intel_pm.c 228 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

36
/**
37 38
 * DOC: RC6
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	bool was_enabled;
318
	u32 val;
319

320
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
321
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
322
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323
		POSTING_READ(FW_BLC_SELF_VLV);
324
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
325
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
326
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327
		POSTING_READ(FW_BLC_SELF);
328
	} else if (IS_PINEVIEW(dev_priv)) {
329 330 331 332 333 334
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
335
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
350 351 352
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
353
		POSTING_READ(INSTPM);
354
	} else {
355
		return false;
356
	}
357

358 359 360 361 362
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
363 364
}

365
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
366
{
367 368
	bool ret;

369
	mutex_lock(&dev_priv->wm.wm_mutex);
370
	ret = _intel_set_memory_cxsr(dev_priv, enable);
371 372
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
373 374

	return ret;
375
}
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
391
static const int pessimal_latency_ns = 5000;
392

393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

396
static int vlv_get_fifo_size(struct intel_plane *plane)
397
{
398
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
399 400
	int sprite0_start, sprite1_start, size;

401 402 403 404
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

428 429
	switch (plane->id) {
	case PLANE_PRIMARY:
430 431
		size = sprite0_start;
		break;
432
	case PLANE_SPRITE0:
433 434
		size = sprite1_start - sprite0_start;
		break;
435
	case PLANE_SPRITE1:
436 437 438 439 440 441
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

442
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
443 444 445 446

	return size;
}

447
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
448 449 450 451 452 453 454 455 456 457 458 459 460 461
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

462
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
502 503 504 505 506
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params pineview_cursor_wm = {
509 510 511 512 513
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516 517 518 519 520
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params g4x_wm_info = {
523 524 525 526 527
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
530 531 532 533 534
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
535 536
};
static const struct intel_watermark_params i965_cursor_wm_info = {
537 538 539 540 541
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
542 543
};
static const struct intel_watermark_params i945_wm_info = {
544 545 546 547 548
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
549 550
};
static const struct intel_watermark_params i915_wm_info = {
551 552 553 554 555
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
556
};
557
static const struct intel_watermark_params i830_a_wm_info = {
558 559 560 561 562
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
563
};
564 565 566 567 568 569 570
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
571
static const struct intel_watermark_params i845_wm_info = {
572 573 574 575 576
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
577 578 579 580 581 582
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
583
 * @cpp: bytes per pixel
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
599
					int fifo_size, int cpp,
600 601 602 603 604 605 606 607 608 609
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
610
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
611 612 613 614 615 616 617 618 619 620 621 622 623 624
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
625 626 627 628 629 630 631 632 633 634 635

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

636 637 638
	return wm_size;
}

639
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
640
{
641
	struct intel_crtc *crtc, *enabled = NULL;
642

643
	for_each_intel_crtc(&dev_priv->drm, crtc) {
644
		if (intel_crtc_active(crtc)) {
645 646 647 648 649 650 651 652 653
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

654
static void pineview_update_wm(struct intel_crtc *unused_crtc)
655
{
656
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
657
	struct intel_crtc *crtc;
658 659 660 661
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

662 663 664 665
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
666 667
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668
		intel_set_memory_cxsr(dev_priv, false);
669 670 671
		return;
	}

672
	crtc = single_enabled_crtc(dev_priv);
673
	if (crtc) {
674 675 676 677
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
678
		int cpp = fb->format->cpp[0];
679
		int clock = adjusted_mode->crtc_clock;
680 681 682 683

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
684
					cpp, latency->display_sr);
685 686
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
687
		reg |= FW_WM(wm, SR);
688 689 690 691 692 693
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
694
					cpp, latency->cursor_sr);
695 696
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
697
		reg |= FW_WM(wm, CURSOR_SR);
698 699 700 701 702
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
703
					cpp, latency->display_hpll_disable);
704 705
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
706
		reg |= FW_WM(wm, HPLL_SR);
707 708 709 710 711
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
712
					cpp, latency->cursor_hpll_disable);
713 714
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
715
		reg |= FW_WM(wm, HPLL_CURSOR);
716 717 718
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

719
		intel_set_memory_cxsr(dev_priv, true);
720
	} else {
721
		intel_set_memory_cxsr(dev_priv, false);
722 723 724
	}
}

725
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
726 727 728 729 730 731 732 733
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
734
	struct intel_crtc *crtc;
735
	const struct drm_display_mode *adjusted_mode;
736
	const struct drm_framebuffer *fb;
737
	int htotal, hdisplay, clock, cpp;
738 739 740
	int line_time_us, line_count;
	int entries, tlb_miss;

741
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
742
	if (!intel_crtc_active(crtc)) {
743 744 745 746 747
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

748 749
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
750
	clock = adjusted_mode->crtc_clock;
751
	htotal = adjusted_mode->crtc_htotal;
752
	hdisplay = crtc->config->pipe_src_w;
753
	cpp = fb->format->cpp[0];
754 755

	/* Use the small buffer method to calculate plane watermark */
756
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
757 758 759 760 761 762 763 764 765
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
766
	line_time_us = max(htotal * 1000 / clock, 1);
767
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
768
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
787
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
788 789 790 791 792 793 794 795
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
796
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797 798 799 800 801
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
802
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803 804 805 806 807 808 809 810 811 812 813 814
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

815
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
816 817 818 819 820 821
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
822
	struct intel_crtc *crtc;
823
	const struct drm_display_mode *adjusted_mode;
824
	const struct drm_framebuffer *fb;
825
	int hdisplay, htotal, cpp, clock;
826 827 828 829 830 831 832 833 834 835
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

836
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
837 838
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
839
	clock = adjusted_mode->crtc_clock;
840
	htotal = adjusted_mode->crtc_htotal;
841
	hdisplay = crtc->config->pipe_src_w;
842
	cpp = fb->format->cpp[0];
843

844
	line_time_us = max(htotal * 1000 / clock, 1);
845
	line_count = (latency_ns / line_time_us + 1000) / 1000;
846
	line_size = hdisplay * cpp;
847 848

	/* Use the minimum of the small and large buffer method for primary */
849
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
850 851 852 853 854 855
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
856
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
857 858 859
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

860
	return g4x_check_srwm(dev_priv,
861 862 863 864
			      *display_wm, *cursor_wm,
			      display, cursor);
}

865 866 867
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

868
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
869 870
				const struct vlv_wm_values *wm)
{
871 872 873 874 875 876 877 878 879
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
880

881 882 883 884 885 886 887 888 889 890 891
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

892
	I915_WRITE(DSPFW1,
893
		   FW_WM(wm->sr.plane, SR) |
894 895 896
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
897
	I915_WRITE(DSPFW2,
898 899 900
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
901
	I915_WRITE(DSPFW3,
902
		   FW_WM(wm->sr.cursor, CURSOR_SR));
903 904 905

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
906 907
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
908
		I915_WRITE(DSPFW8_CHV,
909 910
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
911
		I915_WRITE(DSPFW9_CHV,
912 913
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
914
		I915_WRITE(DSPHOWM,
915
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
916 917 918 919 920 921 922 923 924
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
925 926
	} else {
		I915_WRITE(DSPFW7,
927 928
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929
		I915_WRITE(DSPHOWM,
930
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
931 932 933 934 935 936
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
937 938 939
	}

	POSTING_READ(DSPFW1);
940 941
}

942 943
#undef FW_WM_VLV

944 945 946 947 948 949
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

950 951 952 953
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
954
				   unsigned int cpp,
955 956 957 958 959
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
960
	ret = (ret + 1) * horiz_pixels * cpp;
961 962 963 964 965
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

966
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
967 968 969 970
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

971 972
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

973 974 975
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
976 977

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
978 979 980
	}
}

981 982
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
983 984
				     int level)
{
985
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
986
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
987 988
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
989
	int clock, htotal, cpp, width, wm;
990 991 992 993

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

994
	if (!plane_state->base.visible)
995 996
		return 0;

997
	cpp = plane_state->base.fb->format->cpp[0];
998 999 1000
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1013
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1014 1015 1016 1017 1018 1019
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1036
		if (state->base.visible) {
1037
			wm_state->num_active_planes++;
1038
			total_rate += state->base.fb->format->cpp[0];
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1052
		if (!state->base.visible) {
1053 1054 1055 1056
			plane->wm.fifo_size = 0;
			continue;
		}

1057
		rate = state->base.fb->format->cpp[0];
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1087 1088 1089 1090 1091 1092 1093 1094
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1095 1096 1097 1098 1099 1100
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1101
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102
		const int sr_fifo_size =
1103
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1104 1105
		struct intel_plane *plane;

1106 1107 1108 1109 1110 1111
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1112

1113
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1114 1115 1116
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1117 1118 1119 1120
		}
	}
}

1121
static void vlv_compute_wm(struct intel_crtc *crtc)
1122
{
1123
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1124 1125 1126 1127 1128 1129
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1130
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1131
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1132 1133 1134

	wm_state->num_active_planes = 0;

1135
	vlv_compute_fifo(crtc);
1136 1137 1138 1139

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1140
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1141 1142
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1143
		int level;
1144

1145
		if (!state->base.visible)
1146 1147 1148 1149
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
1150
			int wm = vlv_compute_wm_level(crtc->config, state, level);
1151
			int max_wm = plane->wm.fifo_size;
1152 1153 1154 1155 1156

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1157
			if (wm > max_wm)
1158 1159
				break;

1160
			wm_state->wm[level].plane[plane->id] = wm;
1161 1162 1163 1164 1165 1166 1167 1168
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1169
		if (plane->id == PLANE_CURSOR) {
1170 1171
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1172 1173
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1174 1175
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1176
					max(wm_state->sr[level].plane,
1177
					    wm_state->wm[level].plane[plane->id]);
1178 1179 1180 1181
		}
	}

	/* clear any (partially) filled invalid levels */
1182
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1183 1184 1185 1186 1187 1188 1189
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1201 1202
		switch (plane->id) {
		case PLANE_PRIMARY:
1203
			sprite0_start = plane->wm.fifo_size;
1204 1205
			break;
		case PLANE_SPRITE0:
1206
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1207 1208
			break;
		case PLANE_SPRITE1:
1209
			fifo_size = sprite1_start + plane->wm.fifo_size;
1210 1211 1212 1213 1214 1215 1216 1217
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1218 1219 1220 1221 1222 1223 1224 1225
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

1226 1227
	spin_lock(&dev_priv->wm.dsparb_lock);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1284 1285 1286 1287

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1288 1289 1290 1291
}

#undef VLV_FIFO

1292
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1293 1294 1295 1296 1297
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1298
	wm->level = dev_priv->wm.max_level;
1299 1300
	wm->cxsr = true;

1301
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1317 1318 1319
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1320
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1331 1332 1333 1334
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1335 1336 1337
	}
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1348
static void vlv_update_wm(struct intel_crtc *crtc)
1349
{
1350
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1351
	enum pipe pipe = crtc->pipe;
1352 1353
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1354

1355
	vlv_compute_wm(crtc);
1356
	vlv_merge_wm(dev_priv, &new_wm);
1357

1358
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1359
		/* FIXME should be part of crtc atomic commit */
1360
		vlv_pipe_set_fifo_size(crtc);
1361

1362
		return;
1363
	}
1364

1365
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1366 1367
		chv_set_memory_dvfs(dev_priv, false);

1368
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1369 1370
		chv_set_memory_pm5(dev_priv, false);

1371
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1372
		_intel_set_memory_cxsr(dev_priv, false);
1373

1374
	/* FIXME should be part of crtc atomic commit */
1375
	vlv_pipe_set_fifo_size(crtc);
1376

1377
	vlv_write_wm_values(dev_priv, &new_wm);
1378 1379 1380

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1381 1382 1383
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1384

1385
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1386
		_intel_set_memory_cxsr(dev_priv, true);
1387

1388
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1389 1390
		chv_set_memory_pm5(dev_priv, true);

