volumes.c 177 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/slab.h>
21
#include <linux/buffer_head.h>
22
#include <linux/blkdev.h>
23
#include <linux/random.h>
24
#include <linux/iocontext.h>
25
#include <linux/capability.h>
26
#include <linux/ratelimit.h>
27
#include <linux/kthread.h>
David Woodhouse's avatar
David Woodhouse committed
28
#include <linux/raid/pq.h>
29
#include <linux/semaphore.h>
David Woodhouse's avatar
David Woodhouse committed
30
#include <asm/div64.h>
31 32 33 34 35 36
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
David Woodhouse's avatar
David Woodhouse committed
37
#include "raid56.h"
38
#include "async-thread.h"
39
#include "check-integrity.h"
40
#include "rcu-string.h"
41
#include "math.h"
42
#include "dev-replace.h"
43
#include "sysfs.h"
44

45 46 47 48 49 50
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
51
		.tolerated_failures = 1,
52 53 54 55 56 57 58 59
		.devs_increment	= 2,
		.ncopies	= 2,
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
60
		.tolerated_failures = 1,
61 62 63 64 65 66 67 68
		.devs_increment	= 2,
		.ncopies	= 2,
	},
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
69
		.tolerated_failures = 0,
70 71 72 73 74 75 76 77
		.devs_increment	= 1,
		.ncopies	= 2,
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
78
		.tolerated_failures = 0,
79 80 81 82 83 84 85 86
		.devs_increment	= 1,
		.ncopies	= 1,
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
87
		.tolerated_failures = 0,
88 89 90 91 92 93 94 95
		.devs_increment	= 1,
		.ncopies	= 1,
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
96
		.tolerated_failures = 1,
97 98 99 100 101 102 103 104
		.devs_increment	= 1,
		.ncopies	= 2,
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
105
		.tolerated_failures = 2,
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
		.devs_increment	= 1,
		.ncopies	= 3,
	},
};

const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
	[BTRFS_RAID_SINGLE] = 0,
	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
};

Yan Zheng's avatar
Yan Zheng committed
121 122 123 124
static int init_first_rw_device(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
				struct btrfs_device *device);
static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125
static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
Yan Zheng's avatar
Yan Zheng committed
128

129
DEFINE_MUTEX(uuid_mutex);
130
static LIST_HEAD(fs_uuids);
131 132 133 134
struct list_head *btrfs_get_fs_uuids(void)
{
	return &fs_uuids;
}
135

136 137 138 139 140 141 142 143 144 145 146
static struct btrfs_fs_devices *__alloc_fs_devices(void)
{
	struct btrfs_fs_devices *fs_devs;

	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
147
	INIT_LIST_HEAD(&fs_devs->resized_devices);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	INIT_LIST_HEAD(&fs_devs->alloc_list);
	INIT_LIST_HEAD(&fs_devs->list);

	return fs_devs;
}

/**
 * alloc_fs_devices - allocate struct btrfs_fs_devices
 * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
 *		generated.
 *
 * Return: a pointer to a new &struct btrfs_fs_devices on success;
 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
 * can be destroyed with kfree() right away.
 */
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
{
	struct btrfs_fs_devices *fs_devs;

	fs_devs = __alloc_fs_devices();
	if (IS_ERR(fs_devs))
		return fs_devs;

	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
	else
		generate_random_uuid(fs_devs->fsid);

	return fs_devs;
}

Yan Zheng's avatar
Yan Zheng committed
179 180 181 182 183 184 185 186
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
187
		rcu_string_free(device->name);
Yan Zheng's avatar
Yan Zheng committed
188 189 190 191 192
		kfree(device);
	}
	kfree(fs_devices);
}

193 194 195 196 197 198 199
static void btrfs_kobject_uevent(struct block_device *bdev,
				 enum kobject_action action)
{
	int ret;

	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
	if (ret)
200
		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
201 202 203 204 205
			action,
			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
			&disk_to_dev(bdev->bd_disk)->kobj);
}

206
void btrfs_cleanup_fs_uuids(void)
207 208 209
{
	struct btrfs_fs_devices *fs_devices;

Yan Zheng's avatar
Yan Zheng committed
210 211 212 213
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
					struct btrfs_fs_devices, list);
		list_del(&fs_devices->list);
Yan Zheng's avatar
Yan Zheng committed
214
		free_fs_devices(fs_devices);
215 216 217
	}
}

218 219 220 221 222 223 224 225 226 227
static struct btrfs_device *__alloc_device(void)
{
	struct btrfs_device *dev;

	dev = kzalloc(sizeof(*dev), GFP_NOFS);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
228
	INIT_LIST_HEAD(&dev->resized_list);
229 230 231 232 233

	spin_lock_init(&dev->io_lock);

	spin_lock_init(&dev->reada_lock);
	atomic_set(&dev->reada_in_flight, 0);
234
	atomic_set(&dev->dev_stats_ccnt, 0);
235 236 237 238 239 240
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);

	return dev;
}

241 242
static noinline struct btrfs_device *__find_device(struct list_head *head,
						   u64 devid, u8 *uuid)
243 244 245
{
	struct btrfs_device *dev;

246
	list_for_each_entry(dev, head, dev_list) {
247
		if (dev->devid == devid &&
248
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
249
			return dev;
250
		}
251 252 253 254
	}
	return NULL;
}

255
static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
256 257 258
{
	struct btrfs_fs_devices *fs_devices;

259
	list_for_each_entry(fs_devices, &fs_uuids, list) {
260 261 262 263 264 265
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
		      struct buffer_head **bh)
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
	ret = set_blocksize(*bdev, 4096);
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
	*bh = btrfs_read_dev_super(*bdev);
289 290
	if (IS_ERR(*bh)) {
		ret = PTR_ERR(*bh);
291 292 293 294 295 296 297 298 299 300 301 302
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	*bh = NULL;
	return ret;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void requeue_list(struct btrfs_pending_bios *pending_bios,
			struct bio *head, struct bio *tail)
{

	struct bio *old_head;

	old_head = pending_bios->head;
	pending_bios->head = head;
	if (pending_bios->tail)
		tail->bi_next = old_head;
	else
		pending_bios->tail = tail;
}

317 318 319 320 321 322 323 324 325 326 327
/*
 * we try to collect pending bios for a device so we don't get a large
 * number of procs sending bios down to the same device.  This greatly
 * improves the schedulers ability to collect and merge the bios.
 *
 * But, it also turns into a long list of bios to process and that is sure
 * to eventually make the worker thread block.  The solution here is to
 * make some progress and then put this work struct back at the end of
 * the list if the block device is congested.  This way, multiple devices
 * can make progress from a single worker thread.
 */
328
static noinline void run_scheduled_bios(struct btrfs_device *device)
329 330 331
{
	struct bio *pending;
	struct backing_dev_info *bdi;
332
	struct btrfs_fs_info *fs_info;
333
	struct btrfs_pending_bios *pending_bios;
334 335 336
	struct bio *tail;
	struct bio *cur;
	int again = 0;
337
	unsigned long num_run;
338
	unsigned long batch_run = 0;
339
	unsigned long limit;
340
	unsigned long last_waited = 0;
341
	int force_reg = 0;
342
	int sync_pending = 0;
343 344 345 346 347 348 349 350 351
	struct blk_plug plug;

	/*
	 * this function runs all the bios we've collected for
	 * a particular device.  We don't want to wander off to
	 * another device without first sending all of these down.
	 * So, setup a plug here and finish it off before we return
	 */
	blk_start_plug(&plug);
352

353
	bdi = blk_get_backing_dev_info(device->bdev);
354 355 356 357
	fs_info = device->dev_root->fs_info;
	limit = btrfs_async_submit_limit(fs_info);
	limit = limit * 2 / 3;

358 359 360
loop:
	spin_lock(&device->io_lock);

361
loop_lock:
362
	num_run = 0;
363

364 365 366 367 368
	/* take all the bios off the list at once and process them
	 * later on (without the lock held).  But, remember the
	 * tail and other pointers so the bios can be properly reinserted
	 * into the list if we hit congestion
	 */
369
	if (!force_reg && device->pending_sync_bios.head) {
370
		pending_bios = &device->pending_sync_bios;
371 372
		force_reg = 1;
	} else {
373
		pending_bios = &device->pending_bios;
374 375
		force_reg = 0;
	}
376 377 378

	pending = pending_bios->head;
	tail = pending_bios->tail;
379 380 381 382 383 384 385 386 387 388
	WARN_ON(pending && !tail);

	/*
	 * if pending was null this time around, no bios need processing
	 * at all and we can stop.  Otherwise it'll loop back up again
	 * and do an additional check so no bios are missed.
	 *
	 * device->running_pending is used to synchronize with the
	 * schedule_bio code.
	 */
389 390
	if (device->pending_sync_bios.head == NULL &&
	    device->pending_bios.head == NULL) {
391 392
		again = 0;
		device->running_pending = 0;
393 394 395
	} else {
		again = 1;
		device->running_pending = 1;
396
	}
397 398 399 400

	pending_bios->head = NULL;
	pending_bios->tail = NULL;

401 402
	spin_unlock(&device->io_lock);

403
	while (pending) {
404 405

		rmb();
406 407 408 409 410 411 412 413
		/* we want to work on both lists, but do more bios on the
		 * sync list than the regular list
		 */
		if ((num_run > 32 &&
		    pending_bios != &device->pending_sync_bios &&
		    device->pending_sync_bios.head) ||
		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
		    device->pending_bios.head)) {
414 415 416 417 418
			spin_lock(&device->io_lock);
			requeue_list(pending_bios, pending, tail);
			goto loop_lock;
		}

419 420 421
		cur = pending;
		pending = pending->bi_next;
		cur->bi_next = NULL;
422

423 424 425
		/*
		 * atomic_dec_return implies a barrier for waitqueue_active
		 */
426
		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
427 428
		    waitqueue_active(&fs_info->async_submit_wait))
			wake_up(&fs_info->async_submit_wait);
429

430
		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		/*
		 * if we're doing the sync list, record that our
		 * plug has some sync requests on it
		 *
		 * If we're doing the regular list and there are
		 * sync requests sitting around, unplug before
		 * we add more
		 */
		if (pending_bios == &device->pending_sync_bios) {
			sync_pending = 1;
		} else if (sync_pending) {
			blk_finish_plug(&plug);
			blk_start_plug(&plug);
			sync_pending = 0;
		}

448
		btrfsic_submit_bio(cur->bi_rw, cur);
449 450
		num_run++;
		batch_run++;
451 452

		cond_resched();
453 454 455 456 457 458

		/*
		 * we made progress, there is more work to do and the bdi
		 * is now congested.  Back off and let other work structs
		 * run instead
		 */
459
		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
460
		    fs_info->fs_devices->open_devices > 1) {
461
			struct io_context *ioc;
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
			ioc = current->io_context;

			/*
			 * the main goal here is that we don't want to
			 * block if we're going to be able to submit
			 * more requests without blocking.
			 *
			 * This code does two great things, it pokes into
			 * the elevator code from a filesystem _and_
			 * it makes assumptions about how batching works.
			 */
			if (ioc && ioc->nr_batch_requests > 0 &&
			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
			    (last_waited == 0 ||
			     ioc->last_waited == last_waited)) {
				/*
				 * we want to go through our batch of
				 * requests and stop.  So, we copy out
				 * the ioc->last_waited time and test
				 * against it before looping
				 */
				last_waited = ioc->last_waited;
485
				cond_resched();
486 487
				continue;
			}
488
			spin_lock(&device->io_lock);
489
			requeue_list(pending_bios, pending, tail);
490
			device->running_pending = 1;
491 492

			spin_unlock(&device->io_lock);
493 494
			btrfs_queue_work(fs_info->submit_workers,
					 &device->work);
495 496
			goto done;
		}
497 498 499 500 501 502
		/* unplug every 64 requests just for good measure */
		if (batch_run % 64 == 0) {
			blk_finish_plug(&plug);
			blk_start_plug(&plug);
			sync_pending = 0;
		}
503
	}
504

505 506 507 508 509 510 511 512 513
	cond_resched();
	if (again)
		goto loop;

	spin_lock(&device->io_lock);
	if (device->pending_bios.head || device->pending_sync_bios.head)
		goto loop_lock;
	spin_unlock(&device->io_lock);

514
done:
515
	blk_finish_plug(&plug);
516 517
}

518
static void pending_bios_fn(struct btrfs_work *work)
519 520 521 522 523 524 525
{
	struct btrfs_device *device;

	device = container_of(work, struct btrfs_device, work);
	run_scheduled_bios(device);
}

Anand Jain's avatar
Anand Jain committed
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

void btrfs_free_stale_device(struct btrfs_device *cur_dev)
{
	struct btrfs_fs_devices *fs_devs;
	struct btrfs_device *dev;

	if (!cur_dev->name)
		return;

	list_for_each_entry(fs_devs, &fs_uuids, list) {
		int del = 1;

		if (fs_devs->opened)
			continue;
		if (fs_devs->seeding)
			continue;

		list_for_each_entry(dev, &fs_devs->devices, dev_list) {

			if (dev == cur_dev)
				continue;
			if (!dev->name)
				continue;

			/*
			 * Todo: This won't be enough. What if the same device
			 * comes back (with new uuid and) with its mapper path?
			 * But for now, this does help as mostly an admin will
			 * either use mapper or non mapper path throughout.
			 */
			rcu_read_lock();
			del = strcmp(rcu_str_deref(dev->name),
						rcu_str_deref(cur_dev->name));
			rcu_read_unlock();
			if (!del)
				break;
		}

		if (!del) {
			/* delete the stale device */
			if (fs_devs->num_devices == 1) {
				btrfs_sysfs_remove_fsid(fs_devs);
				list_del(&fs_devs->list);
				free_fs_devices(fs_devs);
			} else {
				fs_devs->num_devices--;
				list_del(&dev->dev_list);
				rcu_string_free(dev->name);
				kfree(dev);
			}
			break;
		}
	}
}

581 582 583 584 585 586 587 588
/*
 * Add new device to list of registered devices
 *
 * Returns:
 * 1   - first time device is seen
 * 0   - device already known
 * < 0 - error
 */
589
static noinline int device_list_add(const char *path,
590 591 592 593 594
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
595
	struct rcu_string *name;
596
	int ret = 0;
597 598 599 600
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
601 602 603 604
		fs_devices = alloc_fs_devices(disk_super->fsid);
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);

605
		list_add(&fs_devices->list, &fs_uuids);
606

607 608
		device = NULL;
	} else {
609 610
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
611
	}
612

613
	if (!device) {
Yan Zheng's avatar
Yan Zheng committed
614 615 616
		if (fs_devices->opened)
			return -EBUSY;

617 618 619
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
620
			/* we can safely leave the fs_devices entry around */
621
			return PTR_ERR(device);
622
		}
623 624 625

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
626 627 628
			kfree(device);
			return -ENOMEM;
		}
629
		rcu_assign_pointer(device->name, name);
630

631
		mutex_lock(&fs_devices->device_list_mutex);
632
		list_add_rcu(&device->dev_list, &fs_devices->devices);
633
		fs_devices->num_devices++;
634 635
		mutex_unlock(&fs_devices->device_list_mutex);

636
		ret = 1;
Yan Zheng's avatar
Yan Zheng committed
637
		device->fs_devices = fs_devices;
638
	} else if (!device->name || strcmp(device->name->str, path)) {
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
660 661 662 663
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
664
		 */
665
		if (!fs_devices->opened && found_transid < device->generation) {
666 667 668 669 670 671 672
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
673
			return -EEXIST;
674
		}
675

676
		name = rcu_string_strdup(path, GFP_NOFS);
677 678
		if (!name)
			return -ENOMEM;
679 680
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
681 682 683 684
		if (device->missing) {
			fs_devices->missing_devices--;
			device->missing = 0;
		}
685 686
	}

687 688 689 690 691 692 693 694 695
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
	if (!fs_devices->opened)
		device->generation = found_transid;

Anand Jain's avatar
Anand Jain committed
696 697 698 699 700 701
	/*
	 * if there is new btrfs on an already registered device,
	 * then remove the stale device entry.
	 */
	btrfs_free_stale_device(device);

702
	*fs_devices_ret = fs_devices;
703 704

	return ret;
705 706
}

Yan Zheng's avatar
Yan Zheng committed
707 708 709 710 711 712
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;

713 714 715
	fs_devices = alloc_fs_devices(orig->fsid);
	if (IS_ERR(fs_devices))
		return fs_devices;
Yan Zheng's avatar
Yan Zheng committed
716

717
	mutex_lock(&orig->device_list_mutex);
Josef Bacik's avatar
Josef Bacik committed
718
	fs_devices->total_devices = orig->total_devices;
Yan Zheng's avatar
Yan Zheng committed
719

720
	/* We have held the volume lock, it is safe to get the devices. */
Yan Zheng's avatar
Yan Zheng committed
721
	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
722 723
		struct rcu_string *name;

724 725 726
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
		if (IS_ERR(device))
Yan Zheng's avatar
Yan Zheng committed
727 728
			goto error;

729 730 731 732
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
733 734 735 736 737 738 739
		if (orig_dev->name) {
			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
			if (!name) {
				kfree(device);
				goto error;
			}
			rcu_assign_pointer(device->name, name);
740
		}
Yan Zheng's avatar
Yan Zheng committed
741 742 743 744 745

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
746
	mutex_unlock(&orig->device_list_mutex);
Yan Zheng's avatar
Yan Zheng committed
747 748
	return fs_devices;
error:
749
	mutex_unlock(&orig->device_list_mutex);
Yan Zheng's avatar
Yan Zheng committed
750 751 752 753
	free_fs_devices(fs_devices);
	return ERR_PTR(-ENOMEM);
}

754
void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
755
{
756
	struct btrfs_device *device, *next;
757
	struct btrfs_device *latest_dev = NULL;
758

759 760
	mutex_lock(&uuid_mutex);
again:
761
	/* This is the initialized path, it is safe to release the devices. */
762
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
763
		if (device->in_fs_metadata) {
764
			if (!device->is_tgtdev_for_dev_replace &&
765 766 767
			    (!latest_dev ||
			     device->generation > latest_dev->generation)) {
				latest_dev = device;
768
			}
Yan Zheng's avatar
Yan Zheng committed
769
			continue;
770
		}
Yan Zheng's avatar
Yan Zheng committed
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
			/*
			 * In the first step, keep the device which has
			 * the correct fsid and the devid that is used
			 * for the dev_replace procedure.
			 * In the second step, the dev_replace state is
			 * read from the device tree and it is known
			 * whether the procedure is really active or
			 * not, which means whether this device is
			 * used or whether it should be removed.
			 */
			if (step == 0 || device->is_tgtdev_for_dev_replace) {
				continue;
			}
		}
Yan Zheng's avatar
Yan Zheng committed
787
		if (device->bdev) {
788
			blkdev_put(device->bdev, device->mode);
Yan Zheng's avatar
Yan Zheng committed
789 790 791 792 793 794
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
		if (device->writeable) {
			list_del_init(&device->dev_alloc_list);
			device->writeable = 0;
795 796
			if (!device->is_tgtdev_for_dev_replace)
				fs_devices->rw_devices--;
Yan Zheng's avatar
Yan Zheng committed
797
		}
Yan Zheng's avatar
Yan Zheng committed
798 799
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
800
		rcu_string_free(device->name);
Yan Zheng's avatar
Yan Zheng committed
801
		kfree(device);
802
	}
Yan Zheng's avatar
Yan Zheng committed
803 804 805 806 807 808

	if (fs_devices->seed) {
		fs_devices = fs_devices->seed;
		goto again;
	}

809
	fs_devices->latest_bdev = latest_dev->bdev;
810

811 812
	mutex_unlock(&uuid_mutex);
}
813

814 815 816 817 818 819 820 821 822
static void __free_device(struct work_struct *work)
{
	struct btrfs_device *device;

	device = container_of(work, struct btrfs_device, rcu_work);

	if (device->bdev)
		blkdev_put(device->bdev, device->mode);

823
	rcu_string_free(device->name);
824 825 826 827 828 829 830 831 832 833 834 835 836
	kfree(device);
}

static void free_device(struct rcu_head *head)
{
	struct btrfs_device *device;

	device = container_of(head, struct btrfs_device, rcu);

	INIT_WORK(&device->rcu_work, __free_device);
	schedule_work(&device->rcu_work);
}

