
1170 1171
out_put:
	put_pwq(pwq);
1172 1173
}

1174
/**
1175
 * try_to_grab_pending - steal work item from worklist and disable irq
1176 1177
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1178
 * @flags: place to store irq state
1179 1180
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1181
 * stable state - idle, on timer or on worklist.
1182
 *
1183
 * Return:
1184 1185 1186
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1187 1188
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1189
 *
1190
 * Note:
1191
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1192 1193 1194
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1195 1196 1197 1198
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1199
 * This function is safe to call from any context including IRQ handler.
1200
 */
1201 1202
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1203
{
1204
	struct worker_pool *pool;
1205
	struct pool_workqueue *pwq;
1206

1207 1208
	local_irq_save(*flags);

1209 1210 1211 1212
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1213 1214 1215 1216 1217
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1218 1219 1220 1221 1222
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1223 1224 1225 1226 1227 1228 1229
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1230 1231
	pool = get_work_pool(work);
	if (!pool)
1232
		goto fail;
1233

1234
	spin_lock(&pool->lock);
1235
	/*
1236 1237 1238 1239 1240
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1241 1242
	 * item is currently queued on that pool.
	 */
1243 1244
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1245 1246 1247 1248 1249
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1250
		 * on the delayed_list, will confuse pwq->nr_active
1251 1252 1253 1254
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1255
			pwq_activate_delayed_work(work);
1256 1257

		list_del_init(&work->entry);
1258
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1259

1260
		/* work->data points to pwq iff queued, point to pool */
1261 1262 1263 1264
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1265
	}
1266
	spin_unlock(&pool->lock);
1267 1268 1269 1270 1271
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1272
	return -EAGAIN;
1273 1274
}

Tejun Heo's avatar
Tejun Heo committed
1275
/**
1276
 * insert_work - insert a work into a pool
1277
 * @pwq: pwq @work belongs to
Tejun Heo's avatar
Tejun Heo committed
1278 1279 1280 1281
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1282
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1283
 * work_struct flags.
Tejun Heo's avatar
Tejun Heo committed
1284 1285
 *
 * CONTEXT:
1286
 * spin_lock_irq(pool->lock).
Tejun Heo's avatar
Tejun Heo committed
1287
 */
1288 1289
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
Oleg Nesterov's avatar
Oleg Nesterov committed
1290
{
1291
	struct worker_pool *pool = pwq->pool;
1292

Tejun Heo's avatar
Tejun Heo committed
1293
	/* we own @work, set data and link */
1294
	set_work_pwq(work, pwq, extra_flags);
1295
	list_add_tail(&work->entry, head);
Tejun Heo's avatar
Tejun Heo committed
1296
	get_pwq(pwq);
1297 1298

	/*
1299 1300 1301
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1302 1303 1304
	 */
	smp_mb();

1305 1306
	if (__need_more_worker(pool))
		wake_up_worker(pool);
Oleg Nesterov's avatar
Oleg Nesterov committed
1307 1308
}

1309 1310
/*
 * Test whether @work is being queued from another work executing on the
1311
 * same workqueue.
1312 1313 1314
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1315 1316 1317 1318 1319 1320 1321
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1322
	return worker && worker->current_pwq->wq == wq;
1323 1324
}

1325 1326 1327 1328 1329 1330 1331
/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
1332
	static bool printed_dbg_warning;
1333 1334
	int new_cpu;

1335 1336 1337 1338 1339 1340 1341 1342
	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else if (!printed_dbg_warning) {
		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
		printed_dbg_warning = true;
	}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	if (cpumask_empty(wq_unbound_cpumask))
		return cpu;

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

1358
static void __queue_work(int cpu, struct workqueue_struct *wq,
Linus Torvalds's avatar
Linus Torvalds committed
1359 1360
			 struct work_struct *work)
{
1361
	struct pool_workqueue *pwq;
1362
	struct worker_pool *last_pool;
1363
	struct list_head *worklist;
1364
	unsigned int work_flags;
1365
	unsigned int req_cpu = cpu;
1366 1367 1368 1369 1370 1371 1372 1373

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
Linus Torvalds's avatar
Linus Torvalds committed
1374

1375
	debug_work_activate(work);
1376

1377
	/* if draining, only works from the same workqueue are allowed */
1378
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1379
	    WARN_ON_ONCE(!is_chained_work(wq)))
1380
		return;
1381
retry:
1382
	if (req_cpu == WORK_CPU_UNBOUND)
1383
		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1384

1385
	/* pwq which will be used unless @work is executing elsewhere */
1386
	if (!(wq->flags & WQ_UNBOUND))
1387
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1388 1389
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1390

1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1399

1400
		spin_lock(&last_pool->lock);
1401

1402
		worker = find_worker_executing_work(last_pool, work);
1403

1404 1405
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1406
		} else {
1407 1408
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1409
			spin_lock(&pwq->pool->lock);
1410
		}
1411
	} else {
1412
		spin_lock(&pwq->pool->lock);
1413 1414
	}

1415 1416 1417 1418
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1419 1420
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1434 1435
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1436

1437
	if (WARN_ON(!list_empty(&work->entry))) {
1438
		spin_unlock(&pwq->pool->lock);
1439 1440
		return;
	}
1441

1442 1443
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1444

1445
	if (likely(pwq->nr_active < pwq->max_active)) {
1446
		trace_workqueue_activate_work(work);
1447 1448
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1449 1450
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1451 1452
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1453
		worklist = &pwq->delayed_works;
1454
	}
1455

1456
	insert_work(pwq, work, worklist, work_flags);
1457

1458
	spin_unlock(&pwq->pool->lock);
Linus Torvalds's avatar
Linus Torvalds committed
1459 1460
}

1461
/**
1462 1463
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1464 1465 1466
 * @wq: workqueue to use
 * @work: work to queue
 *
1467 1468
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1469 1470
 *
 * Return: %false if @work was already on a queue, %true otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
1471
 */
1472 1473
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
Linus Torvalds's avatar
Linus Torvalds committed
1474
{
1475
	bool ret = false;
1476
	unsigned long flags;
1477

1478
	local_irq_save(flags);
1479

1480
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
Tejun Heo's avatar
Tejun Heo committed
1481
		__queue_work(cpu, wq, work);
1482
		ret = true;
1483
	}
1484

1485
	local_irq_restore(flags);
Linus Torvalds's avatar
Linus Torvalds committed
1486 1487
	return ret;
}
1488
EXPORT_SYMBOL(queue_work_on);
Linus Torvalds's avatar
Linus Torvalds committed
1489

1490
void delayed_work_timer_fn(unsigned long __data)
Linus Torvalds's avatar
Linus Torvalds committed
1491
{
1492
	struct delayed_work *dwork = (struct delayed_work *)__data;
Linus Torvalds's avatar
Linus Torvalds committed
1493

1494
	/* should have been called from irqsafe timer with irq already off */
1495
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
Linus Torvalds's avatar
Linus Torvalds committed
1496
}
1497
EXPORT_SYMBOL(delayed_work_timer_fn);
Linus Torvalds's avatar
Linus Torvalds committed
1498

1499 1500
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
Linus Torvalds's avatar
Linus Torvalds committed
1501
{
1502 1503 1504 1505 1506
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1507 1508
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1521
	timer_stats_timer_set_start_info(&dwork->timer);
Linus Torvalds's avatar
Linus Torvalds committed
1522

1523
	dwork->wq = wq;
1524
	dwork->cpu = cpu;
1525 1526
	timer->expires = jiffies + delay;

1527 1528 1529 1530
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
Linus Torvalds's avatar
Linus Torvalds committed
1531 1532
}

1533 1534 1535 1536
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1537
 * @dwork: work to queue
1538 1539
 * @delay: number of jiffies to wait before queueing
 *
1540
 * Return: %false if @work was already on a queue, %true otherwise.  If
1541 1542
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1543
 */
1544 1545
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1546
{
1547
	struct work_struct *work = &dwork->work;
1548
	bool ret = false;
1549
	unsigned long flags;
1550