1391
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1392 1393
		chv_set_memory_dvfs(dev_priv, true);

1394
	*old_wm = new_wm;
1395 1396
}

1397 1398
#define single_plane_enabled(mask) is_power_of_2(mask)

1399
static void g4x_update_wm(struct intel_crtc *crtc)
1400
{
1401
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 1403 1404 1405
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1406
	bool cxsr_enabled;
1407

1408
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1409 1410
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1411
			    &planea_wm, &cursora_wm))
1412
		enabled |= 1 << PIPE_A;
1413

1414
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1415 1416
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1417
			    &planeb_wm, &cursorb_wm))
1418
		enabled |= 1 << PIPE_B;
1419 1420

	if (single_plane_enabled(enabled) &&
1421
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1422 1423 1424
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1425
			     &plane_sr, &cursor_sr)) {
1426
		cxsr_enabled = true;
1427
	} else {
1428
		cxsr_enabled = false;
1429
		intel_set_memory_cxsr(dev_priv, false);
1430 1431
		plane_sr = cursor_sr = 0;
	}
1432

1433 1434
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1435 1436 1437 1438 1439
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1440 1441 1442 1443
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1444
	I915_WRITE(DSPFW2,
1445
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1446
		   FW_WM(cursora_wm, CURSORA));
1447 1448
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1449
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1450
		   FW_WM(cursor_sr, CURSOR_SR));
1451 1452 1453

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1454 1455
}

1456
static void i965_update_wm(struct intel_crtc *unused_crtc)
1457
{
1458
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1459
	struct intel_crtc *crtc;
1460 1461
	int srwm = 1;
	int cursor_sr = 16;
1462
	bool cxsr_enabled;
1463 1464

	/* Calc sr entries for one plane configs */
1465
	crtc = single_enabled_crtc(dev_priv);
1466 1467 1468
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1469 1470 1471 1472
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1473
		int clock = adjusted_mode->crtc_clock;
1474
		int htotal = adjusted_mode->crtc_htotal;
1475
		int hdisplay = crtc->config->pipe_src_w;
1476
		int cpp = fb->format->cpp[0];
1477 1478 1479
		unsigned long line_time_us;
		int entries;

1480
		line_time_us = max(htotal * 1000 / clock, 1);
1481 1482 1483

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1484
			cpp * hdisplay;
1485 1486 1487 1488 1489 1490 1491 1492 1493
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1494
			cpp * crtc->base.cursor->state->crtc_w;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1506
		cxsr_enabled = true;
1507
	} else {
1508
		cxsr_enabled = false;
1509
		/* Turn off self refresh if both pipes are enabled */
1510
		intel_set_memory_cxsr(dev_priv, false);
1511 1512 1513 1514 1515 1516
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1517 1518 1519 1520 1521 1522
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1523
	/* update cursor SR watermark */
1524
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1525 1526 1527

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1528 1529
}

1530 1531
#undef FW_WM

1532
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1533
{
1534
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1535 1536 1537 1538 1539 1540
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1541
	struct intel_crtc *crtc, *enabled = NULL;
1542

1543
	if (IS_I945GM(dev_priv))
1544
		wm_info = &i945_wm_info;
1545
	else if (!IS_GEN2(dev_priv))
1546 1547
		wm_info = &i915_wm_info;
	else
1548
		wm_info = &i830_a_wm_info;
1549

1550
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1551
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1552 1553 1554 1555 1556 1557 1558
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1559
		if (IS_GEN2(dev_priv))
1560
			cpp = 4;
1561
		else
1562
			cpp = fb->format->cpp[0];
1563

1564
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1565
					       wm_info, fifo_size, cpp,
1566
					       pessimal_latency_ns);
1567
		enabled = crtc;
1568
	} else {
1569
		planea_wm = fifo_size - wm_info->guard_size;
1570 1571 1572 1573
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1574
	if (IS_GEN2(dev_priv))
1575
		wm_info = &i830_bc_wm_info;
1576

1577
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1578
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1579 1580 1581 1582 1583 1584 1585
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1586
		if (IS_GEN2(dev_priv))
1587
			cpp = 4;
1588
		else
1589
			cpp = fb->format->cpp[0];
1590

1591
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1592
					       wm_info, fifo_size, cpp,
1593
					       pessimal_latency_ns);
1594 1595 1596 1597
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1598
	} else {
1599
		planeb_wm = fifo_size - wm_info->guard_size;
1600 1601 1602
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1603 1604 1605

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1606
	if (IS_I915GM(dev_priv) && enabled) {
1607
		struct drm_i915_gem_object *obj;
1608

1609
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1610 1611

		/* self-refresh seems busted with untiled */
1612
		if (!i915_gem_object_is_tiled(obj))
1613 1614 1615
			enabled = NULL;
	}

1616 1617 1618 1619 1620 1621
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1622
	intel_set_memory_cxsr(dev_priv, false);
1623 1624

	/* Calc sr entries for one plane configs */
1625
	if (HAS_FW_BLC(dev_priv) && enabled) {
1626 1627
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1628 1629 1630 1631
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1632
		int clock = adjusted_mode->crtc_clock;
1633
		int htotal = adjusted_mode->crtc_htotal;
1634 1635
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1636 1637 1638
		unsigned long line_time_us;
		int entries;

1639
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1640
			cpp = 4;
1641
		else
1642
			cpp = fb->format->cpp[0];
1643

1644
		line_time_us = max(htotal * 1000 / clock, 1);
1645 1646 1647

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1648
			cpp * hdisplay;
1649 1650 1651 1652 1653 1654
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1655
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1656 1657
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1658
		else
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1675 1676
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1677 1678
}

1679
static void i845_update_wm(struct intel_crtc *unused_crtc)
1680
{
1681
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1682
	struct intel_crtc *crtc;
1683
	const struct drm_display_mode *adjusted_mode;
1684 1685 1686
	uint32_t fwater_lo;
	int planea_wm;

1687
	crtc = single_enabled_crtc(dev_priv);
1688 1689 1690
	if (crtc == NULL)
		return;

1691
	adjusted_mode = &crtc->config->base.adjusted_mode;
1692
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1693
				       &i845_wm_info,
1694
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1695
				       4, pessimal_latency_ns);
1696 1697 1698 1699 1700 1701 1702 1703
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1704
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1705
{
1706
	uint32_t pixel_rate;
1707

1708
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1709 1710 1711 1712

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1713
	if (pipe_config->pch_pfit.enabled) {
1714
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1715 1716 1717 1718
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1719 1720 1721 1722 1723 1724 1725 1726

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1727 1728 1729
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1730 1731 1732 1733 1734 1735 1736
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1737
/* latency must be in 0.1us units. */
1738
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1739 1740 1741
{
	uint64_t ret;

1742 1743 1744
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1745
	ret = (uint64_t) pixel_rate * cpp * latency;
1746 1747 1748 1749 1750
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1751
/* latency must be in 0.1us units. */
1752
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1753
			       uint32_t horiz_pixels, uint8_t cpp,
1754 1755 1756 1757
			       uint32_t latency)
{
	uint32_t ret;

1758 1759
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1760 1761
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1762

1763
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1764
	ret = (ret + 1) * horiz_pixels * cpp;
1765 1766 1767 1768
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1769
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1770
			   uint8_t cpp)
1771
{
1772 1773 1774 1775 1776 1777
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1778
	if (WARN_ON(!cpp))
1779 1780 1781 1782
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1783
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1784 1785
}

1786
struct ilk_wm_maximums {
1787 1788 1789 1790 1791 1792
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1793 1794 1795 1796
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1797
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1798
				   const struct intel_plane_state *pstate,
1799 1800
				   uint32_t mem_value,
				   bool is_lp)
1801
{
1802
	uint32_t method1, method2;
1803
	int cpp;
1804

1805
	if (!cstate->base.active || !pstate->base.visible)
1806 1807
		return 0;

1808
	cpp = pstate->base.fb->format->cpp[0];
1809

1810
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1811 1812 1813 1814

	if (!is_lp)
		return method1;

1815 1816
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1817
				 drm_rect_width(&pstate->base.dst),
1818
				 cpp, mem_value);
1819 1820

	return min(method1, method2);
1821 1822
}

1823 1824 1825 1826
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1827
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1828
				   const struct intel_plane_state *pstate,
1829 1830 1831
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1832
	int cpp;
1833

1834
	if (!cstate->base.active || !pstate->base.visible)
1835 1836
		return 0;

1837
	cpp = pstate->base.fb->format->cpp[0];
1838

1839
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1840 1841
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1842
				 drm_rect_width(&pstate->base.dst),
1843
				 cpp, mem_value);
1844 1845 1846
	return min(method1, method2);
}

1847 1848 1849 1850
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1851
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1852
				   const struct intel_plane_state *pstate,
1853 1854
				   uint32_t mem_value)
{
1855 1856 1857 1858 1859 1860
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1861
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1862

1863
	if (!cstate->base.active)
1864 1865
		return 0;

1866 1867
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1868
			      width, cpp, mem_value);
1869 1870
}

1871
/* Only for WM_LP. */
1872
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1873
				   const struct intel_plane_state *pstate,
1874
				   uint32_t pri_val)
1875
{
1876
	int cpp;
1877

1878
	if (!cstate->base.active || !pstate->base.visible)
1879 1880
		return 0;

1881
	cpp = pstate->base.fb->format->cpp[0];
1882

1883
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1884 1885
}

1886 1887
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1888
{
1889
	if (INTEL_GEN(dev_priv) >= 8)
1890
		return 3072;
1891
	else if (INTEL_GEN(dev_priv) >= 7)
1892 1893 1894 1895 1896
		return 768;
	else
		return 512;
}

1897 1898 1899
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1900
{
1901
	if (INTEL_GEN(dev_priv) >= 8)
1902 1903
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1904
	else if (INTEL_GEN(dev_priv) >= 7)
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1915 1916
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1917
{
1918
	if (INTEL_GEN(dev_priv) >= 7)
1919 1920 1921 1922 1923
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1924
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1925
{
1926
	if (INTEL_GEN(dev_priv) >= 8)
1927 1928 1929 1930 1931
		return 31;
	else
		return 15;
}

1932 1933 1934
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1935
				     const struct intel_wm_config *config,
1936 1937 1938
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1939 1940
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1941 1942

	/* if sprites aren't enabled, sprites get nothing */
1943
	if (is_sprite && !config->sprites_enabled)
1944 1945 1946
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1947
	if (level == 0 || config->num_pipes_active > 1) {
1948
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1949 1950 1951 1952 1953 1954

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1955
		if (INTEL_GEN(dev_priv) <= 6)
1956 1957 1958
			fifo_size /= 2;
	}

1959
	if (config->sprites_enabled) {
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1971
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1972 1973 1974 1975
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1976 1977
				      int level,
				      const struct intel_wm_config *config)
1978 1979
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1980
	if (level > 0 && config->num_pipes_active > 1)
1981 1982 1983
		return 64;

	/* otherwise just report max that registers can hold */
1984
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1985 1986
}

1987
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1988 1989 1990
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1991
				    struct ilk_wm_maximums *max)
1992
{
1993 1994 1995
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1996
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1997 1998
}

1999
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2000 2001 2002
					int level,
					struct ilk_wm_maximums *max)
{
2003 2004 2005 2006
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2007 2008
}

2009
static bool ilk_validate_wm_level(int level,
2010
				  const struct ilk_wm_maximums *max,
2011
				  struct intel_wm_level *result)
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2050
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2051
				 const struct intel_crtc *intel_crtc,
2052
				 int level,
2053
				 struct intel_crtc_state *cstate,
2054 2055 2056
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2057
				 struct intel_wm_level *result)
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2082 2083 2084
	result->enable = true;
}

2085
static uint32_t
2086
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2087
{
2088 2089
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2090 2091
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2092
	u32 linetime, ips_linetime;
2093