Yan Zheng's avatar
Yan Zheng committed
837
static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
838
{
839
	struct btrfs_device *device, *tmp;
Yan Zheng's avatar
Yan Zheng committed
840

Yan Zheng's avatar
Yan Zheng committed
841 842
	if (--fs_devices->opened > 0)
		return 0;
843

844
	mutex_lock(&fs_devices->device_list_mutex);
845
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
846
		btrfs_close_one_device(device);
847
	}
848 849
	mutex_unlock(&fs_devices->device_list_mutex);

Yan Zheng's avatar
Yan Zheng committed
850 851
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Yan Zheng's avatar
Yan Zheng committed
852 853 854
	fs_devices->opened = 0;
	fs_devices->seeding = 0;

855 856 857
	return 0;
}

Yan Zheng's avatar
Yan Zheng committed
858 859
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
Yan Zheng's avatar
Yan Zheng committed
860
	struct btrfs_fs_devices *seed_devices = NULL;
Yan Zheng's avatar
Yan Zheng committed
861 862 863 864
	int ret;

	mutex_lock(&uuid_mutex);
	ret = __btrfs_close_devices(fs_devices);
Yan Zheng's avatar
Yan Zheng committed
865 866 867 868
	if (!fs_devices->opened) {
		seed_devices = fs_devices->seed;
		fs_devices->seed = NULL;
	}
Yan Zheng's avatar
Yan Zheng committed
869
	mutex_unlock(&uuid_mutex);
Yan Zheng's avatar
Yan Zheng committed
870 871 872 873 874 875 876

	while (seed_devices) {
		fs_devices = seed_devices;
		seed_devices = fs_devices->seed;
		__btrfs_close_devices(fs_devices);
		free_fs_devices(fs_devices);
	}
877 878 879 880 881 882
	/*
	 * Wait for rcu kworkers under __btrfs_close_devices
	 * to finish all blkdev_puts so device is really
	 * free when umount is done.
	 */
	rcu_barrier();
Yan Zheng's avatar
Yan Zheng committed
883 884 885
	return ret;
}

Yan Zheng's avatar
Yan Zheng committed
886 887
static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
				fmode_t flags, void *holder)
888
{
889
	struct request_queue *q;
890 891 892
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct btrfs_device *device;
893
	struct btrfs_device *latest_dev = NULL;
894 895 896
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	u64 devid;
Yan Zheng's avatar
Yan Zheng committed
897
	int seeding = 1;
898
	int ret = 0;
899

900 901
	flags |= FMODE_EXCL;

902
	list_for_each_entry(device, head, dev_list) {
903 904
		if (device->bdev)
			continue;
905 906 907
		if (!device->name)
			continue;

908 909 910
		/* Just open everything we can; ignore failures here */
		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
					    &bdev, &bh))
911
			continue;
912 913

		disk_super = (struct btrfs_super_block *)bh->b_data;
914
		devid = btrfs_stack_device_id(&disk_super->dev_item);
915 916 917
		if (devid != device->devid)
			goto error_brelse;

Yan Zheng's avatar
Yan Zheng committed
918 919 920 921 922
		if (memcmp(device->uuid, disk_super->dev_item.uuid,
			   BTRFS_UUID_SIZE))
			goto error_brelse;

		device->generation = btrfs_super_generation(disk_super);
923 924 925
		if (!latest_dev ||
		    device->generation > latest_dev->generation)
			latest_dev = device;
926

Yan Zheng's avatar
Yan Zheng committed
927 928 929 930 931 932 933
		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
			device->writeable = 0;
		} else {
			device->writeable = !bdev_read_only(bdev);
			seeding = 0;
		}

934
		q = bdev_get_queue(bdev);
935
		if (blk_queue_discard(q))
936 937
			device->can_discard = 1;

938
		device->bdev = bdev;
939
		device->in_fs_metadata = 0;
940 941
		device->mode = flags;

Chris Mason's avatar
Chris Mason committed
942 943 944
		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
			fs_devices->rotating = 1;

945
		fs_devices->open_devices++;
946 947
		if (device->writeable &&
		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
Yan Zheng's avatar
Yan Zheng committed
948 949 950 951
			fs_devices->rw_devices++;
			list_add(&device->dev_alloc_list,
				 &fs_devices->alloc_list);
		}
952
		brelse(bh);
953
		continue;
954

955 956
error_brelse:
		brelse(bh);
957
		blkdev_put(bdev, flags);
958
		continue;
959
	}
960
	if (fs_devices->open_devices == 0) {
961
		ret = -EINVAL;
962 963
		goto out;
	}
Yan Zheng's avatar
Yan Zheng committed
964 965
	fs_devices->seeding = seeding;
	fs_devices->opened = 1;
966
	fs_devices->latest_bdev = latest_dev->bdev;
Yan Zheng's avatar
Yan Zheng committed
967
	fs_devices->total_rw_bytes = 0;
968
out:
Yan Zheng's avatar
Yan Zheng committed
969 970 971 972
	return ret;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
973
		       fmode_t flags, void *holder)
Yan Zheng's avatar
Yan Zheng committed
974 975 976 977 978
{
	int ret;

	mutex_lock(&uuid_mutex);
	if (fs_devices->opened) {
Yan Zheng's avatar
Yan Zheng committed
979 980
		fs_devices->opened++;
		ret = 0;
Yan Zheng's avatar
Yan Zheng committed
981
	} else {
982
		ret = __btrfs_open_devices(fs_devices, flags, holder);
Yan Zheng's avatar
Yan Zheng committed
983
	}
984 985 986 987
	mutex_unlock(&uuid_mutex);
	return ret;
}

988 989 990 991 992
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
993
int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
994 995 996 997
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
998 999 1000
	struct page *page;
	void *p;
	int ret = -EINVAL;
1001
	u64 devid;
1002
	u64 transid;
Josef Bacik's avatar
Josef Bacik committed
1003
	u64 total_devices;
1004 1005
	u64 bytenr;
	pgoff_t index;
1006

1007 1008 1009 1010 1011 1012 1013
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1014
	flags |= FMODE_EXCL;
1015
	mutex_lock(&uuid_mutex);
1016 1017 1018 1019 1020

	bdev = blkdev_get_by_path(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
1021
		goto error;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	}

	/* make sure our super fits in the device */
	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
		goto error_bdev_put;

	/* make sure our super fits in the page */
	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
		goto error_bdev_put;

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_CACHE_SHIFT;
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
		goto error_bdev_put;

	/* pull in the page with our super */
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
				   index, GFP_NOFS);

	if (IS_ERR_OR_NULL(page))
		goto error_bdev_put;

	p = kmap(page);

	/* align our pointer to the offset of the super block */
	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);

	if (btrfs_super_bytenr(disk_super) != bytenr ||
1050
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1051 1052
		goto error_unmap;

1053
	devid = btrfs_stack_device_id(&disk_super->dev_item);
1054
	transid = btrfs_super_generation(disk_super);
Josef Bacik's avatar
Josef Bacik committed
1055
	total_devices = btrfs_super_num_devices(disk_super);
1056

1057
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	if (ret > 0) {
		if (disk_super->label[0]) {
			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
		} else {
			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
		}

		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
		ret = 0;
	}
Josef Bacik's avatar
Josef Bacik committed
1070 1071
	if (!ret && fs_devices_ret)
		(*fs_devices_ret)->total_devices = total_devices;
1072 1073 1074 1075 1076 1077

error_unmap:
	kunmap(page);
	page_cache_release(page);

error_bdev_put:
1078
	blkdev_put(bdev, flags);
1079
error:
1080
	mutex_unlock(&uuid_mutex);
1081 1082
	return ret;
}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/* helper to account the used device space in the range */
int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
				   u64 end, u64 *length)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent;
	struct btrfs_path *path;
	u64 extent_end;
	int ret;
	int slot;
	struct extent_buffer *l;

	*length = 0;

1099
	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->reada = 2;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
			goto out;
	}

	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto out;

			break;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			break;

1140
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
			goto next;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (key.offset <= start && extent_end > end) {
			*length = end - start + 1;
			break;
		} else if (key.offset <= start && extent_end > start)
			*length += extent_end - start;
		else if (key.offset > start && extent_end <= end)
			*length += extent_end - key.offset;
		else if (key.offset > start && key.offset <= end) {
			*length += end - key.offset + 1;
			break;
		} else if (key.offset > end)
			break;

next:
		path->slots[0]++;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

1168
static int contains_pending_extent(struct btrfs_transaction *transaction,
1169 1170 1171
				   struct btrfs_device *device,
				   u64 *start, u64 len)
{
1172
	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1173
	struct extent_map *em;
1174
	struct list_head *search_list = &fs_info->pinned_chunks;
1175
	int ret = 0;
1176
	u64 physical_start = *start;
1177

1178 1179
	if (transaction)
		search_list = &transaction->pending_chunks;
1180 1181
again:
	list_for_each_entry(em, search_list, list) {
1182 1183 1184 1185 1186
		struct map_lookup *map;
		int i;

		map = (struct map_lookup *)em->bdev;
		for (i = 0; i < map->num_stripes; i++) {
1187 1188
			u64 end;

1189 1190
			if (map->stripes[i].dev != device)
				continue;
1191
			if (map->stripes[i].physical >= physical_start + len ||
1192
			    map->stripes[i].physical + em->orig_block_len <=
1193
			    physical_start)
1194
				continue;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			/*
			 * Make sure that while processing the pinned list we do
			 * not override our *start with a lower value, because
			 * we can have pinned chunks that fall within this
			 * device hole and that have lower physical addresses
			 * than the pending chunks we processed before. If we
			 * do not take this special care we can end up getting
			 * 2 pending chunks that start at the same physical
			 * device offsets because the end offset of a pinned
			 * chunk can be equal to the start offset of some
			 * pending chunk.
			 */
			end = map->stripes[i].physical + em->orig_block_len;
			if (end > *start) {
				*start = end;
				ret = 1;
			}
1212 1213
		}
	}
1214 1215
	if (search_list != &fs_info->pinned_chunks) {
		search_list = &fs_info->pinned_chunks;
1216 1217
		goto again;
	}
1218 1219 1220 1221 1222

	return ret;
}


1223
/*
1224 1225 1226 1227 1228 1229 1230
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1231
 *
1232 1233 1234
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1235 1236 1237 1238 1239 1240 1241 1242
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1243
 */
1244 1245 1246
int find_free_dev_extent_start(struct btrfs_transaction *transaction,
			       struct btrfs_device *device, u64 num_bytes,
			       u64 search_start, u64 *start, u64 *len)
1247 1248 1249
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
1250
	struct btrfs_dev_extent *dev_extent;
Yan Zheng's avatar
Yan Zheng committed
1251
	struct btrfs_path *path;
1252 1253 1254 1255
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1256 1257
	u64 search_end = device->total_bytes;
	int ret;
1258
	int slot;
1259 1260
	struct extent_buffer *l;

1261 1262 1263
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1264

1265 1266 1267
	max_hole_start = search_start;
	max_hole_size = 0;

1268
again:
1269
	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1270
		ret = -ENOSPC;
1271
		goto out;
1272 1273 1274
	}

	path->reada = 2;
1275 1276
	path->search_commit_root = 1;
	path->skip_locking = 1;
1277

1278 1279 1280
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1281

1282
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1283
	if (ret < 0)
1284
		goto out;
1285 1286 1287
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1288
			goto out;
1289
	}
1290

1291 1292 1293 1294 1295 1296 1297 1298
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1299 1300 1301
				goto out;

			break;
1302 1303 1304 1305 1306 1307 1308
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1309
			break;
1310

1311
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1312
			goto next;
1313

1314 1315
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1316

1317 1318 1319 1320
			/*
			 * Have to check before we set max_hole_start, otherwise
			 * we could end up sending back this offset anyway.
			 */
1321
			if (contains_pending_extent(transaction, device,
1322
						    &search_start,
1323 1324 1325 1326 1327 1328 1329 1330
						    hole_size)) {
				if (key.offset >= search_start) {
					hole_size = key.offset - search_start;
				} else {
					WARN_ON_ONCE(1);
					hole_size = 0;
				}
			}
1331

1332 1333 1334 1335
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1349 1350 1351 1352
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1353 1354 1355 1356
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1357 1358 1359 1360 1361
next:
		path->slots[0]++;
		cond_resched();
	}

1362 1363 1364 1365 1366
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1367
	if (search_end > search_start) {
1368 1369
		hole_size = search_end - search_start;

1370
		if (contains_pending_extent(transaction, device, &search_start,
1371 1372 1373 1374
					    hole_size)) {
			btrfs_release_path(path);
			goto again;
		}
1375

1376 1377 1378 1379
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1380 1381
	}

1382
	/* See above. */
1383
	if (max_hole_size < num_bytes)
1384 1385 1386 1387 1388
		ret = -ENOSPC;
	else
		ret = 0;

out:
Yan Zheng's avatar
Yan Zheng committed
1389
	btrfs_free_path(path);
1390
	*start = max_hole_start;
1391
	if (len)
1392
		*len = max_hole_size;
1393 1394 1395
	return ret;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
int find_free_dev_extent(struct btrfs_trans_handle *trans,
			 struct btrfs_device *device, u64 num_bytes,
			 u64 *start, u64 *len)
{
	struct btrfs_root *root = device->dev_root;
	u64 search_start;

	/* FIXME use last free of some kind */

	/*
	 * we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
	return find_free_dev_extent_start(trans->transaction, device,
					  num_bytes, search_start, start, len);
}

1414
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1415
			  struct btrfs_device *device,
Miao Xie's avatar
Miao Xie committed
1416
			  u64 start, u64 *dev_extent_len)
1417 1418 1419 1420 1421
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;
1422 1423 1424
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1425 1426 1427 1428 1429 1430 1431 1432

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1433
again:
1434
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1435 1436 1437
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1438 1439
		if (ret)
			goto out;
1440 1441 1442 1443 1444 1445
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
1446 1447 1448
		key = found_key;
		btrfs_release_path(path);
		goto again;
1449 1450 1451 1452
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1453
	} else {
1454
		btrfs_std_error(root->fs_info, ret, "Slot search failed");
1455
		goto out;
1456
	}
1457

Miao Xie's avatar
Miao Xie committed
1458 1459
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1460
	ret = btrfs_del_item(trans, root, path);
1461
	if (ret) {
1462
		btrfs_std_error(root->fs_info, ret,
1463
			    "Failed to remove dev extent item");
Zhao Lei's avatar
Zhao Lei committed
1464
	} else {
1465
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1466
	}
1467
out:
1468 1469 1470 1471
	btrfs_free_path(path);
	return ret;
}

1472 1473 1474 1475
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_tree, u64 chunk_objectid,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1476 1477 1478 1479 1480 1481 1482 1483
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1484
	WARN_ON(!device->in_fs_metadata);
1485
	WARN_ON(device->is_tgtdev_for_dev_replace);
1486 1487 1488 1489 1490
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Yan Zheng's avatar
Yan Zheng committed
1491
	key.offset = start;
1492 1493 1494
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1495 1496
	if (ret)
		goto out;
1497 1498 1499 1500

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1501 1502 1503 1504 1505
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1506
		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1507

1508 1509
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1510
out:
1511 1512 1513 1514
	btrfs_free_path(path);
	return ret;
}

1515
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1516
{
1517 1518 1519 1520
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1521

1522 1523 1524 1525 1526 1527
	em_tree = &fs_info->mapping_tree.map_tree;
	read_lock(&em_tree->lock);
	n = rb_last(&em_tree->map);
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1528
	}
1529 1530
	read_unlock(&em_tree->lock);

1531 1532 1533
	return ret;
}

1534 1535
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1536 1537 1538 1539
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Yan Zheng's avatar
Yan Zheng committed
1540 1541 1542 1543 1544
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1545 1546 1547 1548 1549

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1550
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1551 1552 1553
	if (ret < 0)
		goto error;

1554
	BUG_ON(ret == 0); /* Corruption */
1555

1556 1557
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1558 1559
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1560
		*devid_ret = 1;
1561 1562 1563
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1564
		*devid_ret = found_key.offset + 1;
1565 1566 1567
	}
	ret = 0;
error:
Yan Zheng's avatar
Yan Zheng committed
1568
	btrfs_free_path(path);
1569 1570 1571 1572 1573 1574 1575
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1576 1577 1578
static int btrfs_add_device(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_device *device)
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Yan Zheng's avatar
Yan Zheng committed
1595
	key.offset = device->devid;
1596 1597

	ret = btrfs_insert_empty_item(trans, root, path, &key,
1598
				      sizeof(*dev_item));
1599 1600 1601 1602 1603 1604 1605
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Yan Zheng's avatar
Yan Zheng committed
1606
	btrfs_set_device_generation(leaf, dev_item, 0);
1607 1608 1609 1610
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1611 1612 1613 1614
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1615 1616 1617
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1618
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1619

1620
	ptr = btrfs_device_uuid(dev_item);
1621
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1622
	ptr = btrfs_device_fsid(dev_item);
Yan Zheng's avatar
Yan Zheng committed
1623
	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1624 1625
	btrfs_mark_buffer_dirty(leaf);

Yan Zheng's avatar
Yan Zheng committed
1626
	ret = 0;
1627 1628 1629 1630
out:
	btrfs_free_path(path);
	return ret;
}
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
static void update_dev_time(char *path_name)
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1641
	if (IS_ERR(filp))
1642 1643 1644 1645 1646 1647
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
	return;
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
static int btrfs_rm_dev_item(struct btrfs_root *root,
			     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1662
	trans = btrfs_start_transaction(root, 0);
1663 1664 1665 1666
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
	if (ret)
		goto out;
out:
	btrfs_free_path(path);
	btrfs_commit_transaction(trans, root);
	return ret;
}

int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_device *device;
Yan Zheng's avatar
Yan Zheng committed
1692
	struct btrfs_device *next_device;
1693
	struct block_device *bdev;
1694
	struct buffer_head *bh = NULL;
1695
	struct btrfs_super_block *disk_super;
1696
	struct btrfs_fs_devices *cur_devices;
1697 1698
	u64 all_avail;
	u64 devid;
Yan Zheng's avatar
Yan Zheng committed
1699 1700
	u64 num_devices;
	u8 *dev_uuid;
1701
	unsigned seq;
1702
	int ret = 0;
1703
	bool clear_super = false;
1704 1705 1706

	mutex_lock(&uuid_mutex);

1707 1708 1709 1710 1711 1712 1713
	do {
		seq = read_seqbegin(&root->fs_info->profiles_lock);

		all_avail = root->fs_info->avail_data_alloc_bits |
			    root->fs_info->avail_system_alloc_bits |
			    root->fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723
	num_devices = root->fs_info->fs_devices->num_devices;
	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
		WARN_ON(num_devices < 1);
		num_devices--;
	}
	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1724
		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1725 1726 1727
		goto out;
	}

1728
	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1729
		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1730 1731 1732
		goto out;
	}

David Woodhouse's avatar
David Woodhouse committed
1733 1734
	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
	    root->fs_info->fs_devices->rw_devices <= 2) {
1735
		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
David Woodhouse's avatar
David Woodhouse committed
1736 1737 1738 1739
		goto out;
	}
	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
	    root->fs_info->fs_devices->rw_devices <= 3) {
1740
		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
David Woodhouse's avatar
David Woodhouse committed
1741 1742 1743
		goto out;
	}

1744 1745 1746
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *devices;
		struct btrfs_device *tmp;
1747

1748 1749
		device = NULL;
		devices = &root->fs_info->fs_devices->devices;
1750 1751 1752 1753
		/*
		 * It is safe to read the devices since the volume_mutex
		 * is held.
		 */
1754
		list_for_each_entry(tmp, devices, dev_list) {
1755 1756 1757
			if (tmp->in_fs_metadata &&
			    !tmp->is_tgtdev_for_dev_replace &&
			    !tmp->bdev) {
1758 1759 1760 1761 1762 1763 1764 1765
				device = tmp;
				break;
			}
		}
		bdev = NULL;
		bh = NULL;
		disk_super = NULL;
		if (!device) {
1766
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1767 1768 1769
			goto out;
		}
	} else {
1770
		ret = btrfs_get_bdev_and_sb(device_path,
1771
					    FMODE_WRITE | FMODE_EXCL,
1772 1773 1774
					    root->fs_info->bdev_holder, 0,
					    &bdev, &bh);
		if (ret)
1775 1776
			goto out;
		disk_super = (struct btrfs_super_block *)bh->b_data;
1777
		devid = btrfs_stack_device_id(&disk_super->dev_item);
Yan Zheng's avatar
Yan Zheng committed
1778
		dev_uuid = disk_super->dev_item.uuid;
1779
		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
Yan Zheng's avatar
Yan Zheng committed
1780
					   disk_super->fsid);
1781 1782 1783 1784
		if (!device) {
			ret = -ENOENT;
			goto error_brelse;
		}
Yan Zheng's avatar
Yan Zheng committed
1785
	}
1786