1551 1552
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1553

1554
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1555
		__queue_delayed_work(cpu, wq, dwork, delay);
1556
		ret = true;
1557
	}
1558

1559
	local_irq_restore(flags);
1560 1561
	return ret;
}
1562
EXPORT_SYMBOL(queue_delayed_work_on);
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1576
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1577 1578
 * pending and its timer was modified.
 *
1579
 * This function is safe to call from any context including IRQ handler.
1580 1581 1582 1583 1584 1585 1586
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1587

1588 1589 1590
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1591

1592 1593 1594
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1595
	}
1596 1597

	/* -ENOENT from try_to_grab_pending() becomes %true */
1598 1599
	return ret;
}
1600 1601
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

Tejun Heo's avatar
Tejun Heo committed
1602 1603 1604 1605 1606 1607 1608 1609
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1610
 * spin_lock_irq(pool->lock).
Tejun Heo's avatar
Tejun Heo committed
1611 1612
 */
static void worker_enter_idle(struct worker *worker)
Linus Torvalds's avatar
Linus Torvalds committed
1613
{
1614
	struct worker_pool *pool = worker->pool;
Tejun Heo's avatar
Tejun Heo committed
1615

1616 1617 1618 1619
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
Tejun Heo's avatar
Tejun Heo committed
1620

1621
	/* can't use worker_set_flags(), also called from create_worker() */
1622
	worker->flags |= WORKER_IDLE;
1623
	pool->nr_idle++;
1624
	worker->last_active = jiffies;
Tejun Heo's avatar
Tejun Heo committed
1625 1626

	/* idle_list is LIFO */
1627
	list_add(&worker->entry, &pool->idle_list);
1628

1629 1630
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1631

1632
	/*
1633
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1634
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1635 1636
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1637
	 */
1638
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1639
		     pool->nr_workers == pool->nr_idle &&
1640
		     atomic_read(&pool->nr_running));
Tejun Heo's avatar
Tejun Heo committed
1641 1642 1643 1644 1645 1646 1647 1648 1649
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1650
 * spin_lock_irq(pool->lock).
Tejun Heo's avatar
Tejun Heo committed
1651 1652 1653
 */
static void worker_leave_idle(struct worker *worker)
{
1654
	struct worker_pool *pool = worker->pool;
Tejun Heo's avatar
Tejun Heo committed
1655

1656 1657
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1658
	worker_clr_flags(worker, WORKER_IDLE);
1659
	pool->nr_idle--;
Tejun Heo's avatar
Tejun Heo committed
1660 1661 1662
	list_del_init(&worker->entry);
}

1663
static struct worker *alloc_worker(int node)
Tejun Heo's avatar
Tejun Heo committed
1664 1665 1666
{
	struct worker *worker;

1667
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
Tejun Heo's avatar
Tejun Heo committed
1668 1669
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1670
		INIT_LIST_HEAD(&worker->scheduled);
1671
		INIT_LIST_HEAD(&worker->node);
1672 1673
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
Tejun Heo's avatar
Tejun Heo committed
1674
	}
Tejun Heo's avatar
Tejun Heo committed
1675 1676 1677
	return worker;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1711 1712 1713 1714 1715
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1716 1717 1718
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1719 1720 1721 1722 1723 1724
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1725
	mutex_lock(&pool->attach_mutex);
1726 1727
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1728
		detach_completion = pool->detach_completion;
1729
	mutex_unlock(&pool->attach_mutex);
1730

1731 1732 1733
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1734 1735 1736 1737
	if (detach_completion)
		complete(detach_completion);
}

Tejun Heo's avatar
Tejun Heo committed
1738 1739
/**
 * create_worker - create a new workqueue worker
1740
 * @pool: pool the new worker will belong to
Tejun Heo's avatar
Tejun Heo committed
1741
 *
1742
 * Create and start a new worker which is attached to @pool.
Tejun Heo's avatar
Tejun Heo committed
1743 1744 1745 1746
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1747
 * Return:
Tejun Heo's avatar
Tejun Heo committed
1748 1749
 * Pointer to the newly created worker.
 */
1750
static struct worker *create_worker(struct worker_pool *pool)
Tejun Heo's avatar
Tejun Heo committed
1751 1752
{
	struct worker *worker = NULL;
1753
	int id = -1;
1754
	char id_buf[16];
Tejun Heo's avatar
Tejun Heo committed
1755

1756 1757
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1758 1759
	if (id < 0)
		goto fail;
Tejun Heo's avatar
Tejun Heo committed
1760

1761
	worker = alloc_worker(pool->node);
Tejun Heo's avatar
Tejun Heo committed
1762 1763 1764
	if (!worker)
		goto fail;

1765
	worker->pool = pool;
Tejun Heo's avatar
Tejun Heo committed
1766 1767
	worker->id = id;

1768
	if (pool->cpu >= 0)
1769 1770
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1771
	else
1772 1773
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1774
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1775
					      "kworker/%s", id_buf);
Tejun Heo's avatar
Tejun Heo committed
1776 1777 1778
	if (IS_ERR(worker->task))
		goto fail;

1779
	set_user_nice(worker->task, pool->attrs->nice);
1780
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1781

1782
	/* successful, attach the worker to the pool */
1783
	worker_attach_to_pool(worker, pool);
1784

1785 1786 1787 1788 1789 1790 1791
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

Tejun Heo's avatar
Tejun Heo committed
1792
	return worker;
1793

Tejun Heo's avatar
Tejun Heo committed
1794
fail:
1795
	if (id >= 0)
1796
		ida_simple_remove(&pool->worker_ida, id);
Tejun Heo's avatar
Tejun Heo committed
1797 1798 1799 1800 1801 1802 1803 1804
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1805 1806
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
Tejun Heo's avatar
Tejun Heo committed
1807 1808
 *
 * CONTEXT:
1809
 * spin_lock_irq(pool->lock).
Tejun Heo's avatar
Tejun Heo committed
1810 1811 1812
 */
static void destroy_worker(struct worker *worker)
{
1813
	struct worker_pool *pool = worker->pool;
Tejun Heo's avatar
Tejun Heo committed
1814

1815 1816
	lockdep_assert_held(&pool->lock);

Tejun Heo's avatar
Tejun Heo committed
1817
	/* sanity check frenzy */
1818
	if (WARN_ON(worker->current_work) ||
1819 1820
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1821
		return;
Tejun Heo's avatar
Tejun Heo committed
1822

1823 1824
	pool->nr_workers--;
	pool->nr_idle--;
1825

Tejun Heo's avatar
Tejun Heo committed
1826
	list_del_init(&worker->entry);
1827
	worker->flags |= WORKER_DIE;
1828
	wake_up_process(worker->task);
Tejun Heo's avatar
Tejun Heo committed
1829 1830
}

1831
static void idle_worker_timeout(unsigned long __pool)
1832
{
1833
	struct worker_pool *pool = (void *)__pool;
1834

1835
	spin_lock_irq(&pool->lock);
1836

1837
	while (too_many_workers(pool)) {
1838 1839 1840 1841
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1842
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1843 1844
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1845
		if (time_before(jiffies, expires)) {
1846
			mod_timer(&pool->idle_timer, expires);
1847
			break;
1848
		}
1849 1850

		destroy_worker(worker);
1851 1852
	}

1853
	spin_unlock_irq(&pool->lock);
1854
}
1855

1856
static void send_mayday(struct work_struct *work)
1857
{
1858 1859
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1860

1861
	lockdep_assert_held(&wq_mayday_lock);
1862

1863
	if (!wq->rescuer)
1864
		return;
1865 1866

	/* mayday mayday mayday */
1867
	if (list_empty(&pwq->mayday_node)) {
1868 1869 1870 1871 1872 1873
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1874
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1875
		wake_up_process(wq->rescuer->task);
1876
	}
1877 1878
}