2094 2095 2096 2097
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2098
	if (WARN_ON(intel_state->cdclk == 0))
2099
		return 0;
2100

2101 2102 2103
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2104 2105 2106
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2107
					 intel_state->cdclk);
2108

2109 2110
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2111 2112
}

2113 2114
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2115
{
2116
	if (IS_GEN9(dev_priv)) {
2117
		uint32_t val;
2118
		int ret, i;
2119
		int level, max_level = ilk_wm_max_level(dev_priv);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2175
		/*
2176 2177
		 * WaWmMemoryReadLatency:skl
		 *
2178
		 * punit doesn't take into account the read latency so we need
2179 2180
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2181
		 */
2182 2183 2184 2185 2186
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2187
				wm[level] += 2;
2188
			}
2189 2190
		}

2191
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2192 2193 2194 2195 2196
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2197 2198 2199 2200
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2201
	} else if (INTEL_GEN(dev_priv) >= 6) {
2202 2203 2204 2205 2206 2207
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2208
	} else if (INTEL_GEN(dev_priv) >= 5) {
2209 2210 2211 2212 2213 2214
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2215 2216 2217
	}
}

2218 2219
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2220 2221
{
	/* ILK sprite LP0 latency is 1300 ns */
2222
	if (IS_GEN5(dev_priv))
2223 2224 2225
		wm[0] = 13;
}

2226 2227
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2228 2229
{
	/* ILK cursor LP0 latency is 1300 ns */
2230
	if (IS_GEN5(dev_priv))
2231 2232 2233
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2234
	if (IS_IVYBRIDGE(dev_priv))
2235 2236 2237
		wm[3] *= 2;
}

2238
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2239 2240
{
	/* how many WM levels are we expecting */
2241
	if (INTEL_GEN(dev_priv) >= 9)
2242
		return 7;
2243
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2244
		return 4;
2245
	else if (INTEL_GEN(dev_priv) >= 6)
2246
		return 3;
2247
	else
2248 2249
		return 2;
}
2250

2251
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2252
				   const char *name,
2253
				   const uint16_t wm[8])
2254
{
2255
	int level, max_level = ilk_wm_max_level(dev_priv);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2266 2267 2268 2269
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2270
		if (IS_GEN9(dev_priv))
2271 2272
			latency *= 10;
		else if (level > 0)
2273 2274 2275 2276 2277 2278 2279 2280
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2281 2282 2283
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2284
	int level, max_level = ilk_wm_max_level(dev_priv);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2296
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2312 2313 2314
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2315 2316
}

2317
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2318
{
2319
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2320 2321 2322 2323 2324 2325

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2326
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2327
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2328

2329 2330 2331
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2332

2333
	if (IS_GEN6(dev_priv))
2334
		snb_wm_latency_quirk(dev_priv);
2335 2336
}

2337
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2338
{
2339
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2340
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2341 2342
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2366
/* Compute new watermarks for the pipe */
2367
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2368
{
2369 2370
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2371
	struct intel_pipe_wm *pipe_wm;
2372
	struct drm_device *dev = state->dev;
2373
	const struct drm_i915_private *dev_priv = to_i915(dev);
2374
	struct intel_plane *intel_plane;
2375
	struct intel_plane_state *pristate = NULL;
2376
	struct intel_plane_state *sprstate = NULL;
2377
	struct intel_plane_state *curstate = NULL;
2378
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2379
	struct ilk_wm_maximums max;
2380

2381
	pipe_wm = &cstate->wm.ilk.optimal;
2382

2383
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2384 2385 2386 2387 2388 2389
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2390 2391

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2392
			pristate = ps;
2393
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2394
			sprstate = ps;
2395
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2396
			curstate = ps;
2397 2398
	}

2399
	pipe_wm->pipe_enabled = cstate->base.active;
2400
	if (sprstate) {
2401 2402 2403 2404
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2405 2406
	}

2407 2408
	usable_level = max_level;

2409
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2410
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2411
		usable_level = 1;
2412 2413

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2414
	if (pipe_wm->sprites_scaled)
2415
		usable_level = 0;
2416

2417
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2418 2419 2420 2421
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2422

2423
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2424
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2425

2426
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2427
		return -EINVAL;
2428

2429
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2430 2431

	for (level = 1; level <= max_level; level++) {
2432
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2433

2434
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2435
				     pristate, sprstate, curstate, wm);
2436 2437 2438 2439 2440 2441

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2442 2443 2444 2445 2446 2447
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2448
			usable_level = level;
2449 2450
	}

2451
	return 0;
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461 2462
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2463
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2464
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2465
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2466 2467 2468 2469 2470 2471

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2472
	*a = newstate->wm.ilk.optimal;
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2501
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2502 2503 2504 2505 2506
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2507 2508 2509 2510 2511 2512 2513 2514 2515
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2516 2517
	ret_wm->enable = true;

2518
	for_each_intel_crtc(dev, intel_crtc) {
2519
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2520 2521 2522 2523
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2524

2525 2526 2527 2528 2529
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2530
		if (!wm->enable)
2531
			ret_wm->enable = false;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2544
			 const struct intel_wm_config *config,
2545
			 const struct ilk_wm_maximums *max,
2546 2547
			 struct intel_pipe_wm *merged)
{
2548
	struct drm_i915_private *dev_priv = to_i915(dev);
2549
	int level, max_level = ilk_wm_max_level(dev_priv);
2550
	int last_enabled_level = max_level;
2551

2552
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2553
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2554
	    config->num_pipes_active > 1)
2555
		last_enabled_level = 0;
2556

2557
	/* ILK: FBC WM must be disabled always */
2558
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2559 2560 2561 2562 2563 2564 2565

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2566 2567 2568 2569 2570
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2571 2572 2573 2574 2575 2576

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2577 2578
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2579 2580 2581
			wm->fbc_val = 0;
		}
	}
2582 2583 2584 2585 2586 2587 2588

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2589
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2590
	    intel_fbc_is_active(dev_priv)) {
2591 2592 2593 2594 2595 2596
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2597 2598
}

2599 2600 2601 2602 2603 2604
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2605 2606 2607
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2608
	struct drm_i915_private *dev_priv = to_i915(dev);
2609

2610
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2611 2612 2613 2614 2615
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2616
static void ilk_compute_wm_results(struct drm_device *dev,
2617
				   const struct intel_pipe_wm *merged,
2618
				   enum intel_ddb_partitioning partitioning,
2619
				   struct ilk_wm_values *results)
2620
{
2621
	struct drm_i915_private *dev_priv = to_i915(dev);
2622 2623
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2624

2625
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2626
	results->partitioning = partitioning;
2627

2628
	/* LP1+ register values */
2629
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2630
		const struct intel_wm_level *r;
2631

2632
		level = ilk_wm_lp_to_level(wm_lp, merged);
2633

2634
		r = &merged->wm[level];
2635

2636 2637 2638 2639 2640
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2641
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2642 2643 2644
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2645 2646 2647
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2648
		if (INTEL_GEN(dev_priv) >= 8)
2649 2650 2651 2652 2653 2654
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2655 2656 2657 2658
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2659
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2660 2661 2662 2663
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2664
	}
2665

2666
	/* LP0 register values */
2667
	for_each_intel_crtc(dev, intel_crtc) {
2668
		enum pipe pipe = intel_crtc->pipe;
2669 2670
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2671 2672 2673 2674

		if (WARN_ON(!r->enable))
			continue;

2675
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2676

2677 2678 2679 2680
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2681 2682 2683
	}
}

2684 2685
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2686
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2687 2688
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2689
{
2690
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2691
	int level1 = 0, level2 = 0;
2692

2693 2694 2695 2696 2697
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2698 2699
	}

2700 2701
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2702 2703 2704
			return r2;
		else
			return r1;
2705
	} else if (level1 > level2) {
2706 2707 2708 2709 2710 2711
		return r1;
	} else {
		return r2;
	}
}

2712 2713 2714 2715 2716 2717 2718 2719
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2720
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2721 2722
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2723 2724 2725 2726 2727
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2728
	for_each_pipe(dev_priv, pipe) {
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2772 2773
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2774
{
2775
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2776
	bool changed = false;
2777

2778 2779 2780
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2781
		changed = true;
2782 2783 2784 2785
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2786
		changed = true;
2787 2788 2789 2790
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2791
		changed = true;
2792
	}
2793

2794 2795 2796 2797
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2798

2799 2800 2801 2802 2803 2804 2805
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2806 2807
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2808
{
2809
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2810 2811 2812
	unsigned int dirty;
	uint32_t val;

2813
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2814 2815 2816 2817 2818
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2819
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2820
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2821
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2822
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2823
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2824 2825
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2826
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2827
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2828
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2829
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2830
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2831 2832
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2833
	if (dirty & WM_DIRTY_DDB) {
2834
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2849 2850
	}

2851
	if (dirty & WM_DIRTY_FBC) {
2852 2853 2854 2855 2856 2857 2858 2859
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2860 2861 2862 2863
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2864
	if (INTEL_GEN(dev_priv) >= 7) {
2865 2866 2867 2868 2869
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2870

2871
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2872
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2873
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2874
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2875
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2876
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2877 2878

	dev_priv->wm.hw = *results;
2879 2880
}

2881
bool ilk_disable_lp_wm(struct drm_device *dev)
2882
{
2883
	struct drm_i915_private *dev_priv = to_i915(dev);
2884 2885 2886 2887

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2888
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2905 2906 2907
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2908 2909 2910 2911 2912 2913 2914 2915
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2916 2917
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2930
intel_enable_sagv(struct drm_i915_private *dev_priv)
2931 2932 2933
{
	int ret;

2934 2935 2936 2937
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2953
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2954
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2955
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2956 2957 2958 2959 2960 2961
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2962
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2963 2964 2965 2966
	return 0;
}

int
2967
intel_disable_sagv(struct drm_i915_private *dev_priv)
2968
{
2969
	int ret;
2970

2971 2972 2973 2974
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2975 2976 2977 2978 2979 2980
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2981 2982 2983 2984
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
2985 2986 2987 2988 2989 2990
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2991
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2992
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2993
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2994
		return 0;
2995 2996 2997
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
2998 2999
	}

3000
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3001 3002 3003
	return 0;
}

3004
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3005 3006 3007 3008
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3009 3010
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3011
	struct intel_crtc_state *cstate;
3012
	enum pipe pipe;
3013
	int level, latency;
3014

3015 3016 3017
	if (!intel_has_sagv(dev_priv))
		return false;

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3031
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3032
	cstate = to_intel_crtc_state(crtc->base.state);
3033

3034
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3035 3036
		return false;

3037
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3038 3039
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3040

3041
		/* Skip this plane if it's not enabled */
3042
		if (!wm->wm[0].plane_en)
3043 3044 3045
			continue;

		/* Find the highest enabled wm level for this plane */
3046
		for (level = ilk_wm_max_level(dev_priv);
3047
		     !wm->wm[level].plane_en; --level)
3048 3049
		     { }

3050 3051 3052
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
Ville Syrjälä's avatar
Ville Syrjälä committed
3053
		    plane->base.state->fb->modifier ==
3054 3055 3056
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3057 3058 3059 3060 3061
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3062
		if (latency < SKL_SAGV_BLOCK_TIME)
3063 3064 3065 3066 3067 3068
			return false;
	}

	return true;
}

3069 3070
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3071
				   const struct intel_crtc_state *cstate,
3072 3073
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3074
{
3075 3076 3077
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3078
	struct drm_crtc *for_crtc = cstate->base.crtc;
3079 3080
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3081

3082
	if (WARN_ON(!state) || !cstate->base.active) {
3083 3084
		alloc->start = 0;
		alloc->end = 0;
3085
		*num_active = hweight32(dev_priv->active_crtcs);
3086 3087 3088
		return;
	}

3089 3090 3091 3092 3093
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3094 3095
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3096 3097 3098