1787
	if (device->is_tgtdev_for_dev_replace) {
1788
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1789 1790 1791
		goto error_brelse;
	}

Yan Zheng's avatar
Yan Zheng committed
1792
	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1793
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
Yan Zheng's avatar
Yan Zheng committed
1794 1795 1796 1797
		goto error_brelse;
	}

	if (device->writeable) {
1798
		lock_chunks(root);
Yan Zheng's avatar
Yan Zheng committed
1799
		list_del_init(&device->dev_alloc_list);
1800
		device->fs_devices->rw_devices--;
1801
		unlock_chunks(root);
1802
		clear_super = true;
1803
	}
1804

1805
	mutex_unlock(&uuid_mutex);
1806
	ret = btrfs_shrink_device(device, 0);
1807
	mutex_lock(&uuid_mutex);
1808
	if (ret)
1809
		goto error_undo;
1810

1811 1812 1813 1814 1815
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
1816 1817
	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
	if (ret)
1818
		goto error_undo;
1819

Yan Zheng's avatar
Yan Zheng committed
1820
	device->in_fs_metadata = 0;
1821
	btrfs_scrub_cancel_dev(root->fs_info, device);
1822 1823 1824 1825

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
1826 1827 1828 1829 1830
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
1831
	 */
1832 1833

	cur_devices = device->fs_devices;
1834
	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1835
	list_del_rcu(&device->dev_list);
1836

Yan Zheng's avatar
Yan Zheng committed
1837
	device->fs_devices->num_devices--;
Josef Bacik's avatar
Josef Bacik committed
1838
	device->fs_devices->total_devices--;
Yan Zheng's avatar
Yan Zheng committed
1839

1840
	if (device->missing)
1841
		device->fs_devices->missing_devices--;
1842

Yan Zheng's avatar
Yan Zheng committed
1843 1844 1845 1846 1847 1848 1849
	next_device = list_entry(root->fs_info->fs_devices->devices.next,
				 struct btrfs_device, dev_list);
	if (device->bdev == root->fs_info->sb->s_bdev)
		root->fs_info->sb->s_bdev = next_device->bdev;
	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
		root->fs_info->fs_devices->latest_bdev = next_device->bdev;

1850
	if (device->bdev) {
Yan Zheng's avatar
Yan Zheng committed
1851
		device->fs_devices->open_devices--;
1852
		/* remove sysfs entry */
1853
		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1854
	}
1855

1856
	call_rcu(&device->rcu, free_device);
Yan Zheng's avatar
Yan Zheng committed
1857

1858 1859
	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1860
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
Yan Zheng's avatar
Yan Zheng committed
1861

1862
	if (cur_devices->open_devices == 0) {
Yan Zheng's avatar
Yan Zheng committed
1863 1864 1865
		struct btrfs_fs_devices *fs_devices;
		fs_devices = root->fs_info->fs_devices;
		while (fs_devices) {
1866 1867
			if (fs_devices->seed == cur_devices) {
				fs_devices->seed = cur_devices->seed;
Yan Zheng's avatar
Yan Zheng committed
1868
				break;
1869
			}
Yan Zheng's avatar
Yan Zheng committed
1870
			fs_devices = fs_devices->seed;
Yan Zheng's avatar
Yan Zheng committed
1871
		}
1872 1873 1874
		cur_devices->seed = NULL;
		__btrfs_close_devices(cur_devices);
		free_fs_devices(cur_devices);
Yan Zheng's avatar
Yan Zheng committed
1875 1876
	}

1877 1878 1879
	root->fs_info->num_tolerated_disk_barrier_failures =
		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);

Yan Zheng's avatar
Yan Zheng committed
1880 1881 1882 1883
	/*
	 * at this point, the device is zero sized.  We want to
	 * remove it from the devices list and zero out the old super
	 */
1884
	if (clear_super && disk_super) {
1885 1886 1887
		u64 bytenr;
		int i;

1888 1889 1890 1891 1892 1893
		/* make sure this device isn't detected as part of
		 * the FS anymore
		 */
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

		/* clear the mirror copies of super block on the disk
		 * being removed, 0th copy is been taken care above and
		 * the below would take of the rest
		 */
		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
			bytenr = btrfs_sb_offset(i);
			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
					i_size_read(bdev->bd_inode))
				break;

			brelse(bh);
			bh = __bread(bdev, bytenr / 4096,
					BTRFS_SUPER_INFO_SIZE);
			if (!bh)
				continue;

			disk_super = (struct btrfs_super_block *)bh->b_data;

			if (btrfs_super_bytenr(disk_super) != bytenr ||
				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
				continue;
			}
			memset(&disk_super->magic, 0,
						sizeof(disk_super->magic));
			set_buffer_dirty(bh);
			sync_dirty_buffer(bh);
		}
1922
	}
1923 1924 1925

	ret = 0;

1926 1927
	if (bdev) {
		/* Notify udev that device has changed */
1928
		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1929

1930 1931 1932 1933
		/* Update ctime/mtime for device path for libblkid */
		update_dev_time(device_path);
	}

1934 1935
error_brelse:
	brelse(bh);
1936
	if (bdev)
1937
		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1938 1939 1940
out:
	mutex_unlock(&uuid_mutex);
	return ret;
1941 1942
error_undo:
	if (device->writeable) {
1943
		lock_chunks(root);
1944 1945
		list_add(&device->dev_alloc_list,
			 &root->fs_info->fs_devices->alloc_list);
1946
		device->fs_devices->rw_devices++;
1947
		unlock_chunks(root);
1948 1949
	}
	goto error_brelse;
1950 1951
}

1952 1953
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
					struct btrfs_device *srcdev)
1954
{
1955 1956
	struct btrfs_fs_devices *fs_devices;

1957
	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1958

1959 1960 1961 1962 1963 1964 1965
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
1966

1967 1968
	list_del_rcu(&srcdev->dev_list);
	list_del_rcu(&srcdev->dev_alloc_list);
1969
	fs_devices->num_devices--;
1970
	if (srcdev->missing)
1971
		fs_devices->missing_devices--;
1972

1973 1974 1975
	if (srcdev->writeable) {
		fs_devices->rw_devices--;
		/* zero out the old super if it is writable */
1976 1977
		btrfs_scratch_superblocks(srcdev->bdev,
					rcu_str_deref(srcdev->name));
1978 1979
	}

1980
	if (srcdev->bdev)
1981
		fs_devices->open_devices--;
1982 1983 1984 1985 1986 1987
}

void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
				      struct btrfs_device *srcdev)
{
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1988 1989

	call_rcu(&srcdev->rcu, free_device);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

	/*
	 * unless fs_devices is seed fs, num_devices shouldn't go
	 * zero
	 */
	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
		struct btrfs_fs_devices *tmp_fs_devices;

		tmp_fs_devices = fs_info->fs_devices;
		while (tmp_fs_devices) {
			if (tmp_fs_devices->seed == fs_devices) {
				tmp_fs_devices->seed = fs_devices->seed;
				break;
			}
			tmp_fs_devices = tmp_fs_devices->seed;
		}
		fs_devices->seed = NULL;
2010 2011
		__btrfs_close_devices(fs_devices);
		free_fs_devices(fs_devices);
2012
	}
2013 2014 2015 2016 2017 2018 2019
}

void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
				      struct btrfs_device *tgtdev)
{
	struct btrfs_device *next_device;

2020
	mutex_lock(&uuid_mutex);
2021 2022
	WARN_ON(!tgtdev);
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2023

2024
	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2025

2026
	if (tgtdev->bdev) {
2027 2028
		btrfs_scratch_superblocks(tgtdev->bdev,
					rcu_str_deref(tgtdev->name));
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		fs_info->fs_devices->open_devices--;
	}
	fs_info->fs_devices->num_devices--;

	next_device = list_entry(fs_info->fs_devices->devices.next,
				 struct btrfs_device, dev_list);
	if (tgtdev->bdev == fs_info->sb->s_bdev)
		fs_info->sb->s_bdev = next_device->bdev;
	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
	list_del_rcu(&tgtdev->dev_list);

	call_rcu(&tgtdev->rcu, free_device);

	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044
	mutex_unlock(&uuid_mutex);
2045 2046
}

2047 2048
static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
				     struct btrfs_device **device)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
	struct buffer_head *bh;

	*device = NULL;
	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
				    root->fs_info->bdev_holder, 0, &bdev, &bh);
	if (ret)
		return ret;
	disk_super = (struct btrfs_super_block *)bh->b_data;
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2065
	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
				    disk_super->fsid);
	brelse(bh);
	if (!*device)
		ret = -ENOENT;
	blkdev_put(bdev, FMODE_READ);
	return ret;
}

int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
					 char *device_path,
					 struct btrfs_device **device)
{
	*device = NULL;
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *devices;
		struct btrfs_device *tmp;

		devices = &root->fs_info->fs_devices->devices;
		/*
		 * It is safe to read the devices since the volume_mutex
		 * is held by the caller.
		 */
		list_for_each_entry(tmp, devices, dev_list) {
			if (tmp->in_fs_metadata && !tmp->bdev) {
				*device = tmp;
				break;
			}
		}

2095 2096
		if (!*device)
			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097 2098 2099 2100 2101 2102 2103

		return 0;
	} else {
		return btrfs_find_device_by_path(root, device_path, device);
	}
}

Yan Zheng's avatar
Yan Zheng committed
2104 2105 2106
/*
 * does all the dirty work required for changing file system's UUID.
 */
2107
static int btrfs_prepare_sprout(struct btrfs_root *root)
Yan Zheng's avatar
Yan Zheng committed
2108 2109 2110
{
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
	struct btrfs_fs_devices *old_devices;
Yan Zheng's avatar
Yan Zheng committed
2111
	struct btrfs_fs_devices *seed_devices;
2112
	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
Yan Zheng's avatar
Yan Zheng committed
2113 2114 2115 2116
	struct btrfs_device *device;
	u64 super_flags;

	BUG_ON(!mutex_is_locked(&uuid_mutex));
Yan Zheng's avatar
Yan Zheng committed
2117
	if (!fs_devices->seeding)
Yan Zheng's avatar
Yan Zheng committed
2118 2119
		return -EINVAL;

2120 2121 2122
	seed_devices = __alloc_fs_devices();
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Yan Zheng's avatar
Yan Zheng committed
2123

Yan Zheng's avatar
Yan Zheng committed
2124 2125 2126 2127
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Yan Zheng's avatar
Yan Zheng committed
2128
	}
Yan Zheng's avatar
Yan Zheng committed
2129

Yan Zheng's avatar
Yan Zheng committed
2130 2131
	list_add(&old_devices->list, &fs_uuids);

Yan Zheng's avatar
Yan Zheng committed
2132 2133 2134 2135
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2136
	mutex_init(&seed_devices->device_list_mutex);
2137 2138

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 2140
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
Miao Xie's avatar
Miao Xie committed
2141 2142
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2143

Miao Xie's avatar
Miao Xie committed
2144
	lock_chunks(root);
Yan Zheng's avatar
Yan Zheng committed
2145
	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
Miao Xie's avatar
Miao Xie committed
2146
	unlock_chunks(root);
Yan Zheng's avatar
Yan Zheng committed
2147

Yan Zheng's avatar
Yan Zheng committed
2148 2149 2150
	fs_devices->seeding = 0;
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2151 2152
	fs_devices->missing_devices = 0;
	fs_devices->rotating = 0;
Yan Zheng's avatar
Yan Zheng committed
2153
	fs_devices->seed = seed_devices;
Yan Zheng's avatar
Yan Zheng committed
2154 2155 2156 2157

	generate_random_uuid(fs_devices->fsid);
	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 2159
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

Yan Zheng's avatar
Yan Zheng committed
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
 * strore the expected generation for seed devices in device items.
 */
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
	u8 fs_uuid[BTRFS_UUID_SIZE];
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	root = root->fs_info->chunk_root;
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207
			btrfs_release_path(path);
Yan Zheng's avatar
Yan Zheng committed
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2219
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Yan Zheng's avatar
Yan Zheng committed
2220
				   BTRFS_UUID_SIZE);
2221
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
Yan Zheng's avatar
Yan Zheng committed
2222
				   BTRFS_UUID_SIZE);
2223 2224
		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
					   fs_uuid);
2225
		BUG_ON(!device); /* Logic error */
Yan Zheng's avatar
Yan Zheng committed
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2242 2243
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
2244
	struct request_queue *q;
2245 2246 2247 2248
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct list_head *devices;
Yan Zheng's avatar
Yan Zheng committed
2249
	struct super_block *sb = root->fs_info->sb;
2250
	struct rcu_string *name;
2251
	u64 tmp;
Yan Zheng's avatar
Yan Zheng committed
2252
	int seeding_dev = 0;
2253 2254
	int ret = 0;

Yan Zheng's avatar
Yan Zheng committed
2255
	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256
		return -EROFS;
2257

2258
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259
				  root->fs_info->bdev_holder);
2260 2261
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2262

Yan Zheng's avatar
Yan Zheng committed
2263 2264 2265 2266 2267 2268
	if (root->fs_info->fs_devices->seeding) {
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
	}

2269
	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270

2271
	devices = &root->fs_info->fs_devices->devices;
2272 2273

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274
	list_for_each_entry(device, devices, dev_list) {
2275 2276
		if (device->bdev == bdev) {
			ret = -EEXIST;
2277 2278
			mutex_unlock(
				&root->fs_info->fs_devices->device_list_mutex);
Yan Zheng's avatar
Yan Zheng committed
2279
			goto error;
2280 2281
		}
	}
2282
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283

2284 2285
	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
	if (IS_ERR(device)) {
2286
		/* we can safely leave the fs_devices entry around */
2287
		ret = PTR_ERR(device);
Yan Zheng's avatar
Yan Zheng committed
2288
		goto error;
2289 2290
	}

2291 2292
	name = rcu_string_strdup(device_path, GFP_NOFS);
	if (!name) {
2293
		kfree(device);
Yan Zheng's avatar
Yan Zheng committed
2294 2295
		ret = -ENOMEM;
		goto error;
2296
	}
2297
	rcu_assign_pointer(device->name, name);
Yan Zheng's avatar
Yan Zheng committed
2298

2299
	trans = btrfs_start_transaction(root, 0);
2300
	if (IS_ERR(trans)) {
2301
		rcu_string_free(device->name);
2302 2303 2304 2305 2306
		kfree(device);
		ret = PTR_ERR(trans);
		goto error;
	}

2307 2308 2309
	q = bdev_get_queue(bdev);
	if (blk_queue_discard(q))
		device->can_discard = 1;
Yan Zheng's avatar
Yan Zheng committed
2310 2311
	device->writeable = 1;
	device->generation = trans->transid;
2312 2313 2314 2315
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
	device->total_bytes = i_size_read(bdev->bd_inode);
2316
	device->disk_total_bytes = device->total_bytes;
2317
	device->commit_total_bytes = device->total_bytes;
2318 2319
	device->dev_root = root->fs_info->dev_root;
	device->bdev = bdev;
2320
	device->in_fs_metadata = 1;
2321
	device->is_tgtdev_for_dev_replace = 0;
2322
	device->mode = FMODE_EXCL;
2323
	device->dev_stats_valid = 1;
Yan Zheng's avatar
Yan Zheng committed
2324
	set_blocksize(device->bdev, 4096);
2325

Yan Zheng's avatar
Yan Zheng committed
2326 2327
	if (seeding_dev) {
		sb->s_flags &= ~MS_RDONLY;
2328
		ret = btrfs_prepare_sprout(root);
2329
		BUG_ON(ret); /* -ENOMEM */
Yan Zheng's avatar
Yan Zheng committed
2330
	}
2331

Yan Zheng's avatar
Yan Zheng committed
2332
	device->fs_devices = root->fs_info->fs_devices;
2333 2334

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
Miao Xie's avatar
Miao Xie committed
2335
	lock_chunks(root);
2336
	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
Yan Zheng's avatar
Yan Zheng committed
2337 2338 2339 2340 2341
	list_add(&device->dev_alloc_list,
		 &root->fs_info->fs_devices->alloc_list);
	root->fs_info->fs_devices->num_devices++;
	root->fs_info->fs_devices->open_devices++;
	root->fs_info->fs_devices->rw_devices++;
Josef Bacik's avatar
Josef Bacik committed
2342
	root->fs_info->fs_devices->total_devices++;
Yan Zheng's avatar
Yan Zheng committed
2343
	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344

2345 2346 2347 2348
	spin_lock(&root->fs_info->free_chunk_lock);
	root->fs_info->free_chunk_space += device->total_bytes;
	spin_unlock(&root->fs_info->free_chunk_lock);

Chris Mason's avatar
Chris Mason committed
2349 2350 2351
	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
		root->fs_info->fs_devices->rotating = 1;

2352
	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353
	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354
				    tmp + device->total_bytes);
2355

2356
	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357
	btrfs_set_super_num_devices(root->fs_info->super_copy,
2358
				    tmp + 1);
2359 2360

	/* add sysfs device entry */
2361
	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2362

Miao Xie's avatar
Miao Xie committed
2363 2364 2365 2366 2367 2368 2369
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
	btrfs_clear_space_info_full(root->fs_info);

	unlock_chunks(root);
2370
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371

Yan Zheng's avatar
Yan Zheng committed
2372
	if (seeding_dev) {
Miao Xie's avatar
Miao Xie committed
2373
		lock_chunks(root);
Yan Zheng's avatar
Yan Zheng committed
2374
		ret = init_first_rw_device(trans, root, device);
Miao Xie's avatar
Miao Xie committed
2375
		unlock_chunks(root);
2376 2377
		if (ret) {
			btrfs_abort_transaction(trans, root, ret);
2378
			goto error_trans;
2379
		}
Miao Xie's avatar
Miao Xie committed
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	}

	ret = btrfs_add_device(trans, root, device);
	if (ret) {
		btrfs_abort_transaction(trans, root, ret);
		goto error_trans;
	}

	if (seeding_dev) {
		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];

Yan Zheng's avatar
Yan Zheng committed
2391
		ret = btrfs_finish_sprout(trans, root);
2392 2393
		if (ret) {
			btrfs_abort_transaction(trans, root, ret);
2394
			goto error_trans;
2395
		}
2396 2397 2398 2399 2400 2401

		/* Sprouting would change fsid of the mounted root,
		 * so rename the fsid on the sysfs
		 */
		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
						root->fs_info->fsid);
2402
		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403
								fsid_buf))
2404 2405
			btrfs_warn(root->fs_info,
				"sysfs: failed to create fsid for sprout");
Yan Zheng's avatar
Yan Zheng committed
2406 2407
	}

2408 2409
	root->fs_info->num_tolerated_disk_barrier_failures =
		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410
	ret = btrfs_commit_transaction(trans, root);
2411

Yan Zheng's avatar
Yan Zheng committed
2412 2413 2414
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2415

2416 2417 2418
		if (ret) /* transaction commit */
			return ret;

Yan Zheng's avatar
Yan Zheng committed
2419
		ret = btrfs_relocate_sys_chunks(root);
2420
		if (ret < 0)
2421
			btrfs_std_error(root->fs_info, ret,
2422 2423 2424
				    "Failed to relocate sys chunks after "
				    "device initialization. This can be fixed "
				    "using the \"btrfs balance\" command.");
2425 2426 2427 2428 2429 2430 2431
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
			return PTR_ERR(trans);
		}
		ret = btrfs_commit_transaction(trans, root);
Yan Zheng's avatar
Yan Zheng committed
2432
	}
2433

2434 2435
	/* Update ctime/mtime for libblkid */
	update_dev_time(device_path);
Yan Zheng's avatar
Yan Zheng committed
2436
	return ret;
2437 2438 2439

error_trans:
	btrfs_end_transaction(trans, root);
2440
	rcu_string_free(device->name);
2441
	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442
	kfree(device);
Yan Zheng's avatar
Yan Zheng committed
2443
error:
2444
	blkdev_put(bdev, FMODE_EXCL);
Yan Zheng's avatar
Yan Zheng committed
2445 2446 2447 2448
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2449
	return ret;
2450 2451
}