1879
static void pool_mayday_timeout(unsigned long __pool)
1880
{
1881
	struct worker_pool *pool = (void *)__pool;
1882 1883
	struct work_struct *work;

1884 1885
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1886

1887
	if (need_to_create_worker(pool)) {
1888 1889 1890 1891 1892 1893
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1894
		list_for_each_entry(work, &pool->worklist, entry)
1895
			send_mayday(work);
Linus Torvalds's avatar
Linus Torvalds committed
1896
	}
1897

1898 1899
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1900

1901
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
Linus Torvalds's avatar
Linus Torvalds committed
1902 1903
}

1904 1905
/**
 * maybe_create_worker - create a new worker if necessary
1906
 * @pool: pool to create a new worker for
1907
 *
1908
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1909 1910
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911
 * sent to all rescuers with works scheduled on @pool to resolve
1912 1913
 * possible allocation deadlock.
 *
1914 1915
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1916 1917
 *
 * LOCKING:
1918
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1919 1920 1921
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1922
static void maybe_create_worker(struct worker_pool *pool)
1923 1924
__releases(&pool->lock)
__acquires(&pool->lock)
Linus Torvalds's avatar
Linus Torvalds committed
1925
{
1926
restart:
1927
	spin_unlock_irq(&pool->lock);
1928

1929
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1930
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1931 1932

	while (true) {
1933
		if (create_worker(pool) || !need_to_create_worker(pool))
1934
			break;
Linus Torvalds's avatar
Linus Torvalds committed
1935

1936
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1937

1938
		if (!need_to_create_worker(pool))
1939 1940 1941
			break;
	}

1942
	del_timer_sync(&pool->mayday_timer);
1943
	spin_lock_irq(&pool->lock);
1944 1945 1946 1947 1948
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1949
	if (need_to_create_worker(pool))
1950 1951 1952
		goto restart;
}

1953
/**
1954 1955
 * manage_workers - manage worker pool
 * @worker: self
1956
 *
1957
 * Assume the manager role and manage the worker pool @worker belongs
1958
 * to.  At any given time, there can be only zero or one manager per
1959
 * pool.  The exclusion is handled automatically by this function.
1960 1961 1962 1963
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1964 1965
 *
 * CONTEXT:
1966
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1967 1968
 * multiple times.  Does GFP_KERNEL allocations.
 *
1969
 * Return:
1970 1971 1972 1973
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1974
 */
1975
static bool manage_workers(struct worker *worker)
1976
{
1977
	struct worker_pool *pool = worker->pool;
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1989
	if (!mutex_trylock(&pool->manager_arb))
1990
		return false;
1991
	pool->manager = worker;
1992

1993
	maybe_create_worker(pool);
1994

1995
	pool->manager = NULL;
1996
	mutex_unlock(&pool->manager_arb);
1997
	return true;
1998 1999
}

2000 2001
/**
 * process_one_work - process single work
Tejun Heo's avatar
Tejun Heo committed
2002
 * @worker: self
2003 2004 2005 2006 2007 2008 2009 2010 2011
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2012
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2013
 */
Tejun Heo's avatar
Tejun Heo committed
2014
static void process_one_work(struct worker *worker, struct work_struct *work)
2015 2016
__releases(&pool->lock)
__acquires(&pool->lock)
2017
{
2018
	struct pool_workqueue *pwq = get_work_pwq(work);
2019
	struct worker_pool *pool = worker->pool;
2020
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2021
	int work_color;
2022
	struct worker *collision;
2023 2024 2025 2026 2027 2028 2029 2030
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2031 2032 2033
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2034
#endif
2035
	/* ensure we're on the correct CPU */
2036
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2037
		     raw_smp_processor_id() != pool->cpu);
2038

2039 2040 2041 2042 2043 2044
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2045
	collision = find_worker_executing_work(pool, work);
2046 2047 2048 2049 2050
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2051
	/* claim and dequeue */
2052
	debug_work_deactivate(work);
2053
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
Tejun Heo's avatar
Tejun Heo committed
2054
	worker->current_work = work;
2055
	worker->current_func = work->func;
2056
	worker->current_pwq = pwq;
2057
	work_color = get_work_color(work);
2058

2059 2060
	list_del_init(&work->entry);

2061
	/*
2062 2063 2064 2065
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2066 2067
	 */
	if (unlikely(cpu_intensive))
2068
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2069

2070
	/*
2071 2072 2073 2074
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2075
	 * UNBOUND and CPU_INTENSIVE ones.
2076
	 */
2077
	if (need_more_worker(pool))
2078
		wake_up_worker(pool);
2079

2080
	/*
2081
	 * Record the last pool and clear PENDING which should be the last
2082
	 * update to @work.  Also, do this inside @pool->lock so that
2083 2084
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2085
	 */
2086
	set_work_pool_and_clear_pending(work, pool->id);
2087

2088
	spin_unlock_irq(&pool->lock);
2089

2090
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2091
	lock_map_acquire(&lockdep_map);
2092
	trace_workqueue_execute_start(work);
2093
	worker->current_func(work);
2094 2095 2096 2097 2098
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2099
	lock_map_release(&lockdep_map);
2100
	lock_map_release(&pwq->wq->lockdep_map);
2101 2102

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2103 2104
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2105 2106
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2107 2108 2109 2110
		debug_show_held_locks(current);
		dump_stack();
	}

2111 2112 2113 2114 2115
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2116 2117
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2118
	 */
2119
	cond_resched_rcu_qs();
2120

2121
	spin_lock_irq(&pool->lock);
2122

2123 2124 2125 2126
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2127
	/* we're done with it, release */
2128
	hash_del(&worker->hentry);
Tejun Heo's avatar
Tejun Heo committed
2129
	worker->current_work = NULL;
2130
	worker->current_func = NULL;
2131
	worker->current_pwq = NULL;
2132
	worker->desc_valid = false;
2133
	pwq_dec_nr_in_flight(pwq, work_color);
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2145
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2146 2147 2148
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
Linus Torvalds's avatar
Linus Torvalds committed
2149
{
2150 2151
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
Linus Torvalds's avatar
Linus Torvalds committed
2152
						struct work_struct, entry);
Tejun Heo's avatar
Tejun Heo committed
2153
		process_one_work(worker, work);
Linus Torvalds's avatar
Linus Torvalds committed
2154 2155 2156
	}
}

Tejun Heo's avatar
Tejun Heo committed
2157 2158
/**
 * worker_thread - the worker thread function
Tejun Heo's avatar
Tejun Heo committed
2159
 * @__worker: self
Tejun Heo's avatar
Tejun Heo committed
2160
 *
2161 2162 2163 2164 2165
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2166 2167
 *
 * Return: 0
Tejun Heo's avatar
Tejun Heo committed
2168
 */
Tejun Heo's avatar
Tejun Heo committed
2169
static int worker_thread(void *__worker)
Linus Torvalds's avatar
Linus Torvalds committed
2170
{
Tejun Heo's avatar
Tejun Heo committed
2171
	struct worker *worker = __worker;
2172
	struct worker_pool *pool = worker->pool;
Linus Torvalds's avatar
Linus Torvalds committed
2173

2174 2175
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
Tejun Heo's avatar
Tejun Heo committed
2176
woke_up:
2177
	spin_lock_irq(&pool->lock);
Linus Torvalds's avatar
Linus Torvalds committed
2178

2179 2180
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2181
		spin_unlock_irq(&pool->lock);
2182 2183
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2184 2185

		set_task_comm(worker->task, "kworker/dying");
2186
		ida_simple_remove(&pool->worker_ida, worker->id);
2187 2188
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2189
		return 0;
Tejun Heo's avatar
Tejun Heo committed
2190
	}
2191

Tejun Heo's avatar
Tejun Heo committed
2192
	worker_leave_idle(worker);
2193
recheck:
2194
	/* no more worker necessary? */
2195
	if (!need_more_worker(pool))
2196 2197 2198
		goto sleep;