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3099
	/*
3100 3101 3102 3103 3104 3105
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3106
	 */
3107
	if (!intel_state->active_pipe_changes) {
3108 3109 3110 3111 3112
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3113
		return;
3114
	}
3115 3116 3117 3118 3119 3120

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3121 3122
}

3123
static unsigned int skl_cursor_allocation(int num_active)
3124
{
3125
	if (num_active == 1)
3126 3127 3128 3129 3130
		return 32;

	return 8;
}

3131 3132 3133 3134
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3135 3136
	if (entry->end)
		entry->end += 1;
3137 3138
}

3139 3140
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3141
{
3142
	struct intel_crtc *crtc;
3143

3144 3145
	memset(ddb, 0, sizeof(*ddb));

3146
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3147
		enum intel_display_power_domain power_domain;
3148 3149
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3150 3151 3152

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3153 3154
			continue;

3155 3156 3157 3158 3159 3160 3161
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3162

3163 3164
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3165 3166

		intel_display_power_put(dev_priv, power_domain);
3167 3168 3169
	}
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3192
	if (WARN_ON(!pstate->base.visible))
3193 3194 3195
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3196 3197 3198 3199
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3200
	if (drm_rotation_90_or_270(pstate->base.rotation))
3201 3202 3203 3204 3205 3206 3207 3208 3209
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3210
static unsigned int
3211 3212 3213
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3214
{
3215
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3216
	uint32_t down_scale_amount, data_rate;
3217
	uint32_t width = 0, height = 0;
3218 3219
	struct drm_framebuffer *fb;
	u32 format;
3220

3221
	if (!intel_pstate->base.visible)
3222
		return 0;
3223 3224

	fb = pstate->fb;
3225
	format = fb->format->format;
3226

3227 3228 3229 3230
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3231

3232 3233
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3234

3235
	if (drm_rotation_90_or_270(pstate->rotation))
3236
		swap(width, height);
3237 3238

	/* for planar format */
3239
	if (format == DRM_FORMAT_NV12) {
3240
		if (y)  /* y-plane data rate */
3241
			data_rate = width * height *
3242
				fb->format->cpp[0];
3243
		else    /* uv-plane data rate */
3244
			data_rate = (width / 2) * (height / 2) *
3245
				fb->format->cpp[1];
3246 3247
	} else {
		/* for packed formats */
3248
		data_rate = width * height * fb->format->cpp[0];
3249 3250
	}

3251 3252 3253
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3254 3255 3256 3257 3258 3259 3260 3261
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3262 3263 3264
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3265
{
3266 3267
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3268 3269
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3270
	unsigned int total_data_rate = 0;
3271 3272 3273

	if (WARN_ON(!state))
		return 0;
3274

3275
	/* Calculate and cache data rate for each plane */
3276
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3277 3278
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3279 3280 3281 3282

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3283
		plane_data_rate[plane_id] = rate;
3284 3285

		total_data_rate += rate;
3286 3287 3288 3289

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3290
		plane_y_data_rate[plane_id] = rate;
3291

3292
		total_data_rate += rate;
3293 3294 3295 3296 3297
	}

	return total_data_rate;
}

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
3312
	if (y && fb->format->format != DRM_FORMAT_NV12)
3313 3314 3315
		return 0;

	/* For Non Y-tile return 8-blocks */
Ville Syrjälä's avatar
Ville Syrjälä committed
3316 3317
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3318 3319
		return 8;

3320 3321
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3322

3323
	if (drm_rotation_90_or_270(pstate->rotation))
3324 3325 3326
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
3327
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3328 3329 3330 3331
		src_w /= 2;
		src_h /= 2;
	}

3332
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3333
		plane_bpp = fb->format->cpp[1];
3334
	else
3335
		plane_bpp = fb->format->cpp[0];
3336

3337
	if (drm_rotation_90_or_270(pstate->rotation)) {
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3361 3362 3363 3364 3365 3366 3367 3368
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3369
		enum plane_id plane_id = to_intel_plane(plane)->id;
3370

3371
		if (plane_id == PLANE_CURSOR)
3372 3373 3374 3375 3376
			continue;

		if (!pstate->visible)
			continue;

3377 3378
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3379 3380 3381 3382 3383
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3384
static int
3385
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3386 3387
		      struct skl_ddb_allocation *ddb /* out */)
{
3388
	struct drm_atomic_state *state = cstate->base.state;
3389
	struct drm_crtc *crtc = cstate->base.crtc;
3390 3391 3392
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3393
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3394
	uint16_t alloc_size, start;
3395 3396
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3397
	unsigned int total_data_rate;
3398
	enum plane_id plane_id;
3399
	int num_active;
3400 3401
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3402

3403 3404 3405 3406
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3407 3408 3409
	if (WARN_ON(!state))
		return 0;

3410
	if (!cstate->base.active) {
3411
		alloc->start = alloc->end = 0;
3412 3413 3414
		return 0;
	}

3415
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3416
	alloc_size = skl_ddb_entry_size(alloc);
3417 3418
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3419
		return 0;
3420 3421
	}

3422
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3423

3424 3425 3426 3427 3428
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3429

3430 3431 3432
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3433 3434
	}

3435 3436 3437
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3438
	/*
3439 3440
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3441 3442 3443
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3444 3445 3446
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3447
	if (total_data_rate == 0)
3448
		return 0;
3449

3450
	start = alloc->start;
3451
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3452 3453
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3454

3455
		if (plane_id == PLANE_CURSOR)
3456 3457
			continue;

3458
		data_rate = plane_data_rate[plane_id];
3459 3460

		/*
3461
		 * allocation for (packed formats) or (uv-plane part of planar format):
3462 3463 3464
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3465
		plane_blocks = minimum[plane_id];
3466 3467
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3468

3469 3470
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3471 3472
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3473
		}
3474 3475

		start += plane_blocks;
3476 3477 3478 3479

		/*
		 * allocation for y_plane part of planar format:
		 */
3480
		y_data_rate = plane_y_data_rate[plane_id];
3481

3482
		y_plane_blocks = y_minimum[plane_id];
3483 3484
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3485

3486
		if (y_data_rate) {
3487 3488
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3489
		}
3490 3491

		start += y_plane_blocks;
3492 3493
	}

3494
	return 0;
3495 3496
}

3497 3498
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3499
 * for the read latency) and cpp should always be <= 8, so that
3500 3501 3502
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3503 3504
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3505
{
3506 3507
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3508 3509

	if (latency == 0)
3510
		return FP_16_16_MAX;
3511

3512 3513
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3514 3515 3516
	return ret;
}

3517 3518 3519 3520
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3521
{
3522
	uint32_t wm_intermediate_val;
3523
	uint_fixed_16_16_t ret;
3524 3525

	if (latency == 0)
3526
		return FP_16_16_MAX;
3527 3528

	wm_intermediate_val = latency * pixel_rate;
3529 3530 3531
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3532 3533 3534
	return ret;
}

3535 3536 3537 3538 3539 3540 3541 3542
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3543
	if (WARN_ON(!pstate->base.visible))
3544 3545 3546 3547 3548 3549
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3550
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3551 3552 3553 3554 3555 3556 3557 3558
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3559 3560 3561 3562 3563 3564 3565 3566
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3567
{
3568 3569
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3570
	uint32_t latency = dev_priv->wm.skl_latency[level];
3571 3572 3573 3574 3575
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3576
	uint32_t res_blocks, res_lines;
3577
	uint8_t cpp;
3578
	uint32_t width = 0, height = 0;
3579
	uint32_t plane_pixel_rate;
3580 3581
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3582 3583 3584
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3585
	bool y_tiled, x_tiled;
3586

3587
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3588 3589 3590
		*enabled = false;
		return 0;
	}
3591

3592 3593 3594 3595
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3596 3597 3598 3599
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3600
	if (apply_memory_bw_wa && x_tiled)
3601 3602
		latency += 15;

3603 3604
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3605

3606
	if (drm_rotation_90_or_270(pstate->rotation))
3607 3608
		swap(width, height);

3609
	cpp = fb->format->cpp[0];
3610 3611
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3612
	if (drm_rotation_90_or_270(pstate->rotation)) {
3613
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3614 3615
			fb->format->cpp[1] :
			fb->format->cpp[0];
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3627 3628 3629
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3630 3631 3632 3633 3634
		}
	} else {
		y_min_scanlines = 4;
	}

3635 3636 3637
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3638
	plane_bytes_per_line = width * cpp;
3639
	if (y_tiled) {
3640 3641
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3642
		plane_blocks_per_line =
3643
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3644
	} else if (x_tiled) {
3645 3646
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3647
	} else {
3648 3649
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3650 3651
	}

3652 3653
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3654
				 cstate->base.adjusted_mode.crtc_htotal,
3655
				 latency,
3656
				 plane_blocks_per_line);
3657

3658 3659
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3660

3661
	if (y_tiled) {
3662
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3663
	} else {
3664 3665 3666
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3667 3668 3669
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3670 3671 3672
		else
			selected_result = method1;
	}
3673

3674 3675 3676
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3677

3678
	if (level >= 1 && level <= 7) {
3679
		if (y_tiled) {
3680
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3681
			res_lines += y_min_scanlines;
3682
		} else {
3683
			res_blocks++;
3684
		}
3685
	}
3686

3687 3688
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3689 3690 3691 3692 3693 3694 3695 3696

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3697 3698
			struct drm_plane *plane = pstate->plane;

3699
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3700 3701
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3702 3703 3704
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3705
	}
3706 3707 3708

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3709
	*enabled = true;
3710

3711
	return 0;
3712 3713
}

3714 3715 3716 3717
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
3718
		     struct intel_plane *intel_plane,
3719 3720
		     int level,
		     struct skl_wm_level *result)
3721
{
3722
	struct drm_atomic_state *state = cstate->base.state;
3723
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3724 3725
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3726
	uint16_t ddb_blocks;
3727
	enum pipe pipe = intel_crtc->pipe;
3728
	int ret;
3729 3730 3731 3732 3733

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3734

3735
	/*
3736 3737 3738 3739 3740 3741 3742 3743 3744
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3745
	 */
3746 3747
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3748

3749
	WARN_ON(!intel_pstate->base.fb);
3750

3751
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3763 3764

	return 0;
3765 3766
}

3767
static uint32_t
3768
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3769
{
3770 3771
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3772
	uint32_t pixel_rate;
3773
	uint32_t linetime_wm;
3774

3775
	if (!cstate->base.active)
3776 3777
		return 0;

3778 3779 3780
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3781
		return 0;
3782

3783 3784 3785 3786 3787 3788 3789 3790
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3791 3792
}

3793
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3794
				      struct skl_wm_level *trans_wm /* out */)
3795
{
3796
	if (!cstate->base.active)
3797
		return;
3798 3799

	/* Until we know more, just disable transition WMs */
3800
	trans_wm->plane_en = false;
3801 3802
}

3803 3804 3805
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3806
{
3807
	struct drm_device *dev = cstate->base.crtc->dev;
3808
	const struct drm_i915_private *dev_priv = to_i915(dev);
3809 3810
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3811
	int level, max_level = ilk_wm_max_level(dev_priv);
3812
	int ret;
3813

3814 3815 3816 3817 3818 3819 3820 3821 3822
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3823
		wm = &pipe_wm->planes[intel_plane->id];
3824 3825 3826 3827 3828 3829 3830 3831 3832

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3833
	}
3834
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3835

3836
	return 0;
3837 3838
}

3839 3840
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3841 3842 3843 3844 3845 3846 3847 3848
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3864 3865 3866
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3867
			       enum plane_id plane_id)
3868 3869 3870 3871
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3872
	int level, max_level = ilk_wm_max_level(dev_priv);
3873 3874 3875
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3876
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3877
				   &wm->wm[level]);
3878
	}
3879
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3880
			   &wm->trans_wm);
3881

3882 3883 3884 3885
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3886 3887
}

3888 3889 3890
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3891 3892 3893 3894
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3895
	int level, max_level = ilk_wm_max_level(dev_priv);
3896 3897 3898
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3899 3900
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3901
	}
3902
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3903