2452
int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453
				  struct btrfs_device *srcdev,
2454 2455 2456 2457 2458 2459 2460 2461
				  struct btrfs_device **device_out)
{
	struct request_queue *q;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct list_head *devices;
	struct rcu_string *name;
2462
	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463 2464 2465
	int ret = 0;

	*device_out = NULL;
2466 2467
	if (fs_info->fs_devices->seeding) {
		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468
		return -EINVAL;
2469
	}
2470 2471 2472

	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
				  fs_info->bdev_holder);
2473 2474
	if (IS_ERR(bdev)) {
		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475
		return PTR_ERR(bdev);
2476
	}
2477 2478 2479 2480 2481 2482

	filemap_write_and_wait(bdev->bd_inode->i_mapping);

	devices = &fs_info->fs_devices->devices;
	list_for_each_entry(device, devices, dev_list) {
		if (device->bdev == bdev) {
2483
			btrfs_err(fs_info, "target device is in the filesystem!");
2484 2485 2486 2487 2488
			ret = -EEXIST;
			goto error;
		}
	}

2489

2490 2491
	if (i_size_read(bdev->bd_inode) <
	    btrfs_device_get_total_bytes(srcdev)) {
2492 2493 2494 2495 2496 2497
		btrfs_err(fs_info, "target device is smaller than source device!");
		ret = -EINVAL;
		goto error;
	}


2498 2499 2500
	device = btrfs_alloc_device(NULL, &devid, NULL);
	if (IS_ERR(device)) {
		ret = PTR_ERR(device);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
		goto error;
	}

	name = rcu_string_strdup(device_path, GFP_NOFS);
	if (!name) {
		kfree(device);
		ret = -ENOMEM;
		goto error;
	}
	rcu_assign_pointer(device->name, name);

	q = bdev_get_queue(bdev);
	if (blk_queue_discard(q))
		device->can_discard = 1;
	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
	device->writeable = 1;
	device->generation = 0;
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
2521 2522 2523
	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524 2525
	ASSERT(list_empty(&srcdev->resized_list));
	device->commit_total_bytes = srcdev->commit_total_bytes;
2526
	device->commit_bytes_used = device->bytes_used;
2527 2528 2529 2530 2531
	device->dev_root = fs_info->dev_root;
	device->bdev = bdev;
	device->in_fs_metadata = 1;
	device->is_tgtdev_for_dev_replace = 1;
	device->mode = FMODE_EXCL;
2532
	device->dev_stats_valid = 1;
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	set_blocksize(device->bdev, 4096);
	device->fs_devices = fs_info->fs_devices;
	list_add(&device->dev_list, &fs_info->fs_devices->devices);
	fs_info->fs_devices->num_devices++;
	fs_info->fs_devices->open_devices++;
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

	*device_out = device;
	return ret;

error:
	blkdev_put(bdev, FMODE_EXCL);
	return ret;
}

void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
					      struct btrfs_device *tgtdev)
{
	WARN_ON(fs_info->fs_devices->rw_devices == 0);
	tgtdev->io_width = fs_info->dev_root->sectorsize;
	tgtdev->io_align = fs_info->dev_root->sectorsize;
	tgtdev->sector_size = fs_info->dev_root->sectorsize;
	tgtdev->dev_root = fs_info->dev_root;
	tgtdev->in_fs_metadata = 1;
}

2559 2560
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596 2597 2598 2599
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2600 2601 2602 2603 2604 2605 2606
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

Miao Xie's avatar
Miao Xie committed
2607
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608 2609 2610
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
2611
		device->dev_root->fs_info->super_copy;
2612
	struct btrfs_fs_devices *fs_devices;
Miao Xie's avatar
Miao Xie committed
2613 2614
	u64 old_total;
	u64 diff;
2615

Yan Zheng's avatar
Yan Zheng committed
2616 2617
	if (!device->writeable)
		return -EACCES;
Miao Xie's avatar
Miao Xie committed
2618 2619 2620 2621 2622

	lock_chunks(device->dev_root);
	old_total = btrfs_super_total_bytes(super_copy);
	diff = new_size - device->total_bytes;

2623
	if (new_size <= device->total_bytes ||
Miao Xie's avatar
Miao Xie committed
2624 2625
	    device->is_tgtdev_for_dev_replace) {
		unlock_chunks(device->dev_root);
Yan Zheng's avatar
Yan Zheng committed
2626
		return -EINVAL;
Miao Xie's avatar
Miao Xie committed
2627
	}
Yan Zheng's avatar
Yan Zheng committed
2628

2629
	fs_devices = device->dev_root->fs_info->fs_devices;
Yan Zheng's avatar
Yan Zheng committed
2630

2631
	btrfs_set_super_total_bytes(super_copy, old_total + diff);
Yan Zheng's avatar
Yan Zheng committed
2632 2633
	device->fs_devices->total_rw_bytes += diff;

2634 2635
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2636
	btrfs_clear_space_info_full(device->dev_root->fs_info);
2637 2638 2639
	if (list_empty(&device->resized_list))
		list_add_tail(&device->resized_list,
			      &fs_devices->resized_devices);
Miao Xie's avatar
Miao Xie committed
2640
	unlock_chunks(device->dev_root);
2641

2642 2643 2644 2645
	return btrfs_update_device(trans, device);
}

static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646
			    struct btrfs_root *root, u64 chunk_objectid,
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663 2664 2665
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2666
		btrfs_std_error(root->fs_info, -ENOENT,
2667 2668 2669 2670
			    "Failed lookup while freeing chunk.");
		ret = -ENOENT;
		goto out;
	}
2671 2672

	ret = btrfs_del_item(trans, root, path);
2673
	if (ret < 0)
2674
		btrfs_std_error(root->fs_info, ret,
2675 2676
			    "Failed to delete chunk item.");
out:
2677
	btrfs_free_path(path);
2678
	return ret;
2679 2680
}

2681
static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682 2683
			chunk_offset)
{
2684
	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

Miao Xie's avatar
Miao Xie committed
2695
	lock_chunks(root);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
Miao Xie's avatar
Miao Xie committed
2725
	unlock_chunks(root);
2726 2727 2728
	return ret;
}

2729 2730
int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, u64 chunk_offset)
2731 2732 2733
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;
2734
	struct btrfs_root *extent_root = root->fs_info->extent_root;
2735
	struct map_lookup *map;
Miao Xie's avatar
Miao Xie committed
2736
	u64 dev_extent_len = 0;
2737 2738
	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	int i, ret = 0;
2739

2740
	/* Just in case */
2741 2742 2743
	root = root->fs_info->chunk_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

2744
	read_lock(&em_tree->lock);
2745
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746
	read_unlock(&em_tree->lock);
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	if (!em || em->start > chunk_offset ||
	    em->start + em->len < chunk_offset) {
		/*
		 * This is a logic error, but we don't want to just rely on the
		 * user having built with ASSERT enabled, so if ASSERT doens't
		 * do anything we still error out.
		 */
		ASSERT(0);
		if (em)
			free_extent_map(em);
		return -EINVAL;
	}
2760
	map = (struct map_lookup *)em->bdev;
2761
	lock_chunks(root->fs_info->chunk_root);
2762
	check_system_chunk(trans, extent_root, map->type);
2763
	unlock_chunks(root->fs_info->chunk_root);
2764 2765

	for (i = 0; i < map->num_stripes; i++) {
2766
		struct btrfs_device *device = map->stripes[i].dev;
Miao Xie's avatar
Miao Xie committed
2767 2768 2769
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
2770 2771 2772 2773
		if (ret) {
			btrfs_abort_transaction(trans, root, ret);
			goto out;
		}
2774

Miao Xie's avatar
Miao Xie committed
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		if (device->bytes_used > 0) {
			lock_chunks(root);
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
			spin_lock(&root->fs_info->free_chunk_lock);
			root->fs_info->free_chunk_space += dev_extent_len;
			spin_unlock(&root->fs_info->free_chunk_lock);
			btrfs_clear_space_info_full(root->fs_info);
			unlock_chunks(root);
		}
2785

2786 2787
		if (map->stripes[i].dev) {
			ret = btrfs_update_device(trans, map->stripes[i].dev);
2788 2789 2790 2791
			if (ret) {
				btrfs_abort_transaction(trans, root, ret);
				goto out;
			}
2792
		}
2793
	}
2794
	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795 2796 2797 2798
	if (ret) {
		btrfs_abort_transaction(trans, root, ret);
		goto out;
	}
2799

2800 2801
	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);

2802 2803
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804 2805 2806 2807
		if (ret) {
			btrfs_abort_transaction(trans, root, ret);
			goto out;
		}
2808 2809
	}

2810
	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2811 2812 2813 2814
	if (ret) {
		btrfs_abort_transaction(trans, extent_root, ret);
		goto out;
	}
Yan Zheng's avatar
Yan Zheng committed
2815

2816
out:
Yan Zheng's avatar
Yan Zheng committed
2817 2818
	/* once for us */
	free_extent_map(em);
2819 2820
	return ret;
}
Yan Zheng's avatar
Yan Zheng committed
2821

2822
static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823 2824 2825 2826
{
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	int ret;
Yan Zheng's avatar
Yan Zheng committed
2827

2828 2829 2830
	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));

2845 2846 2847 2848 2849
	ret = btrfs_can_relocate(extent_root, chunk_offset);
	if (ret)
		return -ENOSPC;

	/* step one, relocate all the extents inside this chunk */
2850
	btrfs_scrub_pause(root);
2851
	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852
	btrfs_scrub_continue(root);
2853 2854 2855 2856 2857 2858
	if (ret)
		return ret;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2859
		btrfs_std_error(root->fs_info, ret, NULL);
2860 2861 2862 2863 2864 2865 2866 2867
		return ret;
	}

	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
	ret = btrfs_remove_chunk(trans, root, chunk_offset);
Yan Zheng's avatar
Yan Zheng committed
2868
	btrfs_end_transaction(trans, root);
2869
	return ret;
Yan Zheng's avatar
Yan Zheng committed
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
{
	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
2881 2882
	bool retried = false;
	int failed = 0;
Yan Zheng's avatar
Yan Zheng committed
2883 2884 2885 2886 2887 2888
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2889
again:
Yan Zheng's avatar
Yan Zheng committed
2890 2891 2892 2893 2894
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
2895
		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
Yan Zheng's avatar
Yan Zheng committed
2896
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2897 2898
		if (ret < 0) {
			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
Yan Zheng's avatar
Yan Zheng committed
2899
			goto error;
2900
		}
2901
		BUG_ON(ret == 0); /* Corruption */
Yan Zheng's avatar
Yan Zheng committed
2902 2903 2904

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
2905 2906
		if (ret)
			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
Yan Zheng's avatar
Yan Zheng committed
2907 2908 2909 2910
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
2911

Yan Zheng's avatar
Yan Zheng committed
2912 2913
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2914

Yan Zheng's avatar
Yan Zheng committed
2915 2916 2917
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
2918
		btrfs_release_path(path);
2919

Yan Zheng's avatar
Yan Zheng committed
2920
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2921
			ret = btrfs_relocate_chunk(chunk_root,
Yan Zheng's avatar
Yan Zheng committed
2922
						   found_key.offset);
2923 2924
			if (ret == -ENOSPC)
				failed++;
HIMANGI SARAOGI's avatar
HIMANGI SARAOGI committed
2925 2926
			else
				BUG_ON(ret);
Yan Zheng's avatar
Yan Zheng committed
2927
		}
2928
		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2929

Yan Zheng's avatar
Yan Zheng committed
2930 2931 2932 2933 2934
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
2935 2936 2937 2938
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
2939
	} else if (WARN_ON(failed && retried)) {
2940 2941
		ret = -ENOSPC;
	}
Yan Zheng's avatar
Yan Zheng committed
2942 2943 2944
error:
	btrfs_free_path(path);
	return ret;
2945 2946
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static int insert_balance_item(struct btrfs_root *root,
			       struct btrfs_balance_control *bctl)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
	key.type = BTRFS_BALANCE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
	err = btrfs_commit_transaction(trans, root);
	if (err && !ret)
		ret = err;
	return ret;
}

static int del_balance_item(struct btrfs_root *root)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
	key.type = BTRFS_BALANCE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
	err = btrfs_commit_transaction(trans, root);
	if (err && !ret)
		ret = err;
	return ret;
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
/*
 * Should be called with both balance and volume mutexes held to
 * serialize other volume operations (add_dev/rm_dev/resize) with
 * restriper.  Same goes for unset_balance_control.
 */
static void set_balance_control(struct btrfs_balance_control *bctl)
{
	struct btrfs_fs_info *fs_info = bctl->fs_info;

	BUG_ON(fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
}

static void unset_balance_control(struct btrfs_fs_info *fs_info)
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
}

Ilya Dryomov's avatar
Ilya Dryomov committed
3107 3108 3109 3110
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3111
static int chunk_profiles_filter(u64 chunk_type,
Ilya Dryomov's avatar
Ilya Dryomov committed
3112 3113
				 struct btrfs_balance_args *bargs)
{
3114 3115
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
Ilya Dryomov's avatar
Ilya Dryomov committed
3116

3117
	if (bargs->profiles & chunk_type)
Ilya Dryomov's avatar
Ilya Dryomov committed
3118 3119 3120 3121 3122
		return 0;

	return 1;
}

Ilya Dryomov's avatar
Ilya Dryomov committed
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_block_group_cache *cache;
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	chunk_used = btrfs_block_group_used(&cache->item);

3133
	if (bargs->usage == 0)
3134
		user_thresh = 1;
3135 3136 3137 3138 3139 3140
	else if (bargs->usage > 100)
		user_thresh = cache->key.offset;
	else
		user_thresh = div_factor_fine(cache->key.offset,
					      bargs->usage);

Ilya Dryomov's avatar
Ilya Dryomov committed
3141 3142 3143 3144 3145 3146 3147
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

Ilya Dryomov's avatar
Ilya Dryomov committed
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

Ilya Dryomov's avatar
Ilya Dryomov committed
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
David Woodhouse's avatar
David Woodhouse committed
3182 3183 3184 3185 3186 3187 3188 3189 3190
	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
		factor = num_stripes / 2;
	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
		factor = num_stripes - 1;
	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
		factor = num_stripes - 2;
	} else {
		factor = num_stripes;
	}
Ilya Dryomov's avatar
Ilya Dryomov committed
3191 3192 3193 3194 3195 3196 3197 3198

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3199
		stripe_length = div_u64(stripe_length, factor);
Ilya Dryomov's avatar
Ilya Dryomov committed
3200 3201 3202 3203 3204 3205 3206 3207 3208

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3223
static int chunk_soft_convert_filter(u64 chunk_type,
3224 3225 3226 3227 3228
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3229 3230
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3231

3232
	if (bargs->target == chunk_type)
3233 3234 3235 3236 3237
		return 1;

	return 0;
}

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static int should_balance_chunk(struct btrfs_root *root,
				struct extent_buffer *leaf,
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

Ilya Dryomov's avatar
Ilya Dryomov committed
3259 3260 3261 3262
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
Ilya Dryomov's avatar
Ilya Dryomov committed
3263 3264 3265 3266 3267 3268
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
		return 0;
Ilya Dryomov's avatar
Ilya Dryomov committed
3269 3270 3271 3272 3273 3274
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
Ilya Dryomov's avatar
Ilya Dryomov committed
3275 3276 3277 3278 3279 3280
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
3281 3282 3283 3284 3285 3286
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
Ilya Dryomov's avatar
Ilya Dryomov committed
3287 3288
	}

3289 3290 3291 3292 3293 3294
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
	}

3305 3306 3307
	return 1;
}

3308
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3309
{
3310
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3311 3312 3313
	struct btrfs_root *chunk_root = fs_info->chunk_root;
	struct btrfs_root *dev_root = fs_info->dev_root;
	struct list_head *devices;
3314 3315 3316
	struct btrfs_device *device;
	u64 old_size;
	u64 size_to_free;
3317
	struct btrfs_chunk *chunk;
3318 3319 3320
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
3321
	struct btrfs_trans_handle *trans;
3322 3323
	struct extent_buffer *leaf;
	int slot;
3324 3325
	int ret;
	int enospc_errors = 0;
3326
	bool counting = true;
3327 3328 3329
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3330 3331

	/* step one make some room on all the devices */
3332
	devices = &fs_info->fs_devices->devices;
3333
	list_for_each_entry(device, devices, dev_list) {
3334
		old_size = btrfs_device_get_total_bytes(device);
3335 3336
		size_to_free = div_factor(old_size, 1);
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
Yan Zheng's avatar
Yan Zheng committed
3337
		if (!device->writeable ||
3338 3339
		    btrfs_device_get_total_bytes(device) -
		    btrfs_device_get_bytes_used(device) > size_to_free ||
3340
		    device->is_tgtdev_for_dev_replace)
3341 3342 3343
			continue;

		ret = btrfs_shrink_device(device, old_size - size_to_free);
3344 3345
		if (ret == -ENOSPC)
			break;
3346 3347
		BUG_ON(ret);

3348
		trans = btrfs_start_transaction(dev_root, 0);
3349
		BUG_ON(IS_ERR(trans));
3350 3351 3352 3353 3354 3355 3356 3357 3358

		ret = btrfs_grow_device(trans, device, old_size);
		BUG_ON(ret);

		btrfs_end_transaction(trans, dev_root);
	}

	/* step two, relocate all the chunks */
	path = btrfs_alloc_path();
3359 3360 3361 3362
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3363 3364 3365 3366 3367 3368

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3369 3370 3371 3372 3373
	if (!counting) {
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3374 3375 3376 3377
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

3378
	while (1) {
3379
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3380
		    atomic_read(&fs_info->balance_cancel_req)) {
3381 3382 3383 3384
			ret = -ECANCELED;
			goto error;
		}

3385
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3386
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3387 3388
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3389
			goto error;
3390
		}
3391 3392 3393 3394 3395 3396

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3397
			BUG(); /* FIXME break ? */
3398 3399 3400

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3401
		if (ret) {
3402
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3403
			ret = 0;
3404
			break;
3405
		}
3406

3407 3408 3409
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3410

3411 3412
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3413
			break;
3414
		}
3415

3416 3417
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);

3418 3419 3420 3421 3422 3423
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3424 3425
		ret = should_balance_chunk(chunk_root, leaf, chunk,
					   found_key.offset);
3426
		btrfs_release_path(path);
3427 3428
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3429
			goto loop;
3430
		}
3431

3432
		if (counting) {
3433
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3434 3435 3436 3437 3438 3439
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
			goto loop;
		}

3440 3441
		ret = btrfs_relocate_chunk(chunk_root,
					   found_key.offset);
3442
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3443 3444
		if (ret && ret != -ENOSPC)
			goto error;
3445
		if (ret == -ENOSPC) {
3446
			enospc_errors++;
3447 3448 3449 3450 3451
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3452
loop:
3453 3454
		if (found_key.offset == 0)
			break;
3455
		key.offset = found_key.offset - 1;
3456
	}
3457

3458 3459 3460 3461 3462
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3463 3464
error:
	btrfs_free_path(path);
3465
	if (enospc_errors) {
3466
		btrfs_info(fs_info, "%d enospc errors during balance",
3467 3468 3469 3470 3471
		       enospc_errors);
		if (!ret)
			ret = -ENOSPC;
	}

3472 3473 3474
	return ret;
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

	/* true if exactly one bit set */
	return (flags & (flags - 1)) == 0;
}

3499 3500
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3501 3502 3503 3504
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3505 3506
}

3507 3508
static void __cancel_balance(struct btrfs_fs_info *fs_info)
{
3509 3510
	int ret;

3511
	unset_balance_control(fs_info);
3512
	ret = del_balance_item(fs_info->tree_root);
3513
	if (ret)
3514
		btrfs_std_error(fs_info, ret, NULL);
3515 3516

	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3517 3518
}

3519 3520 3521 3522 3523 3524 3525 3526 3527
/* Non-zero return value signifies invalidity */
static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
		u64 allowed)
{
	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
		 (bctl_arg->target & ~allowed)));
}

3528 3529 3530 3531 3532 3533 3534
/*
 * Should be called with both balance and volume mutexes held
 */
int btrfs_balance(struct btrfs_balance_control *bctl,
		  struct btrfs_ioctl_balance_args *bargs)
{
	struct btrfs_fs_info *fs_info = bctl->fs_info;
3535
	u64 allowed;
3536
	int mixed = 0;
3537
	int ret;
3538
	u64 num_devices;
3539
	unsigned seq;
3540