	/* do we need to manage? */
2199
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2200 2201
		goto recheck;

Tejun Heo's avatar
Tejun Heo committed
2202 2203 2204 2205 2206
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2207
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
Tejun Heo's avatar
Tejun Heo committed
2208

2209
	/*
2210 2211 2212 2213 2214
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2215
	 */
2216
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2217 2218

	do {
Tejun Heo's avatar
Tejun Heo committed
2219
		struct work_struct *work =
2220
			list_first_entry(&pool->worklist,
Tejun Heo's avatar
Tejun Heo committed
2221 2222
					 struct work_struct, entry);

2223 2224
		pool->watchdog_ts = jiffies;

Tejun Heo's avatar
Tejun Heo committed
2225 2226 2227 2228
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2229
				process_scheduled_works(worker);
Tejun Heo's avatar
Tejun Heo committed
2230 2231 2232
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2233
		}
2234
	} while (keep_working(pool));
2235

2236
	worker_set_flags(worker, WORKER_PREP);
2237
sleep:
Tejun Heo's avatar
Tejun Heo committed
2238
	/*
2239 2240 2241 2242 2243
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
Tejun Heo's avatar
Tejun Heo committed
2244 2245 2246
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2247
	spin_unlock_irq(&pool->lock);
Tejun Heo's avatar
Tejun Heo committed
2248 2249
	schedule();
	goto woke_up;
Linus Torvalds's avatar
Linus Torvalds committed
2250 2251
}

2252 2253
/**
 * rescuer_thread - the rescuer thread function
2254
 * @__rescuer: self
2255 2256
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2257
 * workqueue which has WQ_MEM_RECLAIM set.
2258
 *
2259
 * Regular work processing on a pool may block trying to create a new
2260 2261 2262 2263 2264
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2265 2266
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2267 2268 2269
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2270 2271
 *
 * Return: 0
2272
 */
2273
static int rescuer_thread(void *__rescuer)
2274
{
2275 2276
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2277
	struct list_head *scheduled = &rescuer->scheduled;
2278
	bool should_stop;
2279 2280

	set_user_nice(current, RESCUER_NICE_LEVEL);
2281 2282 2283 2284 2285 2286

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2287 2288 2289
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2299

2300
	/* see whether any pwq is asking for help */
2301
	spin_lock_irq(&wq_mayday_lock);
2302 2303 2304 2305

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2306
		struct worker_pool *pool = pwq->pool;
2307
		struct work_struct *work, *n;
2308
		bool first = true;
2309 2310

		__set_current_state(TASK_RUNNING);
2311 2312
		list_del_init(&pwq->mayday_node);

2313
		spin_unlock_irq(&wq_mayday_lock);
2314

2315 2316 2317
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2318
		rescuer->pool = pool;
2319 2320 2321 2322 2323

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2324
		WARN_ON_ONCE(!list_empty(scheduled));
2325 2326 2327 2328
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2329
				move_linked_works(work, scheduled, &n);
2330 2331 2332
			}
			first = false;
		}
2333

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2353

2354 2355
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2356
		 * go away while we're still attached to it.
2357 2358 2359
		 */
		put_pwq(pwq);

2360
		/*
2361
		 * Leave this pool.  If need_more_worker() is %true, notify a
2362 2363 2364
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2365
		if (need_more_worker(pool))
2366
			wake_up_worker(pool);
2367

2368
		rescuer->pool = NULL;
2369 2370 2371 2372 2373
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2374 2375
	}

2376
	spin_unlock_irq(&wq_mayday_lock);
2377

2378 2379 2380 2381 2382 2383
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2384 2385
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2386 2387
	schedule();
	goto repeat;
Linus Torvalds's avatar
Linus Torvalds committed
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2415 2416
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2417 2418 2419 2420 2421
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

Oleg Nesterov's avatar
Oleg Nesterov committed
2422 2423 2424
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2425
	struct task_struct	*task;	/* purely informational */
Oleg Nesterov's avatar
Oleg Nesterov committed
2426 2427 2428 2429 2430 2431 2432 2433
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

Tejun Heo's avatar
Tejun Heo committed
2434 2435
/**
 * insert_wq_barrier - insert a barrier work
2436
 * @pwq: pwq to insert barrier into
Tejun Heo's avatar
Tejun Heo committed
2437
 * @barr: wq_barrier to insert
2438 2439
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
Tejun Heo's avatar
Tejun Heo committed
2440
 *
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2453
 * underneath us, so we can't reliably determine pwq from @target.
Tejun Heo's avatar
Tejun Heo committed
2454 2455
 *
 * CONTEXT:
2456
 * spin_lock_irq(pool->lock).
Tejun Heo's avatar
Tejun Heo committed
2457
 */
2458
static void insert_wq_barrier(struct pool_workqueue *pwq,
2459 2460
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
Oleg Nesterov's avatar
Oleg Nesterov committed
2461
{
2462 2463 2464
	struct list_head *head;
	unsigned int linked = 0;

2465
	/*
2466
	 * debugobject calls are safe here even with pool->lock locked
2467 2468 2469 2470
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
2471
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2472
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
Oleg Nesterov's avatar
Oleg Nesterov committed
2473
	init_completion(&barr->done);
2474
	barr->task = current;
2475

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2491
	debug_work_activate(&barr->work);
2492
	insert_work(pwq, &barr->work, head,
2493
		    work_color_to_flags(WORK_NO_COLOR) | linked);
Oleg Nesterov's avatar
Oleg Nesterov committed
2494 2495
}

2496
/**
2497
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2498 2499 2500 2501
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2502
 * Prepare pwqs for workqueue flushing.
2503
 *
2504 2505 2506 2507 2508
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2509 2510 2511 2512 2513 2514 2515
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2516
 * If @work_color is non-negative, all pwqs should have the same
2517 2518 2519 2520
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2521
 * mutex_lock(wq->mutex).
2522
 *
2523
 * Return:
2524 2525 2526
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2527
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2528
				      int flush_color, int work_color)
Linus Torvalds's avatar
Linus Torvalds committed
2529
{
2530
	bool wait = false;
2531
	struct pool_workqueue *pwq;
Linus Torvalds's avatar
Linus Torvalds committed
2532

2533
	if (flush_color >= 0) {
2534
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2535
		atomic_set(&wq->nr_pwqs_to_flush, 1);
Linus Torvalds's avatar
Linus Torvalds committed
2536
	}
2537

2538
	for_each_pwq(pwq, wq) {
2539
		struct worker_pool *pool = pwq->pool;
Oleg Nesterov's avatar
Oleg Nesterov committed
2540

2541
		spin_lock_irq(&pool->lock);
2542

2543
		if (flush_color >= 0) {
2544
			WARN_ON_ONCE(pwq->flush_color != -1);
Oleg Nesterov's avatar
Oleg Nesterov committed
2545

2546 2547 2548
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2549 2550 2551
				wait = true;
			}
		}
Linus Torvalds's avatar
Linus Torvalds committed
2552

2553
		if (work_color >= 0) {
2554
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2555
			pwq->work_color = work_color;
2556
		}
Linus Torvalds's avatar
Linus Torvalds committed
2557

2558
		spin_unlock_irq(&pool->lock);
Linus Torvalds's avatar
Linus Torvalds committed
2559
	}
2560

2561
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2562
		complete(&wq->first_flusher->done);
2563

2564
	return wait;
Linus Torvalds's avatar
Linus Torvalds committed
2565 2566
}

2567
/**
Linus Torvalds's avatar
Linus Torvalds committed
2568
 * flush_workqueue - ensure that any scheduled work has run to completion.
2569
 * @wq: workqueue to flush
Linus Torvalds's avatar
Linus Torvalds committed
2570
 *
2571 2572
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
Linus Torvalds's avatar
Linus Torvalds committed
2573
 */
2574
void flush_workqueue(struct workqueue_struct *wq)
Linus Torvalds's avatar
Linus Torvalds committed
2575
{
2576 2577 2578 2579 2580 2581
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
Linus Torvalds's avatar
Linus Torvalds committed
2582