3904
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3905
			    &ddb->plane[pipe][PLANE_CURSOR]);
3906 3907
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3922 3923
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3924
{
3925
	return a->start < b->end && b->start < a->end;
3926 3927
}

3928 3929 3930
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3931
{
3932
	int i;
3933

3934 3935 3936
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3937
			return true;
3938

3939
	return false;
3940 3941
}

3942
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3943
			      const struct skl_pipe_wm *old_pipe_wm,
3944
			      struct skl_pipe_wm *pipe_wm, /* out */
3945
			      struct skl_ddb_allocation *ddb, /* out */
3946
			      bool *changed /* out */)
3947
{
3948
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3949
	int ret;
3950

3951 3952 3953
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3954

3955
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3956 3957 3958
		*changed = false;
	else
		*changed = true;
3959

3960
	return 0;
3961 3962
}

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3976
static int
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3993
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3994
		enum plane_id plane_id = to_intel_plane(plane)->id;
3995

3996 3997 3998 3999
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4010 4011 4012 4013 4014 4015 4016
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4017
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4018
	uint32_t realloc_pipes = pipes_modified(state);
4019 4020 4021 4022 4023 4024 4025 4026
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4027 4028 4029 4030 4031 4032
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4033 4034
		intel_state->active_pipe_changes = ~0;

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4058
	if (intel_state->active_pipe_changes) {
4059
		realloc_pipes = ~0;
4060 4061
		intel_state->wm_results.dirty_pipes = ~0;
	}
4062

4063 4064 4065 4066 4067 4068
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4069 4070 4071 4072 4073 4074 4075
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4076
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4077 4078
		if (ret)
			return ret;
4079

4080
		ret = skl_ddb_add_affected_planes(cstate);
4081 4082
		if (ret)
			return ret;
4083 4084 4085 4086 4087
	}

	return 0;
}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4111
	int i;
4112 4113

	for_each_crtc_in_state(state, crtc, cstate, i) {
4114 4115
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4116

4117
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4118
			enum plane_id plane_id = intel_plane->id;
4119 4120
			const struct skl_ddb_entry *old, *new;

4121 4122
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4123 4124 4125 4126

			if (skl_ddb_entry_equal(old, new))
				continue;

4127 4128 4129 4130 4131
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4132 4133 4134 4135
		}
	}
}

4136 4137 4138 4139 4140
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4141 4142
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
4143
	struct drm_device *dev = state->dev;
4144
	struct skl_pipe_wm *pipe_wm;
4145
	bool changed = false;
4146
	int ret, i;
4147

4148 4149 4150 4151 4152 4153 4154
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
4165

4166 4167 4168
	if (!changed)
		return 0;

4169 4170 4171
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4172 4173 4174 4175
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4189 4190
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4191 4192

		pipe_wm = &intel_cstate->wm.skl.optimal;
4193 4194
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4208 4209
	skl_print_wm_changes(state);

4210 4211 4212
	return 0;
}

4213 4214 4215 4216 4217 4218
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4219
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4220
	enum pipe pipe = crtc->pipe;
4221
	enum plane_id plane_id;
4222 4223 4224

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4225 4226

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4227

4228 4229 4230 4231 4232 4233 4234 4235
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4236 4237
}

4238 4239
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4240
{
4241
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4242
	struct drm_device *dev = intel_crtc->base.dev;
4243
	struct drm_i915_private *dev_priv = to_i915(dev);
4244
	struct skl_wm_values *results = &state->wm_results;
4245
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4246
	enum pipe pipe = intel_crtc->pipe;
4247

4248
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4249 4250
		return;

4251
	mutex_lock(&dev_priv->wm.wm_mutex);
4252

4253 4254
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4255 4256

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4257 4258

	mutex_unlock(&dev_priv->wm.wm_mutex);
4259 4260
}

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4279
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4280
{
4281
	struct drm_device *dev = &dev_priv->drm;
4282
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4283
	struct ilk_wm_maximums max;
4284
	struct intel_wm_config config = {};
4285
	struct ilk_wm_values results = {};
4286
	enum intel_ddb_partitioning partitioning;
4287

4288 4289 4290 4291
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4292 4293

	/* 5/6 split only in single pipe config on IVB+ */
4294
	if (INTEL_GEN(dev_priv) >= 7 &&
4295 4296 4297
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4298

4299
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4300
	} else {
4301
		best_lp_wm = &lp_wm_1_2;
4302 4303
	}

4304
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4305
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4306

4307
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4308

4309
	ilk_write_wm_values(dev_priv, &results);
4310 4311
}

4312 4313
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4314
{
4315 4316
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4317

4318
	mutex_lock(&dev_priv->wm.wm_mutex);
4319
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4320 4321 4322
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4323

4324 4325
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4326 4327 4328
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4329

4330 4331
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4332
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4333 4334 4335
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4336 4337
}

4338 4339
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4340
{
4341 4342 4343 4344
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4345 4346
}

4347 4348
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4349
{
4350
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4351 4352
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4353 4354
	int level, max_level;
	enum plane_id plane_id;
4355
	uint32_t val;
4356

4357
	max_level = ilk_wm_max_level(dev_priv);
4358

4359 4360
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4361

4362
		for (level = 0; level <= max_level; level++) {
4363 4364
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4365 4366
			else
				val = I915_READ(CUR_WM(pipe, level));
4367

4368
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4369 4370
		}

4371 4372
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4373 4374 4375 4376
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4377 4378
	}

4379 4380
	if (!intel_crtc->active)
		return;
4381

4382
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4383 4384 4385 4386
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4387
	struct drm_i915_private *dev_priv = to_i915(dev);
4388
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4389
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4390
	struct drm_crtc *crtc;
4391 4392
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4393

4394
	skl_ddb_get_hw_state(dev_priv, ddb);
4395 4396 4397 4398 4399 4400
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4401
		if (intel_crtc->active)
4402 4403
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4404

4405 4406 4407 4408 4409 4410 4411
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4412 4413
}

4414 4415 4416
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4417
	struct drm_i915_private *dev_priv = to_i915(dev);
4418
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4419
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4420
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4421
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4422
	enum pipe pipe = intel_crtc->pipe;
4423
	static const i915_reg_t wm0_pipe_reg[] = {
4424 4425 4426 4427 4428 4429
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4430
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4431
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4432

4433 4434
	memset(active, 0, sizeof(*active));

4435
	active->pipe_enabled = intel_crtc->active;
4436 4437

	if (active->pipe_enabled) {
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4452
		int level, max_level = ilk_wm_max_level(dev_priv);
4453 4454 4455 4456 4457 4458 4459 4460 4461

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4462 4463

	intel_crtc->wm.active.ilk = *active;
4464 4465
}

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4480
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4481
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4482
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4483
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4484
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4485
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4486
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4487 4488 4489 4490 4491
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4492 4493 4494
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4495 4496

	tmp = I915_READ(DSPFW2);
4497 4498 4499
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4500 4501 4502 4503 4504 4505

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4506 4507
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4508 4509

		tmp = I915_READ(DSPFW8_CHV);
4510 4511
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4512 4513

		tmp = I915_READ(DSPFW9_CHV);
4514 4515
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4516 4517 4518

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4519 4520 4521 4522 4523 4524 4525 4526 4527
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4528 4529
	} else {
		tmp = I915_READ(DSPFW7);
4530 4531
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4532 4533 4534

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4535 4536 4537 4538 4539 4540
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4557 4558
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4570 4571 4572 4573 4574 4575 4576 4577 4578
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4579
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4593 4594 4595 4596 4597 4598

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4599 4600 4601 4602 4603
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4604 4605 4606 4607 4608

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4609 4610
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4611
	struct drm_i915_private *dev_priv = to_i915(dev);
4612
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4613 4614
	struct drm_crtc *crtc;

4615
	for_each_crtc(dev, crtc)
4616 4617 4618 4619 4620 4621 4622
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4623
	if (INTEL_GEN(dev_priv) >= 7) {
4624 4625 4626
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4627

4628
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4629 4630
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4631
	else if (IS_IVYBRIDGE(dev_priv))
4632 4633
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4634 4635 4636 4637 4638

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4671
void intel_update_watermarks(struct intel_crtc *crtc)
4672
{
4673
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4674 4675

	if (dev_priv->display.update_wm)
4676
		dev_priv->display.update_wm(crtc);
4677 4678
}

4679
/*
4680 4681 4682 4683 4684 4685 4686 4687
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4688
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4689 4690 4691
{
	u16 rgvswctl;

4692 4693
	assert_spin_locked(&mchdev_lock);

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4711
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4712
{
4713
	u32 rgvmodectl;
4714 4715
	u8 fmax, fmin, fstart, vstart;

4716 4717
	spin_lock_irq(&mchdev_lock);

4718 4719
	rgvmodectl = I915_READ(MEMMODECTL);

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4740
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4741 4742
		PXVFREQ_PX_SHIFT;

4743 4744
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4745

4746 4747 4748
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4765
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4766
		DRM_ERROR("stuck trying to change perf mode\n");
4767
	mdelay(1);
4768

4769
	ironlake_set_drps(dev_priv, fstart);
4770

4771 4772
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4773
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4774
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4775
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4776 4777

	spin_unlock_irq(&mchdev_lock);
4778 4779
}

4780
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4781
{
4782 4783 4784 4785 4786
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4787 4788 4789 4790 4791 4792 4793 4794 4795

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4796
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4797
	mdelay(1);
4798 4799
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4800
	mdelay(1);
4801

4802
	spin_unlock_irq(&mchdev_lock);
4803 4804
}

4805 4806 4807 4808 4809
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4810
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4811
{
4812
	u32 limits;
4813

4814 4815 4816 4817 4818 4819
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4820
	if (IS_GEN9(dev_priv)) {
4821 4822 4823 4824 4825 4826 4827 4828
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4829 4830 4831 4832

	return limits;
}

4833 4834 4835
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4836 4837
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4838 4839 4840 4841

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4842 4843
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4844 4845 4846 4847
			new_power = BETWEEN;
		break;

	case BETWEEN:
4848 4849
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4850
			new_power = LOW_POWER;
4851 4852
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4853 4854 4855 4856
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4857 4858
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4859 4860 4861 4862
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4863
	if (val <= dev_priv->rps.min_freq_softlimit)
4864
		new_power = LOW_POWER;
4865
	if (val >= dev_priv->rps.max_freq_softlimit)
4866 4867 4868 4869 4870 4871 4872 4873
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4874 4875
		ei_up = 16000;
		threshold_up = 95;
4876 4877

		/* Downclock if less than 85% busy over 32ms */
4878 4879
		ei_down = 32000;
		threshold_down = 85;
4880 4881 4882 4883
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4884 4885
		ei_up = 13000;
		threshold_up = 90;
4886 4887

		/* Downclock if less than 75% busy over 32ms */
4888 4889
		ei_down = 32000;
		threshold_down = 75;
4890 4891 4892 4893
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4894 4895
		ei_up = 10000;
		threshold_up = 85;
4896 4897

		/* Downclock if less than 60% busy over 32ms */
4898 4899
		ei_down = 32000;
		threshold_down = 60;
4900 4901 4902
		break;
	}

4903 4904 4905 4906 4907 4908
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

4909
	I915_WRITE(GEN6_RP_UP_EI,
4910
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4911
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4912 4913
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4914 4915

	I915_WRITE(GEN6_RP_DOWN_EI,
4916
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4917
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4928

4929
skip_hw_write:
4930
	dev_priv->rps.power = new_power;
4931 4932
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4933 4934 4935
	dev_priv->rps.last_adj = 0;
}

4936 4937 4938 4939
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

4940
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4941
	if (val > dev_priv->rps.min_freq_softlimit)
4942
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4943
	if (val < dev_priv->rps.max_freq_softlimit)
4944
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4945