3541
	if (btrfs_fs_closing(fs_info) ||
3542 3543
	    atomic_read(&fs_info->balance_pause_req) ||
	    atomic_read(&fs_info->balance_cancel_req)) {
3544 3545 3546 3547
		ret = -EINVAL;
		goto out;
	}

3548 3549 3550 3551
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

3552 3553 3554 3555
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
3556 3557
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
3558 3559 3560
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3561 3562
			btrfs_err(fs_info, "with mixed groups data and "
				   "metadata balance options must be the same");
3563 3564 3565 3566 3567
			ret = -EINVAL;
			goto out;
		}
	}

3568 3569 3570 3571 3572 3573 3574
	num_devices = fs_info->fs_devices->num_devices;
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		BUG_ON(num_devices < 1);
		num_devices--;
	}
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3575
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3576
	if (num_devices == 1)
3577
		allowed |= BTRFS_BLOCK_GROUP_DUP;
3578
	else if (num_devices > 1)
3579
		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3580 3581 3582 3583 3584
	if (num_devices > 2)
		allowed |= BTRFS_BLOCK_GROUP_RAID5;
	if (num_devices > 3)
		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
			    BTRFS_BLOCK_GROUP_RAID6);
3585
	if (validate_convert_profile(&bctl->data, allowed)) {
3586 3587
		btrfs_err(fs_info, "unable to start balance with target "
			   "data profile %llu",
3588
		       bctl->data.target);
3589 3590 3591
		ret = -EINVAL;
		goto out;
	}
3592
	if (validate_convert_profile(&bctl->meta, allowed)) {
3593 3594
		btrfs_err(fs_info,
			   "unable to start balance with target metadata profile %llu",
3595
		       bctl->meta.target);
3596 3597 3598
		ret = -EINVAL;
		goto out;
	}
3599
	if (validate_convert_profile(&bctl->sys, allowed)) {
3600 3601
		btrfs_err(fs_info,
			   "unable to start balance with target system profile %llu",
3602
		       bctl->sys.target);
3603 3604 3605 3606
		ret = -EINVAL;
		goto out;
	}

3607 3608
	/* allow dup'ed data chunks only in mixed mode */
	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3609
	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3610
		btrfs_err(fs_info, "dup for data is not allowed");
3611 3612 3613 3614 3615 3616
		ret = -EINVAL;
		goto out;
	}

	/* allow to reduce meta or sys integrity only if force set */
	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
David Woodhouse's avatar
David Woodhouse committed
3617 3618 3619
			BTRFS_BLOCK_GROUP_RAID10 |
			BTRFS_BLOCK_GROUP_RAID5 |
			BTRFS_BLOCK_GROUP_RAID6;
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
		     !(bctl->meta.target & allowed))) {
			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3630
				btrfs_info(fs_info, "force reducing metadata integrity");
3631
			} else {
3632 3633
				btrfs_err(fs_info, "balance will reduce metadata "
					   "integrity, use force if you want this");
3634 3635 3636
				ret = -EINVAL;
				goto out;
			}
3637
		}
3638
	} while (read_seqretry(&fs_info->profiles_lock, seq));
3639

3640
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3641 3642 3643 3644
		fs_info->num_tolerated_disk_barrier_failures = min(
			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
			btrfs_get_num_tolerated_disk_barrier_failures(
				bctl->sys.target));
3645 3646
	}

3647
	ret = insert_balance_item(fs_info->tree_root, bctl);
3648
	if (ret && ret != -EEXIST)
3649 3650
		goto out;

3651 3652 3653 3654 3655 3656 3657 3658 3659
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
		set_balance_control(bctl);
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
3660

3661
	atomic_inc(&fs_info->balance_running);
3662 3663 3664 3665 3666
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
3667
	atomic_dec(&fs_info->balance_running);
3668

3669 3670 3671 3672 3673
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
		fs_info->num_tolerated_disk_barrier_failures =
			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
	}

3674 3675
	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
3676
		update_ioctl_balance_args(fs_info, 0, bargs);
3677 3678
	}

3679 3680 3681 3682 3683
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
		__cancel_balance(fs_info);
	}

3684
	wake_up(&fs_info->balance_wait_q);
3685 3686 3687

	return ret;
out:
3688 3689
	if (bctl->flags & BTRFS_BALANCE_RESUME)
		__cancel_balance(fs_info);
3690
	else {
3691
		kfree(bctl);
3692 3693
		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
	}
3694 3695 3696 3697 3698
	return ret;
}

static int balance_kthread(void *data)
{
3699
	struct btrfs_fs_info *fs_info = data;
3700
	int ret = 0;
3701 3702 3703 3704

	mutex_lock(&fs_info->volume_mutex);
	mutex_lock(&fs_info->balance_mutex);

3705
	if (fs_info->balance_ctl) {
3706
		btrfs_info(fs_info, "continuing balance");
3707
		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3708
	}
3709 3710 3711

	mutex_unlock(&fs_info->balance_mutex);
	mutex_unlock(&fs_info->volume_mutex);
3712

3713 3714 3715
	return ret;
}

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

	spin_lock(&fs_info->balance_lock);
	if (!fs_info->balance_ctl) {
		spin_unlock(&fs_info->balance_lock);
		return 0;
	}
	spin_unlock(&fs_info->balance_lock);

	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3728
		btrfs_info(fs_info, "force skipping balance");
3729 3730 3731 3732
		return 0;
	}

	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3733
	return PTR_ERR_OR_ZERO(tsk);
3734 3735
}

3736
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
	key.type = BTRFS_BALANCE_ITEM_KEY;
	key.offset = 0;

3754
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3755
	if (ret < 0)
3756
		goto out;
3757 3758
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
3759 3760 3761 3762 3763 3764 3765
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
3766 3767 3768 3769 3770
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3771 3772 3773
	bctl->fs_info = fs_info;
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
3774 3775 3776 3777 3778 3779 3780 3781

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

3782 3783
	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));

3784 3785
	mutex_lock(&fs_info->volume_mutex);
	mutex_lock(&fs_info->balance_mutex);
3786

3787 3788 3789 3790
	set_balance_control(bctl);

	mutex_unlock(&fs_info->balance_mutex);
	mutex_unlock(&fs_info->volume_mutex);
3791 3792
out:
	btrfs_free_path(path);
3793 3794 3795
	return ret;
}

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

	if (atomic_read(&fs_info->balance_running)) {
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
			   atomic_read(&fs_info->balance_running) == 0);

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
		BUG_ON(atomic_read(&fs_info->balance_running));
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

3825 3826
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
3827 3828 3829
	if (fs_info->sb->s_flags & MS_RDONLY)
		return -EROFS;

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
	if (atomic_read(&fs_info->balance_running)) {
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
			   atomic_read(&fs_info->balance_running) == 0);
		mutex_lock(&fs_info->balance_mutex);
	} else {
		/* __cancel_balance needs volume_mutex */
		mutex_unlock(&fs_info->balance_mutex);
		mutex_lock(&fs_info->volume_mutex);
		mutex_lock(&fs_info->balance_mutex);

		if (fs_info->balance_ctl)
			__cancel_balance(fs_info);

		mutex_unlock(&fs_info->volume_mutex);
	}

	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static int btrfs_uuid_scan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_key max_key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
3876
	struct btrfs_trans_handle *trans = NULL;
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	max_key.objectid = (u64)-1;
	max_key.type = BTRFS_ROOT_ITEM_KEY;
	max_key.offset = (u64)-1;

	while (1) {
3893
		ret = btrfs_search_forward(root, &key, path, 0);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
3917 3918 3919 3920 3921 3922 3923

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
3924 3925 3926 3927 3928 3929 3930 3931 3932
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
3933 3934 3935 3936 3937 3938
			continue;
		} else {
			goto skip;
		}
update_tree:
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3939 3940 3941 3942 3943
			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
						  root_item.uuid,
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
3944
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
3956
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3957 3958 3959 3960 3961
					ret);
				break;
			}
		}

3962
skip:
3963 3964
		if (trans) {
			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3965
			trans = NULL;
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
			if (ret)
				break;
		}

		btrfs_release_path(path);
		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
3988 3989
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fs_info->uuid_root);
3990
	if (ret)
3991
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3992 3993
	else
		fs_info->update_uuid_tree_gen = 1;
3994 3995 3996 3997
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/*
 * Callback for btrfs_uuid_tree_iterate().
 * returns:
 * 0	check succeeded, the entry is not outdated.
 * < 0	if an error occured.
 * > 0	if the check failed, which means the caller shall remove the entry.
 */
static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
				       u8 *uuid, u8 type, u64 subid)
{
	struct btrfs_key key;
	int ret = 0;
	struct btrfs_root *subvol_root;

	if (type != BTRFS_UUID_KEY_SUBVOL &&
	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
		goto out;

	key.objectid = subid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(subvol_root)) {
		ret = PTR_ERR(subvol_root);
		if (ret == -ENOENT)
			ret = 1;
		goto out;
	}

	switch (type) {
	case BTRFS_UUID_KEY_SUBVOL:
		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
			ret = 1;
		break;
	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
		if (memcmp(uuid, subvol_root->root_item.received_uuid,
			   BTRFS_UUID_SIZE))
			ret = 1;
		break;
	}

out:
	return ret;
}

static int btrfs_uuid_rescan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
	if (ret < 0) {
4055
		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4056 4057 4058 4059 4060 4061
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

4062 4063 4064 4065 4066
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
4067 4068
	struct task_struct *task;
	int ret;
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

	uuid_root = btrfs_create_tree(trans, fs_info,
				      BTRFS_UUID_TREE_OBJECTID);
	if (IS_ERR(uuid_root)) {
4081 4082 4083
		ret = PTR_ERR(uuid_root);
		btrfs_abort_transaction(trans, tree_root, ret);
		return ret;
4084 4085 4086 4087
	}

	fs_info->uuid_root = uuid_root;

4088 4089 4090 4091 4092 4093 4094
	ret = btrfs_commit_transaction(trans, tree_root);
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4095
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4096
		btrfs_warn(fs_info, "failed to start uuid_scan task");
4097 4098 4099 4100 4101
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4102
}
4103

4104 4105 4106 4107 4108 4109 4110 4111
int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4112
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4113 4114 4115 4116 4117 4118 4119
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4135 4136
	int failed = 0;
	bool retried = false;
4137
	bool checked_pending_chunks = false;
4138 4139
	struct extent_buffer *l;
	struct btrfs_key key;
4140
	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4141
	u64 old_total = btrfs_super_total_bytes(super_copy);
4142 4143
	u64 old_size = btrfs_device_get_total_bytes(device);
	u64 diff = old_size - new_size;
4144

4145 4146 4147
	if (device->is_tgtdev_for_dev_replace)
		return -EINVAL;

4148 4149 4150 4151 4152 4153
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;

4154 4155
	lock_chunks(root);

4156
	btrfs_device_set_total_bytes(device, new_size);
4157
	if (device->writeable) {
Yan Zheng's avatar
Yan Zheng committed
4158
		device->fs_devices->total_rw_bytes -= diff;
4159 4160 4161 4162
		spin_lock(&root->fs_info->free_chunk_lock);
		root->fs_info->free_chunk_space -= diff;
		spin_unlock(&root->fs_info->free_chunk_lock);
	}
4163
	unlock_chunks(root);
4164

4165
again:
4166 4167 4168 4169
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4170
	do {
4171
		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4172
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4173 4174
		if (ret < 0) {
			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4175
			goto done;
4176
		}
4177 4178

		ret = btrfs_previous_item(root, path, 0, key.type);
4179 4180
		if (ret)
			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4181 4182 4183 4184
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4185
			btrfs_release_path(path);
4186
			break;
4187 4188 4189 4190 4191 4192
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4193
		if (key.objectid != device->devid) {
4194
			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4195
			btrfs_release_path(path);
4196
			break;
4197
		}
4198 4199 4200 4201

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4202
		if (key.offset + length <= new_size) {
4203
			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4204
			btrfs_release_path(path);
4205
			break;
4206
		}
4207 4208

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4209
		btrfs_release_path(path);
4210

4211
		ret = btrfs_relocate_chunk(root, chunk_offset);
4212
		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4213
		if (ret && ret != -ENOSPC)
4214
			goto done;
4215 4216
		if (ret == -ENOSPC)
			failed++;
4217
	} while (key.offset-- > 0);
4218 4219 4220 4221 4222 4223 4224 4225

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4226 4227
	}

4228
	/* Shrinking succeeded, else we would be at "done". */
4229
	trans = btrfs_start_transaction(root, 0);
4230 4231 4232 4233 4234
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4235
	lock_chunks(root);
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

	/*
	 * We checked in the above loop all device extents that were already in
	 * the device tree. However before we have updated the device's
	 * total_bytes to the new size, we might have had chunk allocations that
	 * have not complete yet (new block groups attached to transaction
	 * handles), and therefore their device extents were not yet in the
	 * device tree and we missed them in the loop above. So if we have any
	 * pending chunk using a device extent that overlaps the device range
	 * that we can not use anymore, commit the current transaction and
	 * repeat the search on the device tree - this way we guarantee we will
	 * not have chunks using device extents that end beyond 'new_size'.
	 */
	if (!checked_pending_chunks) {
		u64 start = new_size;
		u64 len = old_size - new_size;

4253 4254
		if (contains_pending_extent(trans->transaction, device,
					    &start, len)) {
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
			unlock_chunks(root);
			checked_pending_chunks = true;
			failed = 0;
			retried = false;
			ret = btrfs_commit_transaction(trans, root);
			if (ret)
				goto done;
			goto again;
		}
	}

4266
	btrfs_device_set_disk_total_bytes(device, new_size);
4267 4268 4269
	if (list_empty(&device->resized_list))
		list_add_tail(&device->resized_list,
			      &root->fs_info->fs_devices->resized_devices);
4270 4271 4272 4273

	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
	unlock_chunks(root);
Miao Xie's avatar
Miao Xie committed
4274 4275 4276

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4277
	btrfs_end_transaction(trans, root);
4278 4279
done:
	btrfs_free_path(path);
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	if (ret) {
		lock_chunks(root);
		btrfs_device_set_total_bytes(device, old_size);
		if (device->writeable)
			device->fs_devices->total_rw_bytes += diff;
		spin_lock(&root->fs_info->free_chunk_lock);
		root->fs_info->free_chunk_space += diff;
		spin_unlock(&root->fs_info->free_chunk_lock);
		unlock_chunks(root);
	}
4290 4291 4292
	return ret;
}

4293
static int btrfs_add_system_chunk(struct btrfs_root *root,
4294 4295 4296
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4297
	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4298 4299 4300 4301
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4302
	lock_chunks(root);
4303
	array_size = btrfs_super_sys_array_size(super_copy);
4304
	if (array_size + item_size + sizeof(disk_key)
4305 4306
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		unlock_chunks(root);
4307
		return -EFBIG;
4308
	}
4309 4310 4311 4312 4313 4314 4315 4316

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4317 4318
	unlock_chunks(root);

4319 4320 4321
	return 0;
}

4322 4323 4324 4325
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4326
{
4327 4328
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4329

4330
	if (di_a->max_avail > di_b->max_avail)
4331
		return -1;
4332
	if (di_a->max_avail < di_b->max_avail)
4333
		return 1;
4334 4335 4336 4337 4338
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4339
}
4340

David Woodhouse's avatar
David Woodhouse committed
4341 4342 4343 4344 4345 4346 4347 4348
static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
{
	/* TODO allow them to set a preferred stripe size */
	return 64 * 1024;
}

static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4349
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
David Woodhouse's avatar
David Woodhouse committed
4350 4351
		return;

4352
	btrfs_set_fs_incompat(info, RAID56);
David Woodhouse's avatar
David Woodhouse committed
4353 4354
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
			- sizeof(struct btrfs_item)		\
			- sizeof(struct btrfs_chunk))		\
			/ sizeof(struct btrfs_stripe) + 1)

#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
				- 2 * sizeof(struct btrfs_disk_key)	\
				- 2 * sizeof(struct btrfs_chunk))	\
				/ sizeof(struct btrfs_stripe) + 1)

4365
static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4366 4367
			       struct btrfs_root *extent_root, u64 start,
			       u64 type)
4368
{
4369 4370 4371 4372 4373 4374 4375 4376 4377
	struct btrfs_fs_info *info = extent_root->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct list_head *cur;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_device_info *devices_info = NULL;
	u64 total_avail;
	int num_stripes;	/* total number of stripes to allocate */
David Woodhouse's avatar
David Woodhouse committed
4378 4379
	int data_stripes;	/* number of stripes that count for
				   block group size */
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	int sub_stripes;	/* sub_stripes info for map */
	int dev_stripes;	/* stripes per dev */
	int devs_max;		/* max devs to use */
	int devs_min;		/* min devs needed */
	int devs_increment;	/* ndevs has to be a multiple of this */
	int ncopies;		/* how many copies to data has */
	int ret;
	u64 max_stripe_size;
	u64 max_chunk_size;
	u64 stripe_size;
	u64 num_bytes;
David Woodhouse's avatar
David Woodhouse committed
4391
	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4392 4393 4394
	int ndevs;
	int i;
	int j;
4395
	int index;
4396

4397
	BUG_ON(!alloc_profile_is_valid(type, 0));
4398

4399 4400
	if (list_empty(&fs_devices->alloc_list))
		return -ENOSPC;
4401

4402
	index = __get_raid_index(type);
4403

4404 4405 4406 4407 4408 4409
	sub_stripes = btrfs_raid_array[index].sub_stripes;
	dev_stripes = btrfs_raid_array[index].dev_stripes;
	devs_max = btrfs_raid_array[index].devs_max;
	devs_min = btrfs_raid_array[index].devs_min;
	devs_increment = btrfs_raid_array[index].devs_increment;
	ncopies = btrfs_raid_array[index].ncopies;
4410

4411
	if (type & BTRFS_BLOCK_GROUP_DATA) {
4412 4413
		max_stripe_size = 1024 * 1024 * 1024;
		max_chunk_size = 10 * max_stripe_size;
4414 4415
		if (!devs_max)
			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4416
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4417 4418 4419 4420 4421
		/* for larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
			max_stripe_size = 1024 * 1024 * 1024;
		else
			max_stripe_size = 256 * 1024 * 1024;
4422
		max_chunk_size = max_stripe_size;
4423 4424
		if (!devs_max)
			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4425
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4426
		max_stripe_size = 32 * 1024 * 1024;
4427
		max_chunk_size = 2 * max_stripe_size;
4428 4429
		if (!devs_max)
			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4430
	} else {
4431
		btrfs_err(info, "invalid chunk type 0x%llx requested",
4432 4433
		       type);
		BUG_ON(1);
4434 4435
	}

Yan Zheng's avatar
Yan Zheng committed
4436 4437 4438
	/* we don't want a chunk larger than 10% of writeable space */
	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
			     max_chunk_size);
4439

4440
	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4441 4442 4443
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;
4444

4445
	cur = fs_devices->alloc_list.next;
4446

4447
	/*
4448 4449
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
4450
	 */
4451 4452 4453 4454 4455
	ndevs = 0;
	while (cur != &fs_devices->alloc_list) {
		struct btrfs_device *device;
		u64 max_avail;
		u64 dev_offset;
4456

4457
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4458

4459
		cur = cur->next;
4460

4461
		if (!device->writeable) {
Julia Lawall's avatar
Julia Lawall committed
4462
			WARN(1, KERN_ERR
4463
			       "BTRFS: read-only device in alloc_list\n");
4464 4465
			continue;
		}
4466

4467 4468
		if (!device->in_fs_metadata ||
		    device->is_tgtdev_for_dev_replace)
4469
			continue;
4470

4471 4472 4473 4474
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
4475 4476 4477 4478

		/* If there is no space on this device, skip it. */
		if (total_avail == 0)
			continue;
4479

4480
		ret = find_free_dev_extent(trans, device,
4481 4482 4483 4484
					   max_stripe_size * dev_stripes,
					   &dev_offset, &max_avail);
		if (ret && ret != -ENOSPC)
			goto error;
4485

4486 4487
		if (ret == 0)
			max_avail = max_stripe_size * dev_stripes;
4488

4489 4490
		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
			continue;
4491

4492 4493 4494 4495 4496
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
4497 4498 4499 4500 4501 4502
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
4503