2583 2584
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2585

2586
	mutex_lock(&wq->mutex);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2599
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2600 2601 2602 2603 2604
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2605
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2606 2607 2608

			wq->first_flusher = &this_flusher;

2609
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2610 2611 2612 2613 2614 2615 2616 2617
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2618
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2619
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2620
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2631 2632
	check_flush_dependency(wq, NULL);

2633
	mutex_unlock(&wq->mutex);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2646
	mutex_lock(&wq->mutex);
2647

2648 2649 2650 2651
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2652 2653
	wq->first_flusher = NULL;

2654 2655
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2668 2669
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2689
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2690 2691 2692
		}

		if (list_empty(&wq->flusher_queue)) {
2693
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2694 2695 2696 2697 2698
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2699
		 * the new first flusher and arm pwqs.
2700
		 */
2701 2702
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2703 2704 2705 2706

		list_del_init(&next->list);
		wq->first_flusher = next;

2707
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2718
	mutex_unlock(&wq->mutex);
Linus Torvalds's avatar
Linus Torvalds committed
2719
}
2720
EXPORT_SYMBOL(flush_workqueue);
Linus Torvalds's avatar
Linus Torvalds committed
2721

2722 2723 2724 2725 2726 2727 2728
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
Chen Hanxiao's avatar
Chen Hanxiao committed
2729
 * repeatedly until it becomes empty.  The number of flushing is determined
2730 2731 2732 2733 2734 2735
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2736
	struct pool_workqueue *pwq;
2737 2738 2739 2740

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2741
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2742
	 */
2743
	mutex_lock(&wq->mutex);
2744
	if (!wq->nr_drainers++)
2745
		wq->flags |= __WQ_DRAINING;
2746
	mutex_unlock(&wq->mutex);
2747 2748 2749
reflush:
	flush_workqueue(wq);

2750
	mutex_lock(&wq->mutex);
2751

2752
	for_each_pwq(pwq, wq) {
2753
		bool drained;
2754

2755
		spin_lock_irq(&pwq->pool->lock);
2756
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2757
		spin_unlock_irq(&pwq->pool->lock);
2758 2759

		if (drained)
2760 2761 2762 2763
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2764
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2765
				wq->name, flush_cnt);
2766

2767
		mutex_unlock(&wq->mutex);
2768 2769 2770 2771
		goto reflush;
	}

	if (!--wq->nr_drainers)
2772
		wq->flags &= ~__WQ_DRAINING;
2773
	mutex_unlock(&wq->mutex);
2774 2775 2776
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2777
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2778
{
2779
	struct worker *worker = NULL;
2780
	struct worker_pool *pool;
2781
	struct pool_workqueue *pwq;
2782 2783

	might_sleep();
2784 2785

	local_irq_disable();
2786
	pool = get_work_pool(work);
2787 2788
	if (!pool) {
		local_irq_enable();
2789
		return false;
2790
	}
2791

2792
	spin_lock(&pool->lock);
2793
	/* see the comment in try_to_grab_pending() with the same code */
2794 2795 2796
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
Tejun Heo's avatar
Tejun Heo committed
2797
			goto already_gone;
2798
	} else {
2799
		worker = find_worker_executing_work(pool, work);
2800
		if (!worker)
Tejun Heo's avatar
Tejun Heo committed
2801
			goto already_gone;
2802
		pwq = worker->current_pwq;
2803
	}
2804

2805 2806
	check_flush_dependency(pwq->wq, work);

2807
	insert_wq_barrier(pwq, barr, work, worker);
2808
	spin_unlock_irq(&pool->lock);
2809

2810 2811 2812 2813 2814 2815
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2816
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2817
		lock_map_acquire(&pwq->wq->lockdep_map);
2818
	else
2819 2820
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2821

2822
	return true;
Tejun Heo's avatar
Tejun Heo committed
2823
already_gone:
2824
	spin_unlock_irq(&pool->lock);
2825
	return false;
2826
}
2827 2828 2829 2830 2831

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2832 2833
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2834
 *
2835
 * Return:
2836 2837 2838 2839 2840
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2841 2842
	struct wq_barrier barr;

2843 2844 2845
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2846 2847 2848 2849 2850 2851 2852
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2853
}
2854
EXPORT_SYMBOL_GPL(flush_work);
2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2870
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2871
{
2872
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2873
	unsigned long flags;
2874 2875 2876
	int ret;

	do {
2877 2878
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2893
		 */
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2907 2908
	} while (unlikely(ret < 0));

2909 2910 2911 2912
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2913
	flush_work(work);
2914
	clear_work_data(work);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2925 2926 2927
	return ret;
}

2928
/**
2929 2930
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2931
 *
2932 2933 2934 2935
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2936
 *
2937 2938
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2939
 *
2940
 * The caller must ensure that the workqueue on which @work was last
2941
 * queued can't be destroyed before this function returns.
2942
 *
2943
 * Return:
2944
 * %true if @work was pending, %false otherwise.
2945
 */
2946
bool cancel_work_sync(struct work_struct *work)
2947
{
2948
	return __cancel_work_timer(work, false);
Oleg Nesterov's avatar
Oleg Nesterov committed
2949
}
2950
EXPORT_SYMBOL_GPL(cancel_work_sync);
Oleg Nesterov's avatar
Oleg Nesterov committed
2951

2952
/**
2953 2954
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2955
 *
2956 2957 2958
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2959
 *
2960
 * Return:
2961 2962
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2963
 */
2964 2965
bool flush_delayed_work(struct delayed_work *dwork)
{
2966
	local_irq_disable();
2967
	if (del_timer_sync(&dwork->timer))
2968
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2969
	local_irq_enable();
2970 2971 2972 2973
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2974
/**
2975 2976
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2977
 *
2978 2979 2980 2981 2982 2983 2984 2985 2986
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2987
 *
2988
 * This function is safe to call from any context including IRQ handler.
2989
 */
2990
bool cancel_delayed_work(struct delayed_work *dwork)
2991
{
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

3002 3003
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
3004
	local_irq_restore(flags);
3005
	return ret;
3006
}
3007
EXPORT_SYMBOL(cancel_delayed_work);
3008

3009 3010 3011 3012 3013 3014
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3015
 * Return:
3016 3017 3018
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3019
{
3020
	return __cancel_work_timer(&dwork->work, true);
3021
}
3022
EXPORT_SYMBOL(cancel_delayed_work_sync);
Linus Torvalds's avatar
Linus Torvalds committed
3023

3024
/**
3025
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3026 3027
 * @func: the function to call
 *
3028 3029
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3030
 * schedule_on_each_cpu() is very slow.
3031
 *
3032
 * Return:
3033
 * 0 on success, -errno on failure.
3034
 */
3035
int schedule_on_each_cpu(work_func_t func)
3036 3037
{
	int cpu;
3038
	struct work_struct __percpu *works;
3039

3040 3041
	works = alloc_percpu(struct work_struct);
	if (!works)
3042
		return -ENOMEM;
3043

3044 3045
	get_online_cpus();

3046
	for_each_online_cpu(cpu) {
3047 3048 3049
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3050
		schedule_work_on(cpu, work);
3051
	}
3052 3053 3054 3055

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3056
	put_online_cpus();
3057
	free_percpu(works);
3058 3059 3060
	return 0;
}

3061 3062 3063 3064 3065 3066 3067 3068 3069
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3070
 * Return:	0 - function was executed
3071 3072
 *		1 - function was scheduled for execution
 */
3073
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3074 3075
{
	if (!in_interrupt()) {
3076
		fn(&ew->work);
3077 3078 3079
		return 0;
	}

3080
	INIT_WORK(&ew->work, fn);
3081 3082 3083 3084 3085 3086
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3087 3088 3089
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3090
 *
3091
 * Undo alloc_workqueue_attrs().
3092
 */
3093
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3094
{
3095 3096 3097 3098
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3099 3100
}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3111
{
3112
	struct workqueue_attrs *attrs;
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3125 3126
}