4946 4947
	mask &= dev_priv->pm_rps_events;

4948
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4949 4950
}

4951 4952 4953
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4954
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4955
{
4956
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4957
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4958 4959
		return;

4960
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4961 4962
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4963

4964 4965 4966 4967 4968
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4969

4970
		if (IS_GEN9(dev_priv))
4971 4972
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4973
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4974 4975 4976 4977 4978 4979 4980
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4981
	}
4982 4983 4984 4985

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4986
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4987
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4988

4989 4990
	POSTING_READ(GEN6_RPNSWREQ);

4991
	dev_priv->rps.cur_freq = val;
4992
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4993 4994
}

4995
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4996 4997
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4998 4999
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
5000

5001
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5002 5003 5004
		      "Odd GPU freq value\n"))
		val &= ~1;

5005 5006
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5007
	if (val != dev_priv->rps.cur_freq) {
5008
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5009 5010 5011
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5012 5013 5014 5015 5016

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5017
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5018 5019
 *
 * * If Gfx is Idle, then
5020 5021 5022
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5023 5024 5025
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5026
	u32 val = dev_priv->rps.idle_freq;
5027

5028
	if (dev_priv->rps.cur_freq <= val)
5029 5030
		return;

5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5043
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5044
	valleyview_set_rps(dev_priv, val);
5045
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5046 5047
}

5048 5049 5050 5051
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5052
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5053 5054 5055
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5056

5057 5058
		gen6_enable_rps_interrupts(dev_priv);

5059 5060 5061 5062 5063
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5064 5065 5066 5067
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5068 5069
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5070 5071 5072 5073 5074 5075 5076
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5077
	mutex_lock(&dev_priv->rps.hw_lock);
5078
	if (dev_priv->rps.enabled) {
5079
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5080
			vlv_set_rps_idle(dev_priv);
5081
		else
5082
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5083
		dev_priv->rps.last_adj = 0;
5084 5085
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5086
	}
5087
	mutex_unlock(&dev_priv->rps.hw_lock);
5088

5089
	spin_lock(&dev_priv->rps.client_lock);
5090 5091
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5092
	spin_unlock(&dev_priv->rps.client_lock);
5093 5094
}

5095
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5096 5097
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5098
{
5099 5100 5101
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5102
	if (!(dev_priv->gt.awake &&
5103
	      dev_priv->rps.enabled &&
5104
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5105
		return;
5106

5107 5108 5109
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5110
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5111 5112
		rps = NULL;

5113 5114 5115 5116 5117
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5118
			schedule_work(&dev_priv->rps.work);
5119 5120
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5121

5122 5123 5124
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5125 5126
		} else
			dev_priv->rps.boosts++;
5127
	}
5128
	spin_unlock(&dev_priv->rps.client_lock);
5129 5130
}

5131
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5132
{
5133 5134
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5135
	else
5136
		gen6_set_rps(dev_priv, val);
5137 5138
}

5139
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Zhe Wang's avatar
Zhe Wang committed
5140 5141
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5142
	I915_WRITE(GEN9_PG_ENABLE, 0);
Zhe Wang's avatar
Zhe Wang committed
5143 5144
}

5145
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5146 5147 5148 5149
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5150
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5151 5152
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5153
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5154
	I915_WRITE(GEN6_RP_CONTROL, 0);
5155 5156
}

5157
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5158 5159 5160 5161
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5162
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5163
{
5164 5165
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5166
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5167

5168
	I915_WRITE(GEN6_RC_CONTROL, 0);
5169

5170
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5171 5172
}

5173
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5174
{
5175
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5176 5177 5178 5179 5180
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5181
	if (HAS_RC6p(dev_priv))
5182 5183 5184 5185 5186
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5187 5188

	else
5189 5190
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5191 5192
}

5193
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5194
{
5195
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5196 5197
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5209 5210

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5211
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5212 5213 5214 5215 5216 5217 5218 5219
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5220 5221 5222
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5223
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5224 5225 5226 5227 5228 5229 5230
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5231
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5232 5233 5234
		enable_rc6 = false;
	}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5249 5250 5251 5252 5253 5254
		enable_rc6 = false;
	}

	return enable_rc6;
}

5255
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5256
{
5257
	/* No RC6 before Ironlake and code is gone for ilk. */
5258
	if (INTEL_INFO(dev_priv)->gen < 6)
5259 5260
		return 0;

5261 5262 5263
	if (!enable_rc6)
		return 0;

5264
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5265 5266 5267 5268
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5269
	/* Respect the kernel parameter if it is set */
5270 5271 5272
	if (enable_rc6 >= 0) {
		int mask;

5273
		if (HAS_RC6p(dev_priv))
5274 5275 5276 5277 5278 5279
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5280 5281 5282
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
5283 5284 5285

		return enable_rc6 & mask;
	}
5286

5287
	if (IS_IVYBRIDGE(dev_priv))
5288
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5289 5290

	return INTEL_RC6_ENABLE;
5291 5292
}

5293
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5294 5295
{
	/* All of these values are in units of 50MHz */
5296

5297
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5298
	if (IS_GEN9_LP(dev_priv)) {
5299
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5300 5301 5302 5303
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5304
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5305 5306 5307 5308
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5309
	/* hw_max = RP0 until we check for overclocking */
5310
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5311

5312
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5313 5314
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5315 5316 5317 5318 5319
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5320
			dev_priv->rps.efficient_freq =
5321 5322 5323 5324
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5325 5326
	}

5327
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5328
		/* Store the frequency values in 16.66 MHZ units, which is
5329 5330
		 * the natural hardware unit for SKL
		 */
5331 5332 5333 5334 5335 5336
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5337 5338
}

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

5351
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5352
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5353 5354 5355
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5356
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5357
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5358 5359 5360 5361 5362 5363 5364 5365 5366
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5367
		gen9_disable_rps(dev_priv);
5368 5369 5370 5371
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5372 5373 5374 5375 5376 5377 5378 5379
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

5380 5381
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5382 5383 5384
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5385
	reset_rps(dev_priv, gen6_set_rps);
5386 5387 5388 5389

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5390
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Zhe Wang's avatar
Zhe Wang committed
5391
{
5392
	struct intel_engine_cs *engine;
5393
	enum intel_engine_id id;
Zhe Wang's avatar
Zhe Wang committed
5394 5395 5396 5397 5398 5399 5400
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5401
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Zhe Wang's avatar
Zhe Wang committed
5402 5403 5404 5405 5406

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5407 5408

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5409
	if (IS_SKYLAKE(dev_priv))
5410 5411 5412
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Zhe Wang's avatar
Zhe Wang committed
5413 5414
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5415
	for_each_engine(engine, dev_priv, id)
5416
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5417

5418
	if (HAS_GUC(dev_priv))
5419 5420
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Zhe Wang's avatar
Zhe Wang committed
5421 5422
	I915_WRITE(GEN6_RC_SLEEP, 0);

5423 5424 5425 5426
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Zhe Wang's avatar
Zhe Wang committed
5427
	/* 3a: Enable RC6 */
5428
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Zhe Wang's avatar
Zhe Wang committed
5429
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5430
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5431
	/* WaRsUseTimeoutMode:bxt */
5432
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5433
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5434 5435 5436
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5437 5438
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5439 5440 5441
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5442
	}
Zhe Wang's avatar
Zhe Wang committed
5443

5444 5445
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5446
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5447
	 */
5448
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5449 5450 5451 5452
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5453

5454
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Zhe Wang's avatar
Zhe Wang committed
5455 5456
}

5457
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5458
{
5459
	struct intel_engine_cs *engine;
5460
	enum intel_engine_id id;
5461
	uint32_t rc6_mask = 0;
5462 5463 5464 5465 5466 5467

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5468
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5469 5470 5471 5472 5473 5474 5475 5476

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5477
	for_each_engine(engine, dev_priv, id)
5478
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5479
	I915_WRITE(GEN6_RC_SLEEP, 0);
5480
	if (IS_BROADWELL(dev_priv))
5481 5482 5483
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5484 5485

	/* 3: Enable RC6 */
5486
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5487
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5488 5489
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5490 5491 5492 5493 5494 5495 5496
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5497 5498

	/* 4 Program defaults and thresholds for RPS*/
5499 5500 5501 5502
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5517 5518

	/* 5: Enable RPS */
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5529
	reset_rps(dev_priv, gen6_set_rps);
5530

5531
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5532 5533
}

5534
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5535
{
5536
	struct intel_engine_cs *engine;
5537
	enum intel_engine_id id;
5538
	u32 rc6vids, rc6_mask = 0;
5539 5540
	u32 gtfifodbg;
	int rc6_mode;
5541
	int ret;
5542

5543
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5544

5545 5546 5547 5548 5549 5550 5551 5552 5553
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5554 5555
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5556 5557 5558 5559
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5560
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5571
	for_each_engine(engine, dev_priv, id)
5572
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5573 5574 5575

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5576
	if (IS_IVYBRIDGE(dev_priv))
5577 5578 5579
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5580
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5581 5582
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5583
	/* Check if we are enabling RC6 */
5584
	rc6_mode = intel_enable_rc6();
5585 5586 5587
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5588
	/* We don't use those on Haswell */
5589
	if (!IS_HASWELL(dev_priv)) {
5590 5591
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5592

5593 5594 5595
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5596

5597
	intel_print_rc6_info(dev_priv, rc6_mask);
5598 5599 5600 5601 5602 5603

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5604 5605
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5606 5607
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5608
	reset_rps(dev_priv, gen6_set_rps);
5609

5610 5611
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5612
	if (IS_GEN6(dev_priv) && ret) {
5613
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5614
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5615 5616 5617 5618 5619 5620 5621 5622 5623
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5624
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5625 5626
}

5627
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5628 5629
{
	int min_freq = 15;
5630 5631
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5632
	unsigned int max_gpu_freq, min_gpu_freq;
5633
	int scaling_factor = 180;
5634
	struct cpufreq_policy *policy;
5635

5636
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5637

5638 5639 5640 5641 5642 5643 5644 5645 5646
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5647
		max_ia_freq = tsc_khz;
5648
	}
5649 5650 5651 5652

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5653
	min_ring_freq = I915_READ(DCLK) & 0xf;
5654 5655
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5656

5657
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5658 5659 5660 5661 5662 5663 5664 5665
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5666 5667 5668 5669 5670
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5671 5672
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5673 5674
		unsigned int ia_freq = 0, ring_freq = 0;

5675
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5676 5677 5678 5679 5680
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5681
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5682 5683
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5684
		} else if (IS_HASWELL(dev_priv)) {
5685
			ring_freq = mult_frac(gpu_freq, 5, 4);
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5702

5703 5704
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5705 5706 5707
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5708 5709 5710
	}
}

5711
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5712 5713 5714
{
	u32 val, rp0;

5715
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5716

5717
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5732
	}
5733 5734 5735

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5749 5750 5751 5752
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5753 5754 5755
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5756 5757 5758
	return rp1;
}

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5770
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5771 5772 5773
{
	u32 val, rp0;

5774
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5787
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5788
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5789
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5790 5791 5792 5793 5794
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5795
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5796
{
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5808 5809
}

5810 5811 5812 5813 5814 5815 5816 5817 5818
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5819 5820 5821 5822 5823 5824 5825 5826 5827

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5828
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5829
{
5830
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5831
	unsigned long pctx_paddr, paddr;
5832 5833 5834 5835 5836
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5837
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5838
		paddr = (dev_priv->mm.stolen_base +
5839
			 (ggtt->stolen_size - pctx_size));
5840 5841 5842 5843

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5844 5845

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5846 5847
}

5848
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5861
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5862
								      pcbr_offset,
5863
								      I915_GTT_OFFSET_NONE,
5864 5865 5866 5867
								      pctx_size);
		goto out;
	}

5868 5869
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5870 5871 5872 5873 5874 5875 5876 5877
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5878
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5879 5880
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5881
		goto out;
5882 5883 5884 5885 5886 5887
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5888
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5889 5890 5891
	dev_priv->vlv_pctx = pctx;
}