4504 4505 4506 4507 4508
	/*
	 * now sort the devices by hole size / available space
	 */
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
	     btrfs_cmp_device_info, NULL);
4509

4510 4511
	/* round down to number of usable stripes */
	ndevs -= ndevs % devs_increment;
4512

4513 4514 4515
	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
		ret = -ENOSPC;
		goto error;
4516
	}
4517

4518 4519 4520 4521 4522 4523 4524 4525
	if (devs_max && ndevs > devs_max)
		ndevs = devs_max;
	/*
	 * the primary goal is to maximize the number of stripes, so use as many
	 * devices as possible, even if the stripes are not maximum sized.
	 */
	stripe_size = devices_info[ndevs-1].max_avail;
	num_stripes = ndevs * dev_stripes;
4526

David Woodhouse's avatar
David Woodhouse committed
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
	/*
	 * this will have to be fixed for RAID1 and RAID10 over
	 * more drives
	 */
	data_stripes = num_stripes / ncopies;

	if (type & BTRFS_BLOCK_GROUP_RAID5) {
		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
				 btrfs_super_stripesize(info->super_copy));
		data_stripes = num_stripes - 1;
	}
	if (type & BTRFS_BLOCK_GROUP_RAID6) {
		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
				 btrfs_super_stripesize(info->super_copy));
		data_stripes = num_stripes - 2;
	}
4543 4544 4545 4546 4547 4548 4549 4550

	/*
	 * Use the number of data stripes to figure out how big this chunk
	 * is really going to be in terms of logical address space,
	 * and compare that answer with the max chunk size
	 */
	if (stripe_size * data_stripes > max_chunk_size) {
		u64 mask = (1ULL << 24) - 1;
4551 4552

		stripe_size = div_u64(max_chunk_size, data_stripes);
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

		/* bump the answer up to a 16MB boundary */
		stripe_size = (stripe_size + mask) & ~mask;

		/* but don't go higher than the limits we found
		 * while searching for free extents
		 */
		if (stripe_size > devices_info[ndevs-1].max_avail)
			stripe_size = devices_info[ndevs-1].max_avail;
	}

4564
	stripe_size = div_u64(stripe_size, dev_stripes);
4565 4566

	/* align to BTRFS_STRIPE_LEN */
4567
	stripe_size = div_u64(stripe_size, raid_stripe_len);
David Woodhouse's avatar
David Woodhouse committed
4568
	stripe_size *= raid_stripe_len;
4569 4570 4571 4572 4573 4574 4575

	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		ret = -ENOMEM;
		goto error;
	}
	map->num_stripes = num_stripes;
4576

4577 4578 4579 4580 4581 4582
	for (i = 0; i < ndevs; ++i) {
		for (j = 0; j < dev_stripes; ++j) {
			int s = i * dev_stripes + j;
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
						   j * stripe_size;
4583 4584
		}
	}
Yan Zheng's avatar
Yan Zheng committed
4585
	map->sector_size = extent_root->sectorsize;
David Woodhouse's avatar
David Woodhouse committed
4586 4587 4588
	map->stripe_len = raid_stripe_len;
	map->io_align = raid_stripe_len;
	map->io_width = raid_stripe_len;
Yan Zheng's avatar
Yan Zheng committed
4589 4590
	map->type = type;
	map->sub_stripes = sub_stripes;
4591

David Woodhouse's avatar
David Woodhouse committed
4592
	num_bytes = stripe_size * data_stripes;
4593

4594
	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4595

4596
	em = alloc_extent_map();
Yan Zheng's avatar
Yan Zheng committed
4597
	if (!em) {
4598
		kfree(map);
4599 4600
		ret = -ENOMEM;
		goto error;
4601
	}
4602
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
Yan Zheng's avatar
Yan Zheng committed
4603 4604
	em->bdev = (struct block_device *)map;
	em->start = start;
4605
	em->len = num_bytes;
Yan Zheng's avatar
Yan Zheng committed
4606 4607
	em->block_start = 0;
	em->block_len = em->len;
4608
	em->orig_block_len = stripe_size;
4609

Yan Zheng's avatar
Yan Zheng committed
4610
	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4611
	write_lock(&em_tree->lock);
Josef Bacik's avatar
Josef Bacik committed
4612
	ret = add_extent_mapping(em_tree, em, 0);
4613 4614 4615 4616
	if (!ret) {
		list_add_tail(&em->list, &trans->transaction->pending_chunks);
		atomic_inc(&em->refs);
	}
4617
	write_unlock(&em_tree->lock);
4618 4619
	if (ret) {
		free_extent_map(em);
4620
		goto error;
4621
	}
4622

4623 4624 4625
	ret = btrfs_make_block_group(trans, extent_root, 0, type,
				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
				     start, num_bytes);
4626 4627
	if (ret)
		goto error_del_extent;
Yan Zheng's avatar
Yan Zheng committed
4628

4629 4630 4631 4632
	for (i = 0; i < map->num_stripes; i++) {
		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
	}
4633

4634 4635 4636 4637 4638
	spin_lock(&extent_root->fs_info->free_chunk_lock);
	extent_root->fs_info->free_chunk_space -= (stripe_size *
						   map->num_stripes);
	spin_unlock(&extent_root->fs_info->free_chunk_lock);

4639
	free_extent_map(em);
David Woodhouse's avatar
David Woodhouse committed
4640 4641
	check_raid56_incompat_flag(extent_root->fs_info, type);

4642
	kfree(devices_info);
Yan Zheng's avatar
Yan Zheng committed
4643
	return 0;
4644

4645
error_del_extent:
4646 4647 4648 4649 4650 4651 4652 4653
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
4654 4655
	/* One for the pending_chunks list reference */
	free_extent_map(em);
4656 4657 4658
error:
	kfree(devices_info);
	return ret;
Yan Zheng's avatar
Yan Zheng committed
4659 4660
}

4661
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
Yan Zheng's avatar
Yan Zheng committed
4662
				struct btrfs_root *extent_root,
4663
				u64 chunk_offset, u64 chunk_size)
Yan Zheng's avatar
Yan Zheng committed
4664 4665 4666 4667 4668 4669
{
	struct btrfs_key key;
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
4670 4671 4672 4673 4674 4675 4676
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
Yan Zheng's avatar
Yan Zheng committed
4677 4678
	int ret;

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(extent_root->fs_info, "unable to find logical "
			   "%Lu len %Lu", chunk_offset, chunk_size);
		return -EINVAL;
	}

	if (em->start != chunk_offset || em->len != chunk_size) {
		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4692
			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4693 4694 4695 4696 4697 4698 4699 4700 4701
			  chunk_size, em->start, em->len);
		free_extent_map(em);
		return -EINVAL;
	}

	map = (struct map_lookup *)em->bdev;
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Yan Zheng's avatar
Yan Zheng committed
4702
	chunk = kzalloc(item_size, GFP_NOFS);
4703 4704 4705 4706 4707 4708 4709 4710
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Yan Zheng's avatar
Yan Zheng committed
4711

4712
		ret = btrfs_update_device(trans, device);
4713
		if (ret)
4714 4715 4716 4717 4718 4719 4720 4721
			goto out;
		ret = btrfs_alloc_dev_extent(trans, device,
					     chunk_root->root_key.objectid,
					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
					     chunk_offset, dev_offset,
					     stripe_size);
		if (ret)
			goto out;
Yan Zheng's avatar
Yan Zheng committed
4722 4723 4724
	}

	stripe = &chunk->stripe;
4725 4726 4727
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
4728

4729 4730 4731
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Yan Zheng's avatar
Yan Zheng committed
4732
		stripe++;
4733 4734
	}

Yan Zheng's avatar
Yan Zheng committed
4735
	btrfs_set_stack_chunk_length(chunk, chunk_size);
4736
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Yan Zheng's avatar
Yan Zheng committed
4737 4738 4739 4740 4741
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4742
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
Yan Zheng's avatar
Yan Zheng committed
4743
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4744

Yan Zheng's avatar
Yan Zheng committed
4745 4746 4747
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
4748

Yan Zheng's avatar
Yan Zheng committed
4749
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4750 4751 4752 4753 4754
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
4755
		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
Yan Zheng's avatar
Yan Zheng committed
4756
					     item_size);
4757
	}
4758

4759
out:
4760
	kfree(chunk);
4761
	free_extent_map(em);
4762
	return ret;
Yan Zheng's avatar
Yan Zheng committed
4763
}
4764

Yan Zheng's avatar
Yan Zheng committed
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
/*
 * Chunk allocation falls into two parts. The first part does works
 * that make the new allocated chunk useable, but not do any operation
 * that modifies the chunk tree. The second part does the works that
 * require modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 type)
{
	u64 chunk_offset;

4777
	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4778 4779
	chunk_offset = find_next_chunk(extent_root->fs_info);
	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
Yan Zheng's avatar
Yan Zheng committed
4780 4781
}

4782
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
Yan Zheng's avatar
Yan Zheng committed
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
					 struct btrfs_root *root,
					 struct btrfs_device *device)
{
	u64 chunk_offset;
	u64 sys_chunk_offset;
	u64 alloc_profile;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;

4793
	chunk_offset = find_next_chunk(fs_info);
4794
	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4795 4796
	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
				  alloc_profile);
4797 4798
	if (ret)
		return ret;
Yan Zheng's avatar
Yan Zheng committed
4799

4800
	sys_chunk_offset = find_next_chunk(root->fs_info);
4801
	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4802 4803
	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
				  alloc_profile);
4804
	return ret;
Yan Zheng's avatar
Yan Zheng committed
4805 4806
}

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
	int max_errors;

	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_DUP)) {
		max_errors = 1;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
		max_errors = 2;
	} else {
		max_errors = 0;
4820
	}
Yan Zheng's avatar
Yan Zheng committed
4821

4822
	return max_errors;
Yan Zheng's avatar
Yan Zheng committed
4823 4824 4825 4826 4827 4828 4829 4830
}

int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	int readonly = 0;
4831
	int miss_ndevs = 0;
Yan Zheng's avatar
Yan Zheng committed
4832 4833
	int i;

4834
	read_lock(&map_tree->map_tree.lock);
Yan Zheng's avatar
Yan Zheng committed
4835
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4836
	read_unlock(&map_tree->map_tree.lock);
Yan Zheng's avatar
Yan Zheng committed
4837 4838 4839 4840 4841
	if (!em)
		return 1;

	map = (struct map_lookup *)em->bdev;
	for (i = 0; i < map->num_stripes; i++) {
4842 4843 4844 4845 4846
		if (map->stripes[i].dev->missing) {
			miss_ndevs++;
			continue;
		}

Yan Zheng's avatar
Yan Zheng committed
4847 4848
		if (!map->stripes[i].dev->writeable) {
			readonly = 1;
4849
			goto end;
Yan Zheng's avatar
Yan Zheng committed
4850 4851
		}
	}
4852 4853 4854 4855 4856 4857 4858 4859 4860

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
4861
	free_extent_map(em);
Yan Zheng's avatar
Yan Zheng committed
4862
	return readonly;
4863 4864 4865 4866
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
4867
	extent_map_tree_init(&tree->map_tree);
4868 4869 4870 4871 4872 4873
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

4874
	while (1) {
4875
		write_lock(&tree->map_tree.lock);
4876 4877 4878
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
4879
		write_unlock(&tree->map_tree.lock);
4880 4881 4882 4883 4884 4885 4886 4887 4888
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

4889
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4890
{
4891
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4892 4893 4894 4895 4896
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

4897
	read_lock(&em_tree->lock);
4898
	em = lookup_extent_mapping(em_tree, logical, len);
4899
	read_unlock(&em_tree->lock);
4900

4901 4902 4903 4904 4905 4906
	/*
	 * We could return errors for these cases, but that could get ugly and
	 * we'd probably do the same thing which is just not do anything else
	 * and exit, so return 1 so the callers don't try to use other copies.
	 */
	if (!em) {
4907
		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4908 4909 4910 4911 4912
			    logical+len);
		return 1;
	}

	if (em->start > logical || em->start + em->len < logical) {
4913
		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4914
			    "%Lu-%Lu", logical, logical+len, em->start,
4915
			    em->start + em->len);
4916
		free_extent_map(em);
4917 4918 4919
		return 1;
	}

4920 4921 4922
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
Chris Mason's avatar
Chris Mason committed
4923 4924
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
David Woodhouse's avatar
David Woodhouse committed
4925 4926 4927 4928
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
		ret = 3;
4929 4930 4931
	else
		ret = 1;
	free_extent_map(em);
4932 4933 4934 4935 4936 4937

	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
		ret++;
	btrfs_dev_replace_unlock(&fs_info->dev_replace);

4938 4939 4940
	return ret;
}

David Woodhouse's avatar
David Woodhouse committed
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
				    struct btrfs_mapping_tree *map_tree,
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	unsigned long len = root->sectorsize;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
	read_unlock(&em_tree->lock);
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
4957
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
David Woodhouse's avatar
David Woodhouse committed
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
		len = map->stripe_len * nr_data_stripes(map);
	free_extent_map(em);
	return len;
}

int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
			   u64 logical, u64 len, int mirror_num)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
	read_unlock(&em_tree->lock);
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
4978
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
David Woodhouse's avatar
David Woodhouse committed
4979 4980 4981 4982 4983
		ret = 1;
	free_extent_map(em);
	return ret;
}

4984 4985 4986
static int find_live_mirror(struct btrfs_fs_info *fs_info,
			    struct map_lookup *map, int first, int num,
			    int optimal, int dev_replace_is_ongoing)
4987 4988
{
	int i;
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	int tolerance;
	struct btrfs_device *srcdev;

	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
		if (map->stripes[optimal].dev->bdev &&
		    (tolerance || map->stripes[optimal].dev != srcdev))
			return optimal;
		for (i = first; i < first + num; i++) {
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5013
	}
5014

5015 5016 5017 5018 5019 5020
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
	return optimal;
}

David Woodhouse's avatar
David Woodhouse committed
5021 5022 5023 5024 5025 5026
static inline int parity_smaller(u64 a, u64 b)
{
	return a > b;
}

/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5027
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
David Woodhouse's avatar
David Woodhouse committed
5028 5029 5030 5031 5032 5033 5034 5035
{
	struct btrfs_bio_stripe s;
	int i;
	u64 l;
	int again = 1;

	while (again) {
		again = 0;
5036
		for (i = 0; i < num_stripes - 1; i++) {
5037 5038
			if (parity_smaller(bbio->raid_map[i],
					   bbio->raid_map[i+1])) {
David Woodhouse's avatar
David Woodhouse committed
5039
				s = bbio->stripes[i];
5040
				l = bbio->raid_map[i];
David Woodhouse's avatar
David Woodhouse committed
5041
				bbio->stripes[i] = bbio->stripes[i+1];
5042
				bbio->raid_map[i] = bbio->raid_map[i+1];
David Woodhouse's avatar
David Woodhouse committed
5043
				bbio->stripes[i+1] = s;
5044
				bbio->raid_map[i+1] = l;
5045

David Woodhouse's avatar
David Woodhouse committed
5046 5047 5048 5049 5050 5051
				again = 1;
			}
		}
	}
}

5052 5053 5054
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5055
		 /* the size of the btrfs_bio */
5056
		sizeof(struct btrfs_bio) +
5057
		/* plus the variable array for the stripes */
5058
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5059
		/* plus the variable array for the tgt dev */
5060
		sizeof(int) * (real_stripes) +
5061 5062 5063 5064 5065
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5066
		GFP_NOFS|__GFP_NOFAIL);
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087

	atomic_set(&bbio->error, 0);
	atomic_set(&bbio->refs, 1);

	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
	WARN_ON(!atomic_read(&bbio->refs));
	atomic_inc(&bbio->refs);
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
	if (atomic_dec_and_test(&bbio->refs))
		kfree(bbio);
}

5088
static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5089
			     u64 logical, u64 *length,
5090
			     struct btrfs_bio **bbio_ret,
5091
			     int mirror_num, int need_raid_map)
5092 5093 5094
{
	struct extent_map *em;
	struct map_lookup *map;
5095
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5096 5097
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
5098
	u64 stripe_offset;
5099
	u64 stripe_end_offset;
5100
	u64 stripe_nr;
5101 5102
	u64 stripe_nr_orig;
	u64 stripe_nr_end;
David Woodhouse's avatar
David Woodhouse committed
5103
	u64 stripe_len;
5104
	u32 stripe_index;
5105
	int i;
5106
	int ret = 0;
5107
	int num_stripes;
5108
	int max_errors = 0;
5109
	int tgtdev_indexes = 0;
5110
	struct btrfs_bio *bbio = NULL;
5111 5112 5113
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
5114 5115
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
David Woodhouse's avatar
David Woodhouse committed
5116
	u64 raid56_full_stripe_start = (u64)-1;
5117

5118
	read_lock(&em_tree->lock);
5119
	em = lookup_extent_mapping(em_tree, logical, *length);
5120
	read_unlock(&em_tree->lock);
5121

5122
	if (!em) {
5123
		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5124
			logical, *length);
5125 5126 5127 5128 5129
		return -EINVAL;
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5130
			   "found %Lu-%Lu", logical, em->start,
5131
			   em->start + em->len);
5132
		free_extent_map(em);
5133
		return -EINVAL;
5134
	}
5135 5136 5137

	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
5138

David Woodhouse's avatar
David Woodhouse committed
5139
	stripe_len = map->stripe_len;
5140 5141 5142 5143 5144
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
5145
	stripe_nr = div64_u64(stripe_nr, stripe_len);
5146

David Woodhouse's avatar
David Woodhouse committed
5147
	stripe_offset = stripe_nr * stripe_len;
5148 5149 5150 5151 5152
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

David Woodhouse's avatar
David Woodhouse committed
5153
	/* if we're here for raid56, we need to know the stripe aligned start */
5154
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
David Woodhouse's avatar
David Woodhouse committed
5155 5156 5157 5158 5159 5160
		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
		raid56_full_stripe_start = offset;

		/* allow a write of a full stripe, but make sure we don't
		 * allow straddling of stripes
		 */
5161 5162
		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
				full_stripe_len);
David Woodhouse's avatar
David Woodhouse committed
5163 5164 5165 5166 5167
		raid56_full_stripe_start *= full_stripe_len;
	}

	if (rw & REQ_DISCARD) {
		/* we don't discard raid56 yet */
5168
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
David Woodhouse's avatar
David Woodhouse committed
5169 5170 5171
			ret = -EOPNOTSUPP;
			goto out;
		}
5172
		*length = min_t(u64, em->len - offset, *length);
David Woodhouse's avatar
David Woodhouse committed
5173 5174 5175 5176 5177
	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len;
		/* For writes to RAID[56], allow a full stripeset across all disks.
		   For other RAID types and for RAID[56] reads, just allow a single
		   stripe (on a single disk). */
5178
		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
David Woodhouse's avatar
David Woodhouse committed
5179 5180 5181 5182 5183 5184 5185 5186
		    (rw & REQ_WRITE)) {
			max_len = stripe_len * nr_data_stripes(map) -
				(offset - raid56_full_stripe_start);
		} else {
			/* we limit the length of each bio to what fits in a stripe */
			max_len = stripe_len - stripe_offset;
		}
		*length = min_t(u64, em->len - offset, max_len);
5187 5188 5189
	} else {
		*length = em->len - offset;
	}
5190

David Woodhouse's avatar
David Woodhouse committed
5191 5192
	/* This is for when we're called from btrfs_merge_bio_hook() and all
	   it cares about is the length */
5193
	if (!bbio_ret)
5194 5195
		goto out;

5196 5197 5198 5199 5200
	btrfs_dev_replace_lock(dev_replace);
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
	if (!dev_replace_is_ongoing)
		btrfs_dev_replace_unlock(dev_replace);

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
	    dev_replace->tgtdev != NULL) {
		/*
		 * in dev-replace case, for repair case (that's the only
		 * case where the mirror is selected explicitly when
		 * calling btrfs_map_block), blocks left of the left cursor
		 * can also be read from the target drive.
		 * For REQ_GET_READ_MIRRORS, the target drive is added as
		 * the last one to the array of stripes. For READ, it also
		 * needs to be supported using the same mirror number.
		 * If the requested block is not left of the left cursor,
		 * EIO is returned. This can happen because btrfs_num_copies()
		 * returns one more in the dev-replace case.
		 */
		u64 tmp_length = *length;
		struct btrfs_bio *tmp_bbio = NULL;
		int tmp_num_stripes;
		u64 srcdev_devid = dev_replace->srcdev->devid;
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5225
			     logical, &tmp_length, &tmp_bbio, 0, 0);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
		if (ret) {
			WARN_ON(tmp_bbio != NULL);
			goto out;
		}

		tmp_num_stripes = tmp_bbio->num_stripes;
		if (mirror_num > tmp_num_stripes) {
			/*
			 * REQ_GET_READ_MIRRORS does not contain this
			 * mirror, that means that the requested area
			 * is not left of the left cursor
			 */
			ret = -EIO;
5239
			btrfs_put_bbio(tmp_bbio);
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
			goto out;
		}