3127 3128
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3129
{
3130 3131 3132 3133 3134 3135 3136 3137
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3138 3139
}

3140 3141
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3142
{
3143
	u32 hash = 0;
3144

3145 3146 3147 3148
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3149 3150
}

3151 3152 3153
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3154
{
3155 3156 3157 3158 3159
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3160 3161
}

3162 3163 3164 3165
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3166
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3167 3168 3169 3170 3171 3172
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3173
{
3174 3175 3176 3177 3178
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
3179
	pool->watchdog_ts = jiffies;
3180 3181 3182
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3183

3184 3185 3186
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3187

3188 3189
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3190

3191 3192 3193
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3194

3195 3196 3197
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3198

3199 3200 3201 3202 3203
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3204 3205
}

3206
static void rcu_free_wq(struct rcu_head *rcu)
3207
{
3208 3209
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3210

3211 3212
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3213
	else
3214
		free_workqueue_attrs(wq->unbound_attrs);
3215

3216 3217
	kfree(wq->rescuer);
	kfree(wq);
3218 3219
}

3220
static void rcu_free_pool(struct rcu_head *rcu)
3221
{
3222
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3223

3224 3225 3226
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3227 3228
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3241
{
3242 3243
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3244

3245
	lockdep_assert_held(&wq_pool_mutex);
3246

3247 3248
	if (--pool->refcnt)
		return;
3249

3250 3251 3252 3253
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3254

3255 3256 3257 3258
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3259

3260 3261 3262 3263 3264 3265
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3266

3267 3268 3269 3270 3271
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3272

3273 3274 3275 3276
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3277

3278 3279
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3280

3281
	mutex_unlock(&pool->manager_arb);
3282

3283 3284 3285
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3286

3287 3288
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3289 3290 3291
}

/**
3292 3293
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3294
 *
3295 3296 3297 3298
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3299
 *
3300
 * Should be called with wq_pool_mutex held.
3301
 *
3302 3303
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3304
 */
3305
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3306
{
3307 3308 3309
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3310
	int target_node = NUMA_NO_NODE;
3311

3312
	lockdep_assert_held(&wq_pool_mutex);
3313

3314 3315 3316 3317 3318 3319 3320
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3321

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3333
	/* nope, create a new one */
3334
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3335 3336 3337 3338 3339
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3340
	pool->node = target_node;
3341 3342

	/*
3343 3344
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3345
	 */
3346
	pool->attrs->no_numa = false;
3347

3348 3349
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3350

3351 3352 3353
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3354

3355 3356
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3357

3358 3359 3360 3361 3362
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3363 3364
}

3365
static void rcu_free_pwq(struct rcu_head *rcu)
3366
{
3367 3368
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
3369 3370
}

3371 3372 3373
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
3374
 */
3375
static void pwq_unbound_release_workfn(struct work_struct *work)
3376
{
3377 3378 3379 3380 3381
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
3382

3383 3384
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
3385

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3396

3397
	/*
3398 3399
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3400
	 */
3401 3402
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3403 3404
}

3405
/**
3406 3407
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3408
 *
3409 3410 3411
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3412
 */
3413
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3414
{
3415 3416
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3417

3418 3419
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3420

3421 3422 3423
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
3424

3425
	spin_lock_irq(&pwq->pool->lock);
3426

3427 3428 3429 3430 3431 3432 3433
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3434

3435 3436 3437
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3438

3439 3440 3441 3442 3443 3444 3445 3446
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3447

3448
	spin_unlock_irq(&pwq->pool->lock);
3449 3450
}

3451 3452 3453
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3454
{
3455
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3456

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3467 3468
}

3469 3470
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3471
{
3472
	struct workqueue_struct *wq = pwq->wq;
3473

3474
	lockdep_assert_held(&wq->mutex);
3475

3476 3477
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3478 3479
		return;

3480 3481
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3482

3483 3484
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3485

3486 3487 3488
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3489

3490 3491 3492 3493 3494 3495
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3496

3497
	lockdep_assert_held(&wq_pool_mutex);
3498

3499 3500 3501
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3502

3503 3504 3505 3506 3507
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3508

3509 3510 3511
	init_pwq(pwq, wq, pool);
	return pwq;
}
3512 3513

/**
3514
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3515
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3516 3517 3518
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3519
 *
3520 3521 3522
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3523
 *
3524 3525 3526 3527
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3528
 *
3529 3530 3531 3532 3533
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3534
 */
3535 3536
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3537
{
3538 3539
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3540

3541 3542 3543 3544
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3545

3546 3547
	if (cpumask_empty(cpumask))
		goto use_dfl;
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3558 3559 3560 3561 3562 3563 3564
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3565
	lockdep_assert_held(&wq_pool_mutex);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3576 3577 3578 3579
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3580
	struct list_head	list;		/* queued for batching commit */
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3605
{
3606
	struct apply_wqattrs_ctx *ctx;
3607
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3608
	int node;
3609

3610
	lockdep_assert_held(&wq_pool_mutex);
3611

3612 3613
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3614

3615
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3616
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3617 3618
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3619

3620 3621 3622 3623 3624
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3625
	copy_workqueue_attrs(new_attrs, attrs);
3626
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3627 3628
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3629

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3642 3643 3644
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3645 3646

	for_each_node(node) {
3647
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3648 3649 3650
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3651
		} else {
3652 3653
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3654 3655 3656
		}
	}

3657 3658 3659
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3660
	ctx->attrs = new_attrs;
3661

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3677

3678
	/* all pwqs have been created successfully, let's install'em */
3679
	mutex_lock(&ctx->wq->mutex);
3680

3681
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3682 3683

	/* save the previous pwq and install the new one */
3684
	for_each_node(node)
3685 3686
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3687 3688

	/* @dfl_pwq might not have been used, ensure it's linked */
3689 3690
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3691

3692 3693
	mutex_unlock(&ctx->wq->mutex);
}
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3710 3711
{
	struct apply_wqattrs_ctx *ctx;
3712

3713 3714 3715
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3716

3717 3718 3719 3720 3721
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);
3722 3723
	if (!ctx)
		return -ENOMEM;
3724 3725

	/* the ctx has been prepared successfully, let's commit it */
3726
	apply_wqattrs_commit(ctx);
3727 3728
	apply_wqattrs_cleanup(ctx);

3729
	return 0;
3730 3731
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3793 3794
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3810 3811 3812
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3813
	 */
3814
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3815
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3816
			return;
3817
	} else {
3818
		goto use_dfl_pwq;
3819 3820 3821 3822 3823
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3824 3825
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3826
		goto use_dfl_pwq;
3827 3828
	}

3829
	/* Install the new pwq. */
3830 3831 3832 3833 3834
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3835
	mutex_lock(&wq->mutex);
3836 3837 3838 3839 3840 3841 3842 3843 3844
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3845
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
Tejun Heo's avatar
Tejun Heo committed
3846
{
3847
	bool highpri = wq->flags & WQ_HIGHPRI;
3848
	int cpu, ret;
3849 3850

	if (!(wq->flags & WQ_UNBOUND)) {
3851 3852
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3853 3854 3855
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3856 3857
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3858
			struct worker_pool *cpu_pools =
3859
				per_cpu(cpu_worker_pools, cpu);
3860

3861 3862 3863
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3864
			link_pwq(pwq);
3865
			mutex_unlock(&wq->mutex);
3866
		}
3867
		return 0;
3868 3869 3870 3871 3872 3873 3874
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3875
	} else {
3876
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3877
	}
Tejun Heo's avatar
Tejun Heo committed
3878 3879
}

3880 3881
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3882
{
3883 3884 3885
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
3886 3887
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3888