5892
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5893 5894 5895 5896
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5897
	i915_gem_object_put(dev_priv->vlv_pctx);
5898 5899 5900
	dev_priv->vlv_pctx = NULL;
}

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5912
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5913
{
5914
	u32 val;
5915

5916
	valleyview_setup_pctx(dev_priv);
5917

5918 5919
	vlv_init_gpll_ref_freq(dev_priv);

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5933
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5934

5935 5936 5937
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5938
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5939 5940 5941 5942
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5943
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5944 5945
			 dev_priv->rps.efficient_freq);

5946 5947
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5948
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5949 5950
			 dev_priv->rps.rp1_freq);

5951 5952
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5953
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5954 5955 5956
			 dev_priv->rps.min_freq);
}

5957
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5958
{
5959
	u32 val;
5960

5961
	cherryview_setup_pctx(dev_priv);
5962

5963 5964
	vlv_init_gpll_ref_freq(dev_priv);

5965
	mutex_lock(&dev_priv->sb_lock);
5966
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5967
	mutex_unlock(&dev_priv->sb_lock);
5968

5969 5970 5971 5972
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5973
	default:
5974 5975 5976
		dev_priv->mem_freq = 1600;
		break;
	}
5977
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5978

5979 5980 5981
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5982
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5983 5984 5985 5986
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5987
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5988 5989
			 dev_priv->rps.efficient_freq);

5990 5991
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5992
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5993 5994
			 dev_priv->rps.rp1_freq);

5995 5996
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5997
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5998
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5999 6000
			 dev_priv->rps.min_freq);

6001 6002 6003 6004 6005
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6006 6007
}

6008
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6009
{
6010
	valleyview_cleanup_pctx(dev_priv);
6011 6012
}

6013
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6014
{
6015
	struct intel_engine_cs *engine;
6016
	enum intel_engine_id id;
6017
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6018 6019 6020

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6021 6022
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6033
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6034

6035 6036 6037
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6038 6039 6040 6041 6042
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6043
	for_each_engine(engine, dev_priv, id)
6044
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6045 6046
	I915_WRITE(GEN6_RC_SLEEP, 0);

6047 6048
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6060 6061
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6062
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6063 6064 6065

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6066
	/* 4 Program defaults and thresholds for RPS*/
6067
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6078
		   GEN6_RP_MEDIA_IS_GFX |
6079 6080 6081 6082
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

6083 6084 6085 6086 6087 6088
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6089 6090
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6091 6092 6093
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6094
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6095 6096
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6097
	reset_rps(dev_priv, valleyview_set_rps);
6098

6099
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6100 6101
}

6102
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6103
{
6104
	struct intel_engine_cs *engine;
6105
	enum intel_engine_id id;
6106
	u32 gtfifodbg, val, rc6_mode = 0;
6107 6108 6109

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6110 6111
	valleyview_check_pctx(dev_priv);

6112 6113
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6114 6115
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6116 6117 6118
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6119
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6120
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6121

6122 6123 6124
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6125
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6145
	for_each_engine(engine, dev_priv, id)
6146
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6147

6148
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6149 6150

	/* allows RC6 residency counter to work */
6151
	I915_WRITE(VLV_COUNTER_CONTROL,
6152 6153
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6154 6155
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6156

6157
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6158
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6159

6160
	intel_print_rc6_info(dev_priv, rc6_mode);
6161

6162
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6163

6164 6165 6166 6167 6168 6169
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6170
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6171

6172 6173 6174
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6175
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6176 6177
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6178
	reset_rps(dev_priv, valleyview_set_rps);
6179

6180
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6181 6182
}

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6212
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6213 6214 6215 6216 6217 6218
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6219 6220
	assert_spin_locked(&mchdev_lock);

6221
	diff1 = now - dev_priv->ips.last_time1;
6222 6223 6224 6225 6226 6227 6228

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6229
		return dev_priv->ips.chipset_power;
6230 6231 6232 6233 6234 6235 6236 6237

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6238 6239
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6240 6241
		diff += total_count;
	} else {
6242
		diff = total_count - dev_priv->ips.last_count1;
6243 6244 6245
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6246 6247
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6258 6259
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6260

6261
	dev_priv->ips.chipset_power = ret;
6262 6263 6264 6265

	return ret;
}

6266 6267 6268 6269
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6270
	if (INTEL_INFO(dev_priv)->gen != 5)
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6309
{
6310 6311 6312
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6313
	if (INTEL_INFO(dev_priv)->is_mobile)
6314 6315 6316
		return vm > 0 ? vm : 0;

	return vd;
6317 6318
}

6319
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6320
{
6321
	u64 now, diff, diffms;
6322 6323
	u32 count;

6324
	assert_spin_locked(&mchdev_lock);
6325

6326 6327 6328
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6329 6330 6331 6332 6333 6334 6335

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6336 6337
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6338 6339
		diff += count;
	} else {
6340
		diff = count - dev_priv->ips.last_count2;
6341 6342
	}

6343 6344
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6345 6346 6347 6348

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6349
	dev_priv->ips.gfx_power = diff;
6350 6351
}

6352 6353
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6354
	if (INTEL_INFO(dev_priv)->gen != 5)
6355 6356
		return;

6357
	spin_lock_irq(&mchdev_lock);
6358 6359 6360

	__i915_update_gfx_val(dev_priv);

6361
	spin_unlock_irq(&mchdev_lock);
6362 6363
}

6364
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6365 6366 6367 6368
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6369 6370
	assert_spin_locked(&mchdev_lock);

6371
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6391
	corr2 = (corr * dev_priv->ips.corr);
6392 6393 6394 6395

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6396
	__i915_update_gfx_val(dev_priv);
6397

6398
	return dev_priv->ips.gfx_power + state2;
6399 6400
}

6401 6402 6403 6404
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6405
	if (INTEL_INFO(dev_priv)->gen != 5)
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6428
	spin_lock_irq(&mchdev_lock);
6429 6430 6431 6432
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6433 6434
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6435 6436 6437 6438

	ret = chipset_val + graphics_val;

out_unlock:
6439
	spin_unlock_irq(&mchdev_lock);
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6455
	spin_lock_irq(&mchdev_lock);
6456 6457 6458 6459 6460 6461
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6462 6463
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6464 6465

out_unlock:
6466
	spin_unlock_irq(&mchdev_lock);
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6483
	spin_lock_irq(&mchdev_lock);
6484 6485 6486 6487 6488 6489
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6490 6491
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6492 6493

out_unlock:
6494
	spin_unlock_irq(&mchdev_lock);
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6509
	spin_lock_irq(&mchdev_lock);
6510 6511
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6512
	spin_unlock_irq(&mchdev_lock);
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6529
	spin_lock_irq(&mchdev_lock);
6530 6531 6532 6533 6534 6535
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6536
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6537

6538
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6539 6540 6541
		ret = false;

out_unlock:
6542
	spin_unlock_irq(&mchdev_lock);
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6570 6571
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6572
	spin_lock_irq(&mchdev_lock);
6573
	i915_mch_dev = dev_priv;
6574
	spin_unlock_irq(&mchdev_lock);
6575 6576 6577 6578 6579 6580

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6581
	spin_lock_irq(&mchdev_lock);
6582
	i915_mch_dev = NULL;
6583
	spin_unlock_irq(&mchdev_lock);
6584
}
6585

6586
static void intel_init_emon(struct drm_i915_private *dev_priv)
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6603
		I915_WRITE(PEW(i), 0);
6604
	for (i = 0; i < 3; i++)
6605
		I915_WRITE(DEW(i), 0);
6606 6607 6608

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6609
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6630
		I915_WRITE(PXW(i), val);
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6646
		I915_WRITE(PXWL(i), 0);
6647 6648 6649 6650 6651 6652

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6653
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6654 6655
}

6656
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6657
{
6658 6659 6660 6661 6662 6663 6664 6665
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
6666

6667
	mutex_lock(&dev_priv->drm.struct_mutex);
6668 6669 6670
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6671 6672 6673 6674
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6675
	else if (INTEL_GEN(dev_priv) >= 6)
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6705 6706 6707
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6708
	mutex_unlock(&dev_priv->rps.hw_lock);
6709
	mutex_unlock(&dev_priv->drm.struct_mutex);
6710 6711

	intel_autoenable_gt_powersave(dev_priv);
6712 6713
}

6714
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6715
{
6716
	if (IS_VALLEYVIEW(dev_priv))
6717
		valleyview_cleanup_gt_powersave(dev_priv);
6718 6719 6720

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6721 6722
}

6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6742 6743 6744 6745
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6746 6747

	gen6_reset_rps_interrupts(dev_priv);
6748 6749
}

6750
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6751
{
6752 6753
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6754

6755
	mutex_lock(&dev_priv->rps.hw_lock);
6756

6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6768
	}
6769 6770 6771

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6772 6773
}

6774
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6775
{
6776 6777 6778
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6779 6780
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6781

6782 6783 6784
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6785

6786
	mutex_lock(&dev_priv->rps.hw_lock);
6787 6788 6789 6790 6791

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6792
	} else if (INTEL_GEN(dev_priv) >= 9) {
6793 6794 6795
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6796
			gen6_update_ring_freq(dev_priv);
6797 6798
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6799
		gen6_update_ring_freq(dev_priv);
6800
	} else if (INTEL_GEN(dev_priv) >= 6) {
6801
		gen6_enable_rps(dev_priv);
6802
		gen6_update_ring_freq(dev_priv);
6803 6804 6805
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6806
	}
6807 6808 6809 6810 6811 6812 6813

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6814
	dev_priv->rps.enabled = true;
6815 6816
	mutex_unlock(&dev_priv->rps.hw_lock);
}
6817

6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6828
	rcs = dev_priv->engine[RCS];
6829
	if (rcs->last_retired_context)
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6881
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6882 6883 6884 6885 6886 6887 6888 6889 6890
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6891
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6892
{
6893
	enum pipe pipe;
6894

6895
	for_each_pipe(dev_priv, pipe) {
6896 6897 6898
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6899 6900 6901

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6902 6903 6904
	}
}

6905
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6917
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6918
{
6919
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6920

6921 6922 6923 6924
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6925 6926 6927
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6945
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6946 6947 6948
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6949

6950
	ilk_init_lp_watermarks(dev_priv);
6951 6952 6953 6954 6955 6956 6957 6958

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6959
	if (IS_IRONLAKE_M(dev_priv)) {
6960
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6961 6962 6963 6964 6965 6966 6967 6968
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6969 6970
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6971 6972 6973 6974 6975 6976
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6977

6978
	/* WaDisableRenderCachePipelinedFlush:ilk */
6979 6980
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6981

6982 6983 6984
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6985
	g4x_disable_trickle_feed(dev_priv);
6986

6987
	ibx_init_clock_gating(dev_priv);
6988 6989
}

6990
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6991 6992
{
	int pipe;
6993
	uint32_t val;
6994 6995 6996 6997 6998 6999

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7000 7001 7002
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7003 7004
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7005 7006 7007
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7008
	for_each_pipe(dev_priv, pipe) {
7009 7010 7011
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7012
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7013
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7014 7015 7016
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7017 7018
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7019
	/* WADP0ClockGatingDisable */
7020
	for_each_pipe(dev_priv, pipe) {
7021 7022 7023
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7024 7025
}

7026
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7027 7028 7029 7030
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7031 7032 7033
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7034 7035
}

7036
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7037
{
7038
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7039

7040
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7041 7042 7043 7044 7045

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7046
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7047 7048 7049
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7050 7051 7052
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7053 7054 7055
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7056 7057 7058 7059
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7060 7061
	 */
	I915_WRITE(GEN6_GT_MODE,
7062
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7063