		/*
		 * process the rest of the function using the mirror_num
		 * of the source drive. Therefore look it up first.
		 * At the end, patch the device pointer to the one of the
		 * target drive.
		 */
		for (i = 0; i < tmp_num_stripes; i++) {
			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it
				 * simple, only add the mirror with the
				 * lowest physical address
				 */
				if (found &&
				    physical_of_found <=
				     tmp_bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found =
					tmp_bbio->stripes[i].physical;
			}
		}

		if (found) {
			mirror_num = index_srcdev + 1;
			patch_the_first_stripe_for_dev_replace = 1;
			physical_to_patch_in_first_stripe = physical_of_found;
		} else {
			WARN_ON(1);
			ret = -EIO;
5274
			btrfs_put_bbio(tmp_bbio);
5275 5276 5277
			goto out;
		}

5278
		btrfs_put_bbio(tmp_bbio);
5279 5280 5281 5282
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

5283
	num_stripes = 1;
5284
	stripe_index = 0;
5285
	stripe_nr_orig = stripe_nr;
5286
	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5287
	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5288 5289
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + *length);
David Woodhouse's avatar
David Woodhouse committed
5290

5291 5292 5293 5294
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		if (rw & REQ_DISCARD)
			num_stripes = min_t(u64, map->num_stripes,
					    stripe_nr_end - stripe_nr_orig);
5295 5296
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
5297 5298
		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
			mirror_num = 1;
5299
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5300
		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5301
			num_stripes = map->num_stripes;
5302
		else if (mirror_num)
5303
			stripe_index = mirror_num - 1;
5304
		else {
5305
			stripe_index = find_live_mirror(fs_info, map, 0,
5306
					    map->num_stripes,
5307 5308
					    current->pid % map->num_stripes,
					    dev_replace_is_ongoing);
5309
			mirror_num = stripe_index + 1;
5310
		}
5311

5312
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5313
		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5314
			num_stripes = map->num_stripes;
5315
		} else if (mirror_num) {
5316
			stripe_index = mirror_num - 1;
5317 5318 5319
		} else {
			mirror_num = 1;
		}
5320

Chris Mason's avatar
Chris Mason committed
5321
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5322
		u32 factor = map->num_stripes / map->sub_stripes;
Chris Mason's avatar
Chris Mason committed
5323

5324
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
Chris Mason's avatar
Chris Mason committed
5325 5326
		stripe_index *= map->sub_stripes;

5327
		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5328
			num_stripes = map->sub_stripes;
5329 5330 5331 5332
		else if (rw & REQ_DISCARD)
			num_stripes = min_t(u64, map->sub_stripes *
					    (stripe_nr_end - stripe_nr_orig),
					    map->num_stripes);
Chris Mason's avatar
Chris Mason committed
5333 5334
		else if (mirror_num)
			stripe_index += mirror_num - 1;
5335
		else {
5336
			int old_stripe_index = stripe_index;
5337 5338
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
5339
					      map->sub_stripes, stripe_index +
5340 5341
					      current->pid % map->sub_stripes,
					      dev_replace_is_ongoing);
5342
			mirror_num = stripe_index - old_stripe_index + 1;
5343
		}
David Woodhouse's avatar
David Woodhouse committed
5344

5345
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5346
		if (need_raid_map &&
5347 5348
		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
		     mirror_num > 1)) {
David Woodhouse's avatar
David Woodhouse committed
5349
			/* push stripe_nr back to the start of the full stripe */
5350 5351
			stripe_nr = div_u64(raid56_full_stripe_start,
					stripe_len * nr_data_stripes(map));
David Woodhouse's avatar
David Woodhouse committed
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
5366 5367
			stripe_nr = div_u64_rem(stripe_nr,
					nr_data_stripes(map), &stripe_index);
David Woodhouse's avatar
David Woodhouse committed
5368 5369 5370 5371 5372
			if (mirror_num > 1)
				stripe_index = nr_data_stripes(map) +
						mirror_num - 2;

			/* We distribute the parity blocks across stripes */
5373 5374
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
5375 5376 5377
			if (!(rw & (REQ_WRITE | REQ_DISCARD |
				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
				mirror_num = 1;
David Woodhouse's avatar
David Woodhouse committed
5378
		}
5379 5380
	} else {
		/*
5381 5382 5383
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
5384
		 */
5385 5386
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
5387
		mirror_num = stripe_index + 1;
5388
	}
5389
	BUG_ON(stripe_index >= map->num_stripes);
5390

5391
	num_alloc_stripes = num_stripes;
5392 5393 5394 5395 5396
	if (dev_replace_is_ongoing) {
		if (rw & (REQ_WRITE | REQ_DISCARD))
			num_alloc_stripes <<= 1;
		if (rw & REQ_GET_READ_MIRRORS)
			num_alloc_stripes++;
5397
		tgtdev_indexes = num_stripes;
5398
	}
5399

5400
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5401 5402 5403 5404
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
5405 5406
	if (dev_replace_is_ongoing)
		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5407

5408
	/* build raid_map */
5409
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5410 5411 5412
	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
	    mirror_num > 1)) {
		u64 tmp;
5413
		unsigned rot;
5414 5415 5416 5417 5418 5419 5420

		bbio->raid_map = (u64 *)((void *)bbio->stripes +
				 sizeof(struct btrfs_bio_stripe) *
				 num_alloc_stripes +
				 sizeof(int) * tgtdev_indexes);

		/* Work out the disk rotation on this stripe-set */
5421
		div_u64_rem(stripe_nr, num_stripes, &rot);
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

		/* Fill in the logical address of each stripe */
		tmp = stripe_nr * nr_data_stripes(map);
		for (i = 0; i < nr_data_stripes(map); i++)
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;
	}

5435
	if (rw & REQ_DISCARD) {
5436 5437
		u32 factor = 0;
		u32 sub_stripes = 0;
5438 5439
		u64 stripes_per_dev = 0;
		u32 remaining_stripes = 0;
5440
		u32 last_stripe = 0;
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

		if (map->type &
		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
				sub_stripes = 1;
			else
				sub_stripes = map->sub_stripes;

			factor = map->num_stripes / sub_stripes;
			stripes_per_dev = div_u64_rem(stripe_nr_end -
						      stripe_nr_orig,
						      factor,
						      &remaining_stripes);
5454 5455
			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
			last_stripe *= sub_stripes;
5456 5457
		}

5458
		for (i = 0; i < num_stripes; i++) {
5459
			bbio->stripes[i].physical =
5460 5461
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
5462
			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5463

5464 5465 5466 5467
			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
					 BTRFS_BLOCK_GROUP_RAID10)) {
				bbio->stripes[i].length = stripes_per_dev *
							  map->stripe_len;
5468

5469 5470 5471
				if (i / sub_stripes < remaining_stripes)
					bbio->stripes[i].length +=
						map->stripe_len;
5472 5473 5474 5475 5476 5477 5478 5479 5480

				/*
				 * Special for the first stripe and
				 * the last stripe:
				 *
				 * |-------|...|-------|
				 *     |----------|
				 *    off     end_off
				 */
5481
				if (i < sub_stripes)
5482
					bbio->stripes[i].length -=
5483
						stripe_offset;
5484 5485 5486 5487

				if (stripe_index >= last_stripe &&
				    stripe_index <= (last_stripe +
						     sub_stripes - 1))
5488
					bbio->stripes[i].length -=
5489
						stripe_end_offset;
5490

5491 5492
				if (i == sub_stripes - 1)
					stripe_offset = 0;
5493
			} else
5494
				bbio->stripes[i].length = *length;
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

			stripe_index++;
			if (stripe_index == map->num_stripes) {
				/* This could only happen for RAID0/10 */
				stripe_index = 0;
				stripe_nr++;
			}
		}
	} else {
		for (i = 0; i < num_stripes; i++) {
5505
			bbio->stripes[i].physical =
5506 5507 5508
				map->stripes[stripe_index].physical +
				stripe_offset +
				stripe_nr * map->stripe_len;
5509
			bbio->stripes[i].dev =
5510
				map->stripes[stripe_index].dev;
5511
			stripe_index++;
5512
		}
5513
	}
5514

5515 5516
	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
		max_errors = btrfs_chunk_max_errors(map);
5517

5518 5519
	if (bbio->raid_map)
		sort_parity_stripes(bbio, num_stripes);
5520

5521
	tgtdev_indexes = 0;
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
	    dev_replace->tgtdev != NULL) {
		int index_where_to_add;
		u64 srcdev_devid = dev_replace->srcdev->devid;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk
		 * to the new disk takes place at run time while the
		 * filesystem is mounted writable, the regular write
		 * operations to the old disk have to be duplicated to go
		 * to the new disk as well.
		 * Note that device->missing is handled by the caller, and
		 * that the write to the old disk is already set up in the
		 * stripes array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
5550
				bbio->tgtdev_map[i] = index_where_to_add;
5551 5552
				index_where_to_add++;
				max_errors++;
5553
				tgtdev_indexes++;
5554 5555 5556
			}
		}
		num_stripes = index_where_to_add;
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
		   dev_replace->tgtdev != NULL) {
		u64 srcdev_devid = dev_replace->srcdev->devid;
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can
		 * also be used to read data in case it is needed to repair
		 * a corrupt block elsewhere. This is possible if the
		 * requested area is left of the left cursor. In this area,
		 * the target drive is a full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it
				 * simple, only add the mirror with the
				 * lowest physical address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
5588
			if (physical_of_found + map->stripe_len <=
5589 5590 5591 5592 5593 5594 5595 5596
			    dev_replace->cursor_left) {
				struct btrfs_bio_stripe *tgtdev_stripe =
					bbio->stripes + num_stripes;

				tgtdev_stripe->physical = physical_of_found;
				tgtdev_stripe->length =
					bbio->stripes[index_srcdev].length;
				tgtdev_stripe->dev = dev_replace->tgtdev;
5597
				bbio->tgtdev_map[index_srcdev] = num_stripes;
5598

5599
				tgtdev_indexes++;
5600 5601 5602
				num_stripes++;
			}
		}
5603 5604
	}

5605
	*bbio_ret = bbio;
5606
	bbio->map_type = map->type;
5607 5608 5609
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
5610
	bbio->num_tgtdevs = tgtdev_indexes;
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
5623
out:
5624 5625
	if (dev_replace_is_ongoing)
		btrfs_dev_replace_unlock(dev_replace);
5626
	free_extent_map(em);
5627
	return ret;
5628 5629
}

5630
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5631
		      u64 logical, u64 *length,
5632
		      struct btrfs_bio **bbio_ret, int mirror_num)
5633
{
5634
	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5635
				 mirror_num, 0);
5636 5637
}

5638 5639 5640 5641
/* For Scrub/replace */
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
		     u64 logical, u64 *length,
		     struct btrfs_bio **bbio_ret, int mirror_num,
5642
		     int need_raid_map)
5643 5644
{
	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5645
				 mirror_num, need_raid_map);
5646 5647
}

Yan Zheng's avatar
Yan Zheng committed
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
		     u64 chunk_start, u64 physical, u64 devid,
		     u64 **logical, int *naddrs, int *stripe_len)
{
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	struct extent_map *em;
	struct map_lookup *map;
	u64 *buf;
	u64 bytenr;
	u64 length;
	u64 stripe_nr;
David Woodhouse's avatar
David Woodhouse committed
5659
	u64 rmap_len;
Yan Zheng's avatar
Yan Zheng committed
5660 5661
	int i, j, nr = 0;

5662
	read_lock(&em_tree->lock);
Yan Zheng's avatar
Yan Zheng committed
5663
	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5664
	read_unlock(&em_tree->lock);
Yan Zheng's avatar
Yan Zheng committed
5665

5666
	if (!em) {
5667
		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5668 5669 5670 5671 5672
		       chunk_start);
		return -EIO;
	}

	if (em->start != chunk_start) {
5673
		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5674 5675 5676 5677
		       em->start, chunk_start);
		free_extent_map(em);
		return -EIO;
	}
Yan Zheng's avatar
Yan Zheng committed
5678 5679 5680
	map = (struct map_lookup *)em->bdev;

	length = em->len;
David Woodhouse's avatar
David Woodhouse committed
5681 5682
	rmap_len = map->stripe_len;

Yan Zheng's avatar
Yan Zheng committed
5683
	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5684
		length = div_u64(length, map->num_stripes / map->sub_stripes);
Yan Zheng's avatar
Yan Zheng committed
5685
	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5686
		length = div_u64(length, map->num_stripes);
5687
	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5688
		length = div_u64(length, nr_data_stripes(map));
David Woodhouse's avatar
David Woodhouse committed
5689 5690
		rmap_len = map->stripe_len * nr_data_stripes(map);
	}
Yan Zheng's avatar
Yan Zheng committed
5691

5692
	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5693
	BUG_ON(!buf); /* -ENOMEM */
Yan Zheng's avatar
Yan Zheng committed
5694 5695 5696 5697 5698 5699 5700 5701 5702

	for (i = 0; i < map->num_stripes; i++) {
		if (devid && map->stripes[i].dev->devid != devid)
			continue;
		if (map->stripes[i].physical > physical ||
		    map->stripes[i].physical + length <= physical)
			continue;

		stripe_nr = physical - map->stripes[i].physical;
5703
		stripe_nr = div_u64(stripe_nr, map->stripe_len);
Yan Zheng's avatar
Yan Zheng committed
5704 5705 5706

		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripe_nr = stripe_nr * map->num_stripes + i;
5707
			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
Yan Zheng's avatar
Yan Zheng committed
5708 5709
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
			stripe_nr = stripe_nr * map->num_stripes + i;
David Woodhouse's avatar
David Woodhouse committed
5710 5711 5712 5713 5714
		} /* else if RAID[56], multiply by nr_data_stripes().
		   * Alternatively, just use rmap_len below instead of
		   * map->stripe_len */

		bytenr = chunk_start + stripe_nr * rmap_len;
5715
		WARN_ON(nr >= map->num_stripes);
Yan Zheng's avatar
Yan Zheng committed
5716 5717 5718 5719
		for (j = 0; j < nr; j++) {
			if (buf[j] == bytenr)
				break;
		}
5720 5721
		if (j == nr) {
			WARN_ON(nr >= map->num_stripes);
Yan Zheng's avatar
Yan Zheng committed
5722
			buf[nr++] = bytenr;
5723
		}
Yan Zheng's avatar
Yan Zheng committed
5724 5725 5726 5727
	}

	*logical = buf;
	*naddrs = nr;
David Woodhouse's avatar
David Woodhouse committed
5728
	*stripe_len = rmap_len;
Yan Zheng's avatar
Yan Zheng committed
5729 5730 5731

	free_extent_map(em);
	return 0;
5732 5733
}

5734
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5735
{
5736 5737
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
5738
	bio_endio(bio);
5739

5740
	btrfs_put_bbio(bbio);
5741 5742
}

5743
static void btrfs_end_bio(struct bio *bio)
5744
{
5745
	struct btrfs_bio *bbio = bio->bi_private;
5746
	int is_orig_bio = 0;
5747

5748
	if (bio->bi_error) {
5749
		atomic_inc(&bbio->error);
5750
		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5751
			unsigned int stripe_index =
5752
				btrfs_io_bio(bio)->stripe_index;
5753
			struct btrfs_device *dev;
5754 5755 5756

			BUG_ON(stripe_index >= bbio->num_stripes);
			dev = bbio->stripes[stripe_index].dev;
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
			if (dev->bdev) {
				if (bio->bi_rw & WRITE)
					btrfs_dev_stat_inc(dev,
						BTRFS_DEV_STAT_WRITE_ERRS);
				else
					btrfs_dev_stat_inc(dev,
						BTRFS_DEV_STAT_READ_ERRS);
				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
					btrfs_dev_stat_inc(dev,
						BTRFS_DEV_STAT_FLUSH_ERRS);
				btrfs_dev_stat_print_on_error(dev);
			}
5769 5770
		}
	}
5771

5772
	if (bio == bbio->orig_bio)
5773 5774
		is_orig_bio = 1;

5775 5776
	btrfs_bio_counter_dec(bbio->fs_info);

5777
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5778 5779
		if (!is_orig_bio) {
			bio_put(bio);
5780
			bio = bbio->orig_bio;
5781
		}
5782

5783
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5784
		/* only send an error to the higher layers if it is
David Woodhouse's avatar
David Woodhouse committed
5785
		 * beyond the tolerance of the btrfs bio
5786
		 */
5787
		if (atomic_read(&bbio->error) > bbio->max_errors) {
5788
			bio->bi_error = -EIO;
5789
		} else {
5790 5791 5792 5793
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
5794
			bio->bi_error = 0;
5795
		}
5796

5797
		btrfs_end_bbio(bbio, bio);
5798
	} else if (!is_orig_bio) {
5799 5800 5801 5802
		bio_put(bio);
	}
}

5803 5804 5805 5806 5807 5808 5809
/*
 * see run_scheduled_bios for a description of why bios are collected for
 * async submit.
 *
 * This will add one bio to the pending list for a device and make sure
 * the work struct is scheduled.
 */
5810 5811 5812
static noinline void btrfs_schedule_bio(struct btrfs_root *root,
					struct btrfs_device *device,
					int rw, struct bio *bio)
5813 5814
{
	int should_queue = 1;
5815
	struct btrfs_pending_bios *pending_bios;
5816

David Woodhouse's avatar
David Woodhouse committed
5817
	if (device->missing || !device->bdev) {
5818
		bio_io_error(bio);
David Woodhouse's avatar
David Woodhouse committed
5819 5820 5821
		return;
	}

5822
	/* don't bother with additional async steps for reads, right now */
5823
	if (!(rw & REQ_WRITE)) {
5824
		bio_get(bio);
5825
		btrfsic_submit_bio(rw, bio);
5826
		bio_put(bio);
5827
		return;
5828 5829 5830
	}

	/*
5831
	 * nr_async_bios allows us to reliably return congestion to the
5832 5833 5834 5835
	 * higher layers.  Otherwise, the async bio makes it appear we have
	 * made progress against dirty pages when we've really just put it
	 * on a queue for later
	 */
5836
	atomic_inc(&root->fs_info->nr_async_bios);
5837
	WARN_ON(bio->bi_next);
5838 5839 5840 5841
	bio->bi_next = NULL;
	bio->bi_rw |= rw;

	spin_lock(&device->io_lock);
5842
	if (bio->bi_rw & REQ_SYNC)
5843 5844 5845
		pending_bios = &device->pending_sync_bios;
	else
		pending_bios = &device->pending_bios;
5846

5847 5848
	if (pending_bios->tail)
		pending_bios->tail->bi_next = bio;
5849

5850 5851 5852
	pending_bios->tail = bio;
	if (!pending_bios->head)
		pending_bios->head = bio;
5853 5854 5855 5856 5857 5858
	if (device->running_pending)
		should_queue = 0;

	spin_unlock(&device->io_lock);

	if (should_queue)
5859 5860
		btrfs_queue_work(root->fs_info->submit_workers,
				 &device->work);
5861 5862
}

5863 5864 5865 5866 5867 5868 5869
static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
			      struct bio *bio, u64 physical, int dev_nr,
			      int rw, int async)
{
	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;

	bio->bi_private = bbio;
5870
	btrfs_io_bio(bio)->stripe_index = dev_nr;
5871
	bio->bi_end_io = btrfs_end_bio;
5872
	bio->bi_iter.bi_sector = physical >> 9;
5873 5874 5875 5876 5877 5878
#ifdef DEBUG
	{
		struct rcu_string *name;

		rcu_read_lock();
		name = rcu_dereference(dev->name);
Masanari Iida's avatar
Masanari Iida committed
5879
		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5880
			 "(%s id %llu), size=%u\n", rw,
5881 5882
			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
			 name->str, dev->devid, bio->bi_iter.bi_size);
5883 5884 5885 5886
		rcu_read_unlock();
	}
#endif
	bio->bi_bdev = dev->bdev;
5887 5888 5889

	btrfs_bio_counter_inc_noblocked(root->fs_info);