3889
	return clamp_val(max_active, 1, lim);
3890 3891
}

3892
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3893 3894 3895
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3896
					       const char *lock_name, ...)
Linus Torvalds's avatar
Linus Torvalds committed
3897
{
3898
	size_t tbl_size = 0;
3899
	va_list args;
Linus Torvalds's avatar
Linus Torvalds committed
3900
	struct workqueue_struct *wq;
3901
	struct pool_workqueue *pwq;
3902

3903 3904 3905 3906
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3907
	/* allocate wq and format name */
3908
	if (flags & WQ_UNBOUND)
3909
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3910 3911

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3912
	if (!wq)
3913
		return NULL;
3914

3915 3916 3917 3918 3919 3920
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3921 3922
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3923
	va_end(args);
Linus Torvalds's avatar
Linus Torvalds committed
3924

3925
	max_active = max_active ?: WQ_DFL_ACTIVE;
3926
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3927

3928
	/* init wq */
3929
	wq->flags = flags;
3930
	wq->saved_max_active = max_active;
3931
	mutex_init(&wq->mutex);
3932
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3933
	INIT_LIST_HEAD(&wq->pwqs);
3934 3935
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3936
	INIT_LIST_HEAD(&wq->maydays);
3937

3938
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3939
	INIT_LIST_HEAD(&wq->list);
3940

3941
	if (alloc_and_link_pwqs(wq) < 0)
3942
		goto err_free_wq;
Tejun Heo's avatar
Tejun Heo committed
3943

3944 3945 3946 3947 3948
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3949 3950
		struct worker *rescuer;

3951
		rescuer = alloc_worker(NUMA_NO_NODE);
3952
		if (!rescuer)
3953
			goto err_destroy;
3954

3955 3956
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3957
					       wq->name);
3958 3959 3960 3961
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3962

3963
		wq->rescuer = rescuer;
3964
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3965
		wake_up_process(rescuer->task);
3966 3967
	}

3968 3969 3970
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3971
	/*
3972 3973 3974
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3975
	 */
3976
	mutex_lock(&wq_pool_mutex);
3977

3978
	mutex_lock(&wq->mutex);
3979 3980
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3981
	mutex_unlock(&wq->mutex);
3982

3983
	list_add_tail_rcu(&wq->list, &workqueues);
3984

3985
	mutex_unlock(&wq_pool_mutex);
Tejun Heo's avatar
Tejun Heo committed
3986

3987
	return wq;
3988 3989

err_free_wq:
3990
	free_workqueue_attrs(wq->unbound_attrs);
3991 3992 3993 3994
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
Tejun Heo's avatar
Tejun Heo committed
3995
	return NULL;
3996
}
3997
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
Linus Torvalds's avatar
Linus Torvalds committed
3998

3999 4000 4001 4002 4003 4004 4005 4006
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4007
	struct pool_workqueue *pwq;
4008
	int node;
4009

4010 4011
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4012

4013
	/* sanity checks */
4014
	mutex_lock(&wq->mutex);
4015
	for_each_pwq(pwq, wq) {
4016 4017
		int i;

4018 4019
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4020
				mutex_unlock(&wq->mutex);
4021
				return;
4022 4023 4024
			}
		}

4025
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
Tejun Heo's avatar
Tejun Heo committed
4026
		    WARN_ON(pwq->nr_active) ||
4027
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4028
			mutex_unlock(&wq->mutex);
4029
			return;
4030
		}
4031
	}
4032
	mutex_unlock(&wq->mutex);
4033

4034 4035 4036 4037
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4038
	mutex_lock(&wq_pool_mutex);
4039
	list_del_rcu(&wq->list);
4040
	mutex_unlock(&wq_pool_mutex);
4041

4042 4043
	workqueue_sysfs_unregister(wq);

4044
	if (wq->rescuer)
4045 4046
		kthread_stop(wq->rescuer->task);

Tejun Heo's avatar
Tejun Heo committed
4047 4048 4049
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4050
		 * schedule RCU free.
Tejun Heo's avatar
Tejun Heo committed
4051
		 */
4052
		call_rcu_sched(&wq->rcu, rcu_free_wq);
Tejun Heo's avatar
Tejun Heo committed
4053 4054 4055
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4056 4057
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
Tejun Heo's avatar
Tejun Heo committed
4058
		 */
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4071
		put_pwq_unlocked(pwq);
4072
	}
4073 4074 4075
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4088
	struct pool_workqueue *pwq;
4089

4090 4091 4092 4093
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4094
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4095

4096
	mutex_lock(&wq->mutex);
4097 4098 4099

	wq->saved_max_active = max_active;

4100 4101
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4102

4103
	mutex_unlock(&wq->mutex);
4104
}
4105
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4106

4107 4108 4109 4110 4111
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4112 4113
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4114 4115 4116 4117 4118
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4119
	return worker && worker->rescue_wq;
4120 4121
}

4122
/**
4123 4124 4125
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4126
 *
4127 4128 4129
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4130
 *
4131 4132 4133 4134 4135 4136
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4137
 * Return:
4138
 * %true if congested, %false otherwise.
4139
 */
4140
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
Linus Torvalds's avatar
Linus Torvalds committed
4141
{
4142
	struct pool_workqueue *pwq;
4143 4144
	bool ret;

4145
	rcu_read_lock_sched();
4146

4147 4148 4149
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4150 4151 4152
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4153
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4154

4155
	ret = !list_empty(&pwq->delayed_works);
4156
	rcu_read_unlock_sched();
4157 4158

	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
4159
}
4160
EXPORT_SYMBOL_GPL(workqueue_congested);
Linus Torvalds's avatar
Linus Torvalds committed
4161

4162 4163 4164 4165 4166 4167 4168 4169
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4170
 * Return:
4171 4172 4173
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
Linus Torvalds's avatar
Linus Torvalds committed
4174
{
4175
	struct worker_pool *pool;
4176 4177
	unsigned long flags;
	unsigned int ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4178

4179 4180
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
Linus Torvalds's avatar
Linus Torvalds committed
4181

4182 4183
	local_irq_save(flags);
	pool = get_work_pool(work);
4184
	if (pool) {
4185
		spin_lock(&pool->lock);
4186 4187
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4188
		spin_unlock(&pool->lock);
4189
	}
4190
	local_irq_restore(flags);
Linus Torvalds's avatar
Linus Torvalds committed
4191

4192
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
4193
}
4194
EXPORT_SYMBOL_GPL(work_busy);
Linus Torvalds's avatar
Linus Torvalds committed
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
4416 4417 4418
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4435 4436 4437
/*
 * CPU hotplug.
 *
4438
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4439
 * are a lot of assumptions on strong associations among work, pwq and
4440
 * pool which make migrating pending and scheduled works very
4441
 * difficult to implement without impacting hot paths.  Secondly,
4442
 * worker pools serve mix of short, long and very long running works making
4443 4444
 * blocked draining impractical.
 *
4445
 * This is solved by allowing the pools to be disassociated from the CPU
4446 4447
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4448
 */
Linus Torvalds's avatar
Linus Torvalds committed
4449

4450
static void wq_unbind_fn(struct work_struct *work)
4451
{
4452
	int cpu = smp_processor_id();
4453
	struct worker_pool *pool;
4454
	struct worker *worker;
4455

4456
	for_each_cpu_worker_pool(pool, cpu) {
4457
		mutex_lock(&pool->attach_mutex);
4458
		spin_lock_irq(&pool->lock);
4459

4460
		/*
4461
		 * We've blocked all attach/detach operations. Make all workers
4462 4463 4464 4465 4466
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4467
		for_each_pool_worker(worker, pool)
4468
			worker->flags |= WORKER_UNBOUND;
4469

4470
		pool->flags |= POOL_DISASSOCIATED;
4471

4472
		spin_unlock_irq(&pool->lock);
4473
		mutex_unlock(&pool->attach_mutex);
4474

4475 4476 4477 4478 4479 4480 4481
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4482

4483 4484 4485 4486 4487 4488 4489 4490
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4491
		atomic_set(&pool->nr_running, 0);
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4502 4503
}

4504 4505 4506 4507
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4508
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4509 4510 4511
 */
static void rebind_workers(struct worker_pool *pool)
{
4512
	struct worker *worker;
4513

4514
	lockdep_assert_held(&pool->attach_mutex);
4515

4516 4517 4518
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4519
	 * wake-ups for concurrency management happen, restore CPU affinity
4520 4521 4522
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4523
	for_each_pool_worker(worker, pool)
4524 4525
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
4526

4527
	spin_lock_irq(&pool->lock);
4528
	pool->flags &= ~POOL_DISASSOCIATED;
4529

4530
	for_each_pool_worker(worker, pool) {
4531
		unsigned int worker_flags = worker->flags;
4532 4533

		/*
4534 4535 4536 4537 4538 4539
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
4540
		 */
4541 4542
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
4543

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
4563
	}
4564 4565

	spin_unlock_irq(&pool->lock);
4566 4567
}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4583
	lockdep_assert_held(&pool->attach_mutex);
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4595
	for_each_pool_worker(worker, pool)
4596 4597 4598 4599
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

4600 4601 4602 4603
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4604
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4605 4606
					       unsigned long action,
					       void *hcpu)
4607
{
4608
	int cpu = (unsigned long)hcpu;
4609
	struct worker_pool *pool;
4610
	struct workqueue_struct *wq;
4611
	int pi;
4612

4613
	switch (action & ~CPU_TASKS_FROZEN) {
4614
	case CPU_UP_PREPARE:
4615
		for_each_cpu_worker_pool(pool, cpu) {
4616 4617
			if (pool->nr_workers)
				continue;
4618
			if (!create_worker(pool))
4619
				return NOTIFY_BAD;
4620
		}
4621
		break;
4622

4623 4624
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4625
		mutex_lock(&wq_pool_mutex);
4626 4627

		for_each_pool(pool, pi) {
4628
			mutex_lock(&pool->attach_mutex);
4629

4630
			if (pool->cpu == cpu)
4631
				rebind_workers(pool);
4632
			else if (pool->cpu < 0)
4633
				restore_unbound_workers_cpumask(pool, cpu);
4634

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
4697
 * work_on_cpu - run a function in thread context on a particular cpu
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4888
		apply_wqattrs_lock();
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4901
		apply_wqattrs_unlock();
4902 4903 4904 4905 4906 4907
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

5012 5013
	lockdep_assert_held(&wq_pool_mutex);

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5027 5028 5029
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5030 5031 5032

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5033
		goto out_unlock;
5034 5035 5036

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5037
		ret = apply_workqueue_attrs_locked(wq, attrs);
5038 5039 5040
	else
		ret = -EINVAL;

5041 5042
out_unlock:
	apply_wqattrs_unlock();
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5066 5067 5068
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5069 5070 5071

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5072
		goto out_unlock;
5073 5074 5075

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5076
		ret = apply_workqueue_attrs_locked(wq, attrs);
5077

5078 5079
out_unlock:
	apply_wqattrs_unlock();
5080 5081 5082 5083 5084 5085 5086 5087 5088
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5089

5090 5091 5092 5093
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5094

5095
	return written;
5096 5097
}

5098 5099
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5100
{
5101 5102
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5103 5104 5105
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5106

5107 5108
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5109
		goto out_unlock;
5110

5111 5112 5113
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5114
		ret = apply_workqueue_attrs_locked(wq, attrs);
5115
	}
5116

5117 5118
out_unlock:
	apply_wqattrs_unlock();
5119 5120
	free_workqueue_attrs(attrs);
	return ret ?: count;
5121 5122
}

5123 5124 5125 5126 5127 5128 5129
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5130

5131 5132 5133
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5134 5135
};

5136 5137 5138 5139 5140
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5141
	mutex_lock(&wq_pool_mutex);
5142 5143
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5144
	mutex_unlock(&wq_pool_mutex);
5145 5146 5147 5148

	return written;
}

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5166
static struct device_attribute wq_sysfs_cpumask_attr =
5167 5168
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5169

5170
static int __init wq_sysfs_init(void)
5171
{
5172 5173 5174 5175 5176 5177 5178
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5179
}
5180
core_initcall(wq_sysfs_init);
5181

5182
static void wq_device_release(struct device *dev)
5183
{
5184
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5185

5186
	kfree(wq_dev);
5187
}
5188 5189

/**
5190 5191
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5192
 *
5193 5194 5195
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5196
 *
5197 5198 5199 5200 5201 5202
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5203
 */
5204
int workqueue_sysfs_register(struct workqueue_struct *wq)
5205
{
5206 5207
	struct wq_device *wq_dev;
	int ret;
5208

5209
	/*
5210
	 * Adjusting max_active or creating new pwqs by applying
5211 5212 5213 5214 5215
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5216

5217 5218 5219
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5220

5221 5222 5223
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.release = wq_device_release;
5224
	dev_set_name(&wq_dev->dev, "%s", wq->name);
5225

5226 5227 5228 5229 5230
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5231

5232 5233 5234 5235 5236 5237
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5238

5239 5240
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5241

5242 5243 5244 5245 5246 5247
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5248 5249 5250
			}
		}
	}
5251 5252 5253 5254

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5255 5256 5257
}

/**
5258 5259
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5260
 *
5261
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5262
 */
5263
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5264
{
5265
	struct wq_device *wq_dev = wq->wq_dev;
5266

5267 5268
	if (!wq->wq_dev)
		return;
5269

5270 5271
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5272
}
5273 5274 5275
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5276

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static void wq_watchdog_timer_fn(unsigned long data);

static unsigned long wq_watchdog_thresh = 30;
static struct timer_list wq_watchdog_timer =
	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

static void wq_watchdog_timer_fn(unsigned long data)
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5425 5426 5427 5428 5429 5430 5431 5432
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5433 5434 5435 5436 5437
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5438 5439 5440
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5441 5442 5443 5444 5445
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5446
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5447 5448 5449
	BUG_ON(!tbl);

	for_each_node(node)
5450
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5451
				node_online(node) ? node : NUMA_NO_NODE));
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5467
static int __init init_workqueues(void)
Linus Torvalds's avatar
Linus Torvalds committed
5468
{
5469 5470
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
Tejun Heo's avatar
Tejun Heo committed
5471

5472 5473
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5474 5475 5476
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5477 5478
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5479
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5480
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5481

5482 5483
	wq_numa_init();

5484
	/* initialize CPU pools */
5485
	for_each_possible_cpu(cpu) {
5486
		struct worker_pool *pool;
5487

5488
		i = 0;
5489
		for_each_cpu_worker_pool(pool, cpu) {
5490
			BUG_ON(init_worker_pool(pool));
5491
			pool->cpu = cpu;
5492
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5493
			pool->attrs->nice = std_nice[i++];
5494
			pool->node = cpu_to_node(cpu);
5495

Tejun Heo's avatar
Tejun Heo committed
5496
			/* alloc pool ID */
5497
			mutex_lock(&wq_pool_mutex);
Tejun Heo's avatar
Tejun Heo committed
5498
			BUG_ON(worker_pool_assign_id(pool));
5499
			mutex_unlock(&wq_pool_mutex);
5500
		}
5501 5502
	}

5503
	/* create the initial worker */
5504
	for_each_online_cpu(cpu) {
5505
		struct worker_pool *pool;
5506

5507
		for_each_cpu_worker_pool(pool, cpu) {
5508
			pool->flags &= ~POOL_DISASSOCIATED;
5509
			BUG_ON(!create_worker(pool));
5510
		}
5511 5512
	}

5513
	/* create default unbound and ordered wq attrs */
5514 5515 5516 5517 5518 5519
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5530 5531
	}

5532
	system_wq = alloc_workqueue("events", 0, 0);
5533
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5534
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5535 5536
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5537 5538
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5539 5540 5541 5542 5543
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5544
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5545 5546 5547
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5548 5549 5550

	wq_watchdog_init();

5551
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
5552
}
5553
early_initcall(init_workqueues);