5890
	if (async)
David Woodhouse's avatar
David Woodhouse committed
5891
		btrfs_schedule_bio(root, dev, rw, bio);
5892 5893 5894 5895 5896 5897 5898 5899
	else
		btrfsic_submit_bio(rw, bio);
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5900 5901 5902
		/* Shoud be the original bio. */
		WARN_ON(bio != bbio->orig_bio);

5903
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5904
		bio->bi_iter.bi_sector = logical >> 9;
5905 5906
		bio->bi_error = -EIO;
		btrfs_end_bbio(bbio, bio);
5907 5908 5909
	}
}

5910
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5911
		  int mirror_num, int async_submit)
5912 5913
{
	struct btrfs_device *dev;
5914
	struct bio *first_bio = bio;
5915
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5916 5917 5918
	u64 length = 0;
	u64 map_length;
	int ret;
5919 5920
	int dev_nr;
	int total_devs;
5921
	struct btrfs_bio *bbio = NULL;
5922

5923
	length = bio->bi_iter.bi_size;
5924
	map_length = length;
5925

5926
	btrfs_bio_counter_inc_blocked(root->fs_info);
David Woodhouse's avatar
David Woodhouse committed
5927
	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5928
			      mirror_num, 1);
5929 5930
	if (ret) {
		btrfs_bio_counter_dec(root->fs_info);
5931
		return ret;
5932
	}
5933

5934
	total_devs = bbio->num_stripes;
David Woodhouse's avatar
David Woodhouse committed
5935 5936 5937
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
5938
	bbio->fs_info = root->fs_info;
David Woodhouse's avatar
David Woodhouse committed
5939 5940
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

5941
	if (bbio->raid_map) {
David Woodhouse's avatar
David Woodhouse committed
5942 5943 5944
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
		if (rw & WRITE) {
5945
			ret = raid56_parity_write(root, bio, bbio, map_length);
David Woodhouse's avatar
David Woodhouse committed
5946
		} else {
5947
			ret = raid56_parity_recover(root, bio, bbio, map_length,
5948
						    mirror_num, 1);
David Woodhouse's avatar
David Woodhouse committed
5949
		}
5950

5951 5952
		btrfs_bio_counter_dec(root->fs_info);
		return ret;
David Woodhouse's avatar
David Woodhouse committed
5953 5954
	}

5955
	if (map_length < length) {
5956
		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5957
			logical, length, map_length);
5958 5959
		BUG();
	}
5960

5961
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5962 5963 5964 5965 5966 5967
		dev = bbio->stripes[dev_nr].dev;
		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
			bbio_error(bbio, first_bio, logical);
			continue;
		}

5968
		if (dev_nr < total_devs - 1) {
5969
			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5970
			BUG_ON(!bio); /* -ENOMEM */
5971
		} else
5972
			bio = first_bio;
5973 5974 5975 5976

		submit_stripe_bio(root, bbio, bio,
				  bbio->stripes[dev_nr].physical, dev_nr, rw,
				  async_submit);
5977
	}
5978
	btrfs_bio_counter_dec(root->fs_info);
5979 5980 5981
	return 0;
}

5982
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
Yan Zheng's avatar
Yan Zheng committed
5983
				       u8 *uuid, u8 *fsid)
5984
{
Yan Zheng's avatar
Yan Zheng committed
5985 5986 5987
	struct btrfs_device *device;
	struct btrfs_fs_devices *cur_devices;

5988
	cur_devices = fs_info->fs_devices;
Yan Zheng's avatar
Yan Zheng committed
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	while (cur_devices) {
		if (!fsid ||
		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
			device = __find_device(&cur_devices->devices,
					       devid, uuid);
			if (device)
				return device;
		}
		cur_devices = cur_devices->seed;
	}
	return NULL;
6000 6001
}

6002
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6003
					    struct btrfs_fs_devices *fs_devices,
6004 6005 6006 6007
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;

6008 6009
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
	if (IS_ERR(device))
6010
		return NULL;
6011 6012

	list_add(&device->dev_list, &fs_devices->devices);
Yan Zheng's avatar
Yan Zheng committed
6013
	device->fs_devices = fs_devices;
6014
	fs_devices->num_devices++;
6015 6016

	device->missing = 1;
6017
	fs_devices->missing_devices++;
6018

6019 6020 6021
	return device;
}

6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
 * on error.  Returned struct is not linked onto any lists and can be
 * destroyed with kfree() right away.
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6042
	if (WARN_ON(!devid && !fs_info))
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
		return ERR_PTR(-EINVAL);

	dev = __alloc_device();
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

6067 6068
	btrfs_init_work(&dev->work, btrfs_submit_helper,
			pending_bios_fn, NULL, NULL);
6069 6070 6071 6072

	return dev;
}

6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
6083
	u8 uuid[BTRFS_UUID_SIZE];
6084
	int num_stripes;
6085
	int ret;
6086
	int i;
6087

6088 6089
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
6090

6091
	read_lock(&map_tree->map_tree.lock);
6092
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6093
	read_unlock(&map_tree->map_tree.lock);
6094 6095 6096 6097 6098 6099 6100 6101 6102

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6103
	em = alloc_extent_map();
6104 6105
	if (!em)
		return -ENOMEM;
6106 6107
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6108 6109 6110 6111 6112
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6113
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6114 6115 6116
	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
6117
	em->orig_start = 0;
6118
	em->block_start = 0;
6119
	em->block_len = em->len;
6120

6121 6122 6123 6124 6125 6126
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
Chris Mason's avatar
Chris Mason committed
6127
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6128 6129 6130 6131
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6132 6133 6134
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6135 6136
		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
							uuid, NULL);
6137
		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6138 6139 6140
			free_extent_map(em);
			return -EIO;
		}
6141 6142
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6143 6144
				add_missing_dev(root, root->fs_info->fs_devices,
						devid, uuid);
6145 6146 6147 6148
			if (!map->stripes[i].dev) {
				free_extent_map(em);
				return -EIO;
			}
6149 6150
			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
						devid, uuid);
6151 6152
		}
		map->stripes[i].dev->in_fs_metadata = 1;
6153 6154
	}

6155
	write_lock(&map_tree->map_tree.lock);
Josef Bacik's avatar
Josef Bacik committed
6156
	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6157
	write_unlock(&map_tree->map_tree.lock);
6158
	BUG_ON(ret); /* Tree corruption */
6159 6160 6161 6162 6163
	free_extent_map(em);

	return 0;
}

6164
static void fill_device_from_item(struct extent_buffer *leaf,
6165 6166 6167 6168 6169 6170
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6171 6172
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6173
	device->commit_total_bytes = device->disk_total_bytes;
6174
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6175
	device->commit_bytes_used = device->bytes_used;
6176 6177 6178 6179
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6180
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6181
	device->is_tgtdev_for_dev_replace = 0;
6182

6183
	ptr = btrfs_device_uuid(dev_item);
6184
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6185 6186
}

6187 6188
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
						  u8 *fsid)
Yan Zheng's avatar
Yan Zheng committed
6189 6190 6191 6192
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6193
	BUG_ON(!mutex_is_locked(&uuid_mutex));
Yan Zheng's avatar
Yan Zheng committed
6194 6195 6196

	fs_devices = root->fs_info->fs_devices->seed;
	while (fs_devices) {
6197 6198 6199
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
			return fs_devices;

Yan Zheng's avatar
Yan Zheng committed
6200 6201 6202 6203 6204
		fs_devices = fs_devices->seed;
	}

	fs_devices = find_fsid(fsid);
	if (!fs_devices) {
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
		if (!btrfs_test_opt(root, DEGRADED))
			return ERR_PTR(-ENOENT);

		fs_devices = alloc_fs_devices(fsid);
		if (IS_ERR(fs_devices))
			return fs_devices;

		fs_devices->seeding = 1;
		fs_devices->opened = 1;
		return fs_devices;
Yan Zheng's avatar
Yan Zheng committed
6215
	}
Yan Zheng's avatar
Yan Zheng committed
6216 6217

	fs_devices = clone_fs_devices(fs_devices);
6218 6219
	if (IS_ERR(fs_devices))
		return fs_devices;
Yan Zheng's avatar
Yan Zheng committed
6220

6221
	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6222
				   root->fs_info->bdev_holder);
6223 6224
	if (ret) {
		free_fs_devices(fs_devices);
6225
		fs_devices = ERR_PTR(ret);
Yan Zheng's avatar
Yan Zheng committed
6226
		goto out;
6227
	}
Yan Zheng's avatar
Yan Zheng committed
6228 6229 6230

	if (!fs_devices->seeding) {
		__btrfs_close_devices(fs_devices);
Yan Zheng's avatar
Yan Zheng committed
6231
		free_fs_devices(fs_devices);
6232
		fs_devices = ERR_PTR(-EINVAL);
Yan Zheng's avatar
Yan Zheng committed
6233 6234 6235 6236 6237 6238
		goto out;
	}

	fs_devices->seed = root->fs_info->fs_devices->seed;
	root->fs_info->fs_devices->seed = fs_devices;
out:
6239
	return fs_devices;
Yan Zheng's avatar
Yan Zheng committed
6240 6241
}

6242
static int read_one_dev(struct btrfs_root *root,
6243 6244 6245
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
6246
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6247 6248 6249
	struct btrfs_device *device;
	u64 devid;
	int ret;
Yan Zheng's avatar
Yan Zheng committed
6250
	u8 fs_uuid[BTRFS_UUID_SIZE];
6251 6252
	u8 dev_uuid[BTRFS_UUID_SIZE];

6253
	devid = btrfs_device_id(leaf, dev_item);
6254
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6255
			   BTRFS_UUID_SIZE);
6256
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
Yan Zheng's avatar
Yan Zheng committed
6257 6258 6259
			   BTRFS_UUID_SIZE);

	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6260 6261 6262
		fs_devices = open_seed_devices(root, fs_uuid);
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Yan Zheng's avatar
Yan Zheng committed
6263 6264
	}

6265
	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6266
	if (!device) {
Yan Zheng's avatar
Yan Zheng committed
6267
		if (!btrfs_test_opt(root, DEGRADED))
Yan Zheng's avatar
Yan Zheng committed
6268 6269
			return -EIO;

6270 6271 6272
		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
		if (!device)
			return -ENOMEM;
6273 6274
		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
				devid, dev_uuid);
6275 6276 6277 6278 6279
	} else {
		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
			return -EIO;

		if(!device->bdev && !device->missing) {
6280 6281 6282 6283 6284 6285
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6286
			device->fs_devices->missing_devices++;
6287
			device->missing = 1;
Yan Zheng's avatar
Yan Zheng committed
6288
		}
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
			ASSERT(device->missing);

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Yan Zheng's avatar
Yan Zheng committed
6303 6304 6305 6306 6307 6308 6309
	}

	if (device->fs_devices != root->fs_info->fs_devices) {
		BUG_ON(device->writeable);
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
6310
	}
6311 6312

	fill_device_from_item(leaf, dev_item, device);
6313
	device->in_fs_metadata = 1;
6314
	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
Yan Zheng's avatar
Yan Zheng committed
6315
		device->fs_devices->total_rw_bytes += device->total_bytes;
6316 6317 6318 6319 6320
		spin_lock(&root->fs_info->free_chunk_lock);
		root->fs_info->free_chunk_space += device->total_bytes -
			device->bytes_used;
		spin_unlock(&root->fs_info->free_chunk_lock);
	}
6321 6322 6323 6324
	ret = 0;
	return ret;
}

Yan Zheng's avatar
Yan Zheng committed
6325
int btrfs_read_sys_array(struct btrfs_root *root)
6326
{
6327
	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6328
	struct extent_buffer *sb;
6329 6330
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
6331 6332
	u8 *array_ptr;
	unsigned long sb_array_offset;
6333
	int ret = 0;
6334 6335 6336
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
6337
	u32 cur_offset;
6338
	struct btrfs_key key;
6339

6340 6341 6342 6343 6344 6345 6346
	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6347 6348 6349
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
6350
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
	/*
	 * The sb extent buffer is artifical and just used to read the system array.
	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6364
		SetPageUptodate(sb->pages[0]);
6365

6366
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6367 6368
	array_size = btrfs_super_sys_array_size(super_copy);

6369 6370 6371
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
6372

6373 6374
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
6375 6376 6377 6378
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

6379 6380
		btrfs_disk_key_to_cpu(&key, disk_key);

6381 6382 6383
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6384

6385
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6386
			chunk = (struct btrfs_chunk *)sb_array_offset;
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
			/*
			 * At least one btrfs_chunk with one stripe must be
			 * present, exact stripe count check comes afterwards
			 */
			len = btrfs_chunk_item_size(1);
			if (cur_offset + len > array_size)
				goto out_short_read;

			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
			if (cur_offset + len > array_size)
				goto out_short_read;

6400
			ret = read_one_chunk(root, &key, sb, chunk);
6401 6402
			if (ret)
				break;
6403
		} else {
6404 6405
			ret = -EIO;
			break;
6406
		}
6407 6408 6409
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6410
	}
6411
	free_extent_buffer(sb);
6412
	return ret;
6413 6414 6415 6416 6417 6418

out_short_read:
	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
			len, cur_offset);
	free_extent_buffer(sb);
	return -EIO;
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

6436 6437 6438
	mutex_lock(&uuid_mutex);
	lock_chunks(root);

6439 6440 6441 6442 6443
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6444 6445 6446 6447 6448
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6449 6450
	if (ret < 0)
		goto error;
6451
	while (1) {
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6463 6464 6465
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
6466
						  struct btrfs_dev_item);
6467 6468 6469
			ret = read_one_dev(root, leaf, dev_item);
			if (ret)
				goto error;
6470 6471 6472 6473
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
Yan Zheng's avatar
Yan Zheng committed
6474 6475
			if (ret)
				goto error;
6476 6477 6478 6479 6480
		}
		path->slots[0]++;
	}
	ret = 0;
error:
6481 6482 6483
	unlock_chunks(root);
	mutex_unlock(&uuid_mutex);

Yan Zheng's avatar
Yan Zheng committed
6484
	btrfs_free_path(path);
6485 6486
	return ret;
}
6487

6488 6489 6490 6491 6492
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;

6493 6494 6495 6496 6497 6498 6499 6500
	while (fs_devices) {
		mutex_lock(&fs_devices->device_list_mutex);
		list_for_each_entry(device, &fs_devices->devices, dev_list)
			device->dev_root = fs_info->dev_root;
		mutex_unlock(&fs_devices->device_list_mutex);

		fs_devices = fs_devices->seed;
	}
6501 6502
}

6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
{
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_dev_stat_reset(dev, i);
}

int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_root *dev_root = fs_info->dev_root;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct extent_buffer *eb;
	int slot;
	int ret = 0;
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
	int i;

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		int item_size;
		struct btrfs_dev_stats_item *ptr;

		key.objectid = 0;
		key.type = BTRFS_DEV_STATS_KEY;
		key.offset = device->devid;
		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
		if (ret) {
			__btrfs_reset_dev_stats(device);
			device->dev_stats_valid = 1;
			btrfs_release_path(path);
			continue;
		}
		slot = path->slots[0];
		eb = path->nodes[0];
		btrfs_item_key_to_cpu(eb, &found_key, slot);
		item_size = btrfs_item_size_nr(eb, slot);

		ptr = btrfs_item_ptr(eb, slot,
				     struct btrfs_dev_stats_item);

		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (item_size >= (1 + i) * sizeof(__le64))
				btrfs_dev_stat_set(device, i,
					btrfs_dev_stats_value(eb, ptr, i));
			else
				btrfs_dev_stat_reset(device, i);
		}

		device->dev_stats_valid = 1;
		btrfs_dev_stat_print_on_load(device);
		btrfs_release_path(path);
	}
	mutex_unlock(&fs_devices->device_list_mutex);

out:
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_root *dev_root,
				struct btrfs_device *device)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

	key.objectid = 0;
	key.type = BTRFS_DEV_STATS_KEY;
	key.offset = device->devid;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
6591 6592
		btrfs_warn_in_rcu(dev_root->fs_info,
			"error %d while searching for dev_stats item for device %s",
6593
			      ret, rcu_str_deref(device->name));
6594 6595 6596 6597 6598 6599 6600 6601
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
6602 6603
			btrfs_warn_in_rcu(dev_root->fs_info,
				"delete too small dev_stats item for device %s failed %d",
6604
				      rcu_str_deref(device->name), ret);
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
6616 6617 6618
			btrfs_warn_in_rcu(dev_root->fs_info,
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
			struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *dev_root = fs_info->dev_root;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
6644
	int stats_cnt;
6645 6646 6647 6648
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6649
		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6650 6651
			continue;

6652
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6653 6654
		ret = update_dev_stat_item(trans, dev_root, device);
		if (!ret)
6655
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6656 6657 6658 6659 6660 6661
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

6662 6663 6664 6665 6666 6667
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

6668
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6669
{
6670 6671
	if (!dev->dev_stats_valid)
		return;
6672 6673
	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6674
			   rcu_str_deref(dev->name),
6675 6676 6677
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6678 6679
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6680
}
6681

6682 6683
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
6684 6685 6686 6687 6688 6689 6690 6691
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

6692 6693
	btrfs_info_in_rcu(dev->dev_root->fs_info,
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6694
	       rcu_str_deref(dev->name),
6695 6696 6697 6698 6699 6700 6701
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

6702
int btrfs_get_dev_stats(struct btrfs_root *root,
6703
			struct btrfs_ioctl_get_dev_stats *stats)
6704 6705 6706 6707 6708 6709
{
	struct btrfs_device *dev;
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
6710
	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6711 6712 6713
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
6714
		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6715
		return -ENODEV;
6716
	} else if (!dev->dev_stats_valid) {
6717
		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6718
		return -ENODEV;
6719
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
				btrfs_dev_stat_reset(dev, i);
		}
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
6736

6737
void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6738 6739 6740
{
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
6741
	int copy_num;
6742

6743 6744
	if (!bdev)
		return;
6745

6746 6747
	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
		copy_num++) {
6748

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
			continue;

		disk_super = (struct btrfs_super_block *)bh->b_data;

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
		brelse(bh);
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
6765
}
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788

/*
 * Update the size of all devices, which is used for writing out the
 * super blocks.
 */
void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *curr, *next;

	if (list_empty(&fs_devices->resized_devices))
		return;

	mutex_lock(&fs_devices->device_list_mutex);
	lock_chunks(fs_info->dev_root);
	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
				 resized_list) {
		list_del_init(&curr->resized_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
	}
	unlock_chunks(fs_info->dev_root);
	mutex_unlock(&fs_devices->device_list_mutex);
}
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813

/* Must be invoked during the transaction commit */
void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
					struct btrfs_transaction *transaction)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_device *dev;
	int i;

	if (list_empty(&transaction->pending_chunks))
		return;

	/* In order to kick the device replace finish process */
	lock_chunks(root);
	list_for_each_entry(em, &transaction->pending_chunks, list) {
		map = (struct map_lookup *)em->bdev;

		for (i = 0; i < map->num_stripes; i++) {
			dev = map->stripes[i].dev;
			dev->commit_bytes_used = dev->bytes_used;
		}
	}
	unlock_chunks(root);
}
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	while (fs_devices) {
		fs_devices->fs_info = fs_info;
		fs_devices = fs_devices->seed;
	}
}

void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	while (fs_devices) {
		fs_devices->fs_info = NULL;
		fs_devices = fs_devices->seed;
	}
}
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866

void btrfs_close_one_device(struct btrfs_device *device)
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;
	struct btrfs_device *new_device;
	struct rcu_string *name;

	if (device->bdev)
		fs_devices->open_devices--;

	if (device->writeable &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

	if (device->missing)
		fs_devices->missing_devices--;

	new_device = btrfs_alloc_device(NULL, &device->devid,
					device->uuid);
	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */

	/* Safe because we are under uuid_mutex */
	if (device->name) {
		name = rcu_string_strdup(device->name->str, GFP_NOFS);
		BUG_ON(!name); /* -ENOMEM */
		rcu_assign_pointer(new_device->name, name);
	}

	list_replace_rcu(&device->dev_list, &new_device->dev_list);
	new_device->fs_devices = device->fs_devices;

	call_rcu(&device->rcu, free_device);
}