7064
	ilk_init_lp_watermarks(dev_priv);
7065 7066

	I915_WRITE(CACHE_MODE_0,
7067
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7083
	 *
7084 7085
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7086 7087 7088 7089 7090
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7091
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7092 7093
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7094

7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7103 7104 7105 7106 7107 7108 7109 7110
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7111 7112
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7113 7114 7115 7116 7117 7118 7119
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7120 7121 7122 7123
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7124

7125
	g4x_disable_trickle_feed(dev_priv);
7126

7127
	cpt_init_clock_gating(dev_priv);
7128

7129
	gen6_check_mch_setup(dev_priv);
7130 7131 7132 7133 7134 7135
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7136
	/*
7137
	 * WaVSThreadDispatchOverride:ivb,vlv
7138 7139 7140 7141
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7142 7143 7144 7145 7146 7147 7148 7149
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7150
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7151 7152 7153 7154 7155
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7156
	if (HAS_PCH_LPT_LP(dev_priv))
7157 7158 7159
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7160 7161

	/* WADPOClockGatingDisable:hsw */
7162 7163
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7164
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7165 7166
}

7167
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7168
{
7169
	if (HAS_PCH_LPT_LP(dev_priv)) {
7170 7171 7172 7173 7174 7175 7176
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7200
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7201
{
7202
	gen9_init_clock_gating(dev_priv);
7203 7204 7205 7206 7207

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7208 7209 7210 7211 7212

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7213 7214 7215 7216

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7217 7218
}

7219
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7220
{
7221
	gen9_init_clock_gating(dev_priv);
7222 7223 7224 7225

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7226 7227 7228 7229

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7230 7231
}

7232
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7233
{
7234
	enum pipe pipe;
7235

7236
	ilk_init_lp_watermarks(dev_priv);
7237

7238
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7239
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7240

7241
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7242 7243 7244
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7245
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7246
	for_each_pipe(dev_priv, pipe) {
7247
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7248
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7249
			   BDW_DPRS_MASK_VBLANK_SRD);
7250
	}
7251

7252 7253 7254 7255 7256
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7257

7258 7259
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7260 7261 7262 7263

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7264

7265 7266
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7267

7268 7269 7270 7271 7272 7273 7274
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7275 7276 7277 7278
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7279
	lpt_init_clock_gating(dev_priv);
7280 7281
}

7282
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7283
{
7284
	ilk_init_lp_watermarks(dev_priv);
7285

7286 7287 7288 7289 7290
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7291
	/* This is required by WaCatErrorRejectionIssue:hsw */
7292 7293 7294 7295
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7296 7297 7298
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7299

7300 7301 7302
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7303 7304 7305 7306
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7307
	/* WaDisable4x2SubspanOptimization:hsw */
7308 7309
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7310

7311 7312 7313
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7314 7315 7316 7317
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7318 7319
	 */
	I915_WRITE(GEN7_GT_MODE,
7320
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7321

7322 7323 7324 7325
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7326
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7327 7328
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7329 7330 7331
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7332

7333
	lpt_init_clock_gating(dev_priv);
7334 7335
}

7336
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7337
{
7338
	uint32_t snpcr;
7339

7340
	ilk_init_lp_watermarks(dev_priv);
7341

7342
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7343

7344
	/* WaDisableEarlyCull:ivb */
7345 7346 7347
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7348
	/* WaDisableBackToBackFlipFix:ivb */
7349 7350 7351 7352
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7353
	/* WaDisablePSDDualDispatchEnable:ivb */
7354
	if (IS_IVB_GT1(dev_priv))
7355 7356 7357
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7358 7359 7360
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7361
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7362 7363 7364
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7365
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7366 7367 7368
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7369
		   GEN7_WA_L3_CHICKEN_MODE);
7370
	if (IS_IVB_GT1(dev_priv))
7371 7372
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7373 7374 7375 7376
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7377 7378
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7379
	}
7380

7381
	/* WaForceL3Serialization:ivb */
7382 7383 7384
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7385
	/*
7386
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7387
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7388 7389
	 */
	I915_WRITE(GEN6_UCGCTL2,
7390
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7391

7392
	/* This is required by WaCatErrorRejectionIssue:ivb */
7393 7394 7395 7396
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7397
	g4x_disable_trickle_feed(dev_priv);
7398 7399

	gen7_setup_fixed_func_scheduler(dev_priv);
7400

7401 7402 7403 7404 7405
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7406

7407
	/* WaDisable4x2SubspanOptimization:ivb */
7408 7409
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7410

7411 7412 7413
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7414 7415 7416 7417
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7418 7419
	 */
	I915_WRITE(GEN7_GT_MODE,
7420
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7421

7422 7423 7424 7425
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7426

7427
	if (!HAS_PCH_NOP(dev_priv))
7428
		cpt_init_clock_gating(dev_priv);
7429

7430
	gen6_check_mch_setup(dev_priv);
7431 7432
}

7433
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7434
{
7435
	/* WaDisableEarlyCull:vlv */
7436 7437 7438
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7439
	/* WaDisableBackToBackFlipFix:vlv */
7440 7441 7442 7443
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7444
	/* WaPsdDispatchEnable:vlv */
7445
	/* WaDisablePSDDualDispatchEnable:vlv */
7446
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7447 7448
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7449

7450 7451 7452
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7453
	/* WaForceL3Serialization:vlv */
7454 7455 7456
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7457
	/* WaDisableDopClockGating:vlv */
7458 7459 7460
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7461
	/* This is required by WaCatErrorRejectionIssue:vlv */
7462 7463 7464 7465
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7466 7467
	gen7_setup_fixed_func_scheduler(dev_priv);

7468
	/*
7469
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7470
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7471 7472
	 */
	I915_WRITE(GEN6_UCGCTL2,
7473
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7474

7475 7476 7477 7478 7479
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7480

7481 7482 7483 7484
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7485 7486
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7487

7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7499 7500 7501 7502 7503 7504
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7505
	/*
7506
	 * WaDisableVLVClockGating_VBIIssue:vlv
7507 7508 7509
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7510
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7511 7512
}

7513
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7514
{
7515 7516 7517 7518 7519
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7520 7521 7522 7523

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7524 7525 7526 7527

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7528 7529 7530 7531

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7532

7533 7534 7535 7536 7537 7538 7539
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7540 7541 7542 7543 7544
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7545 7546
}

7547
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7559
	if (IS_GM45(dev_priv))
7560 7561
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7562 7563 7564 7565

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7566

7567 7568 7569
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7570
	g4x_disable_trickle_feed(dev_priv);
7571 7572
}

7573
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7574 7575 7576 7577 7578 7579
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7580 7581
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7582 7583 7584

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7585 7586
}

7587
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7588 7589 7590 7591 7592 7593 7594
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7595 7596
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7597 7598 7599

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7600 7601
}

7602
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7603 7604 7605 7606 7607 7608
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7609

7610
	if (IS_PINEVIEW(dev_priv))
7611
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7612 7613 7614

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7615 7616

	/* interrupts should cause a wake up from C3 */
7617
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7618 7619 7620

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7621 7622 7623

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7624 7625
}

7626
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7627 7628
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7629 7630 7631 7632

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7633 7634 7635

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7636 7637
}

7638
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7639
{
7640 7641 7642
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7643 7644
}

7645
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7646
{
7647
	dev_priv->display.init_clock_gating(dev_priv);
7648 7649
}

7650
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7651
{
7652 7653
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7654 7655
}

7656
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7673
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7674
	else if (IS_KABYLAKE(dev_priv))
7675
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7676
	else if (IS_GEN9_LP(dev_priv))
7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7694
	else if (IS_I965GM(dev_priv))
7695
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7696
	else if (IS_I965G(dev_priv))
7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7710
/* Set up chip specific power management-related functions */
7711
void intel_init_pm(struct drm_i915_private *dev_priv)
7712
{
7713
	intel_fbc_init(dev_priv);
7714

7715
	/* For cxsr */
7716
	if (IS_PINEVIEW(dev_priv))
7717
		i915_pineview_get_mem_freq(dev_priv);
7718
	else if (IS_GEN5(dev_priv))
7719
		i915_ironlake_get_mem_freq(dev_priv);
7720

7721
	/* For FIFO watermark updates */
7722
	if (INTEL_GEN(dev_priv) >= 9) {
7723
		skl_setup_wm_latency(dev_priv);
7724
		dev_priv->display.initial_watermarks = skl_initial_wm;
7725
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7726
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7727
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7728
		ilk_setup_wm_latency(dev_priv);
7729

7730
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7731
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7732
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7733
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7734
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7735 7736 7737 7738 7739 7740
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7741 7742 7743 7744
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7745
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7746
		vlv_setup_wm_latency(dev_priv);
7747
		dev_priv->display.update_wm = vlv_update_wm;
7748
	} else if (IS_PINEVIEW(dev_priv)) {
7749
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7750 7751 7752 7753 7754 7755 7756 7757 7758
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7759
			intel_set_memory_cxsr(dev_priv, false);
7760 7761 7762
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7763
	} else if (IS_G4X(dev_priv)) {
7764
		dev_priv->display.update_wm = g4x_update_wm;
7765
	} else if (IS_GEN4(dev_priv)) {
7766
		dev_priv->display.update_wm = i965_update_wm;
7767
	} else if (IS_GEN3(dev_priv)) {
7768 7769
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7770
	} else if (IS_GEN2(dev_priv)) {
7771
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7772
			dev_priv->display.update_wm = i845_update_wm;
7773
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7774 7775
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7776
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7777 7778 7779
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7780 7781 7782
	}
}

7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7795
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7827
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7828
{
7829 7830
	int status;

7831
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7832

7833 7834 7835 7836 7837 7838
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7839 7840 7841 7842
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7843 7844 7845
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7846

7847 7848 7849
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
7850 7851 7852 7853
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7854 7855
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7856

7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

7868 7869 7870
	return 0;
}

7871
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7872
			    u32 mbox, u32 val)
7873
{
7874 7875
	int status;

7876
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7877

7878 7879 7880 7881 7882 7883
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7884 7885 7886 7887
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7888
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7889
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7890
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7891

7892 7893 7894
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
7895 7896 7897 7898
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7899
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7900

7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

7912 7913
	return 0;
}
7914

7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7936
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7937 7938
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
7939
 * for @timeout_base_ms and if this times out for another 50 ms with
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
7975
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
7976
	 * account for interrupts that could reduce the number of these
7977 7978
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
7979 7980 7981 7982
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
7983
	ret = wait_for_atomic(COND, 50);
7984 7985 7986 7987 7988 7989 7990
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

7991 7992
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7993 7994 7995 7996 7997
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7998 7999
}

8000
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8001
{
8002
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8003 8004
}

8005
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8006
{
8007 8008 8009 8010 8011
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8012 8013
}

8014
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8015
{
8016
	/* CHV needs even values */
8017
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8018 8019
}

8020
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8021
{
8022
	if (IS_GEN9(dev_priv))
8023 8024
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8025
	else if (IS_CHERRYVIEW(dev_priv))
8026
		return chv_gpu_freq(dev_priv, val);
8027
	else if (IS_VALLEYVIEW(dev_priv))
8028 8029 8030
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8031 8032
}

8033 8034
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8035
	if (IS_GEN9(dev_priv))
8036 8037
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8038
	else if (IS_CHERRYVIEW(dev_priv))
8039
		return chv_freq_opcode(dev_priv, val);
8040
	else if (IS_VALLEYVIEW(dev_priv))
8041 8042
		return byt_freq_opcode(dev_priv, val);
	else
8043
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8044
}
8045

8046 8047
struct request_boost {
	struct work_struct work;
Daniel Vetter's avatar
Daniel Vetter committed
8048
	struct drm_i915_gem_request *req;
8049 8050 8051 8052 8053
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8054
	struct drm_i915_gem_request *req = boost->req;
8055

8056
	if (!i915_gem_request_completed(req))
8057
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8058

8059
	i915_gem_request_put(req);
8060 8061 8062
	kfree(boost);
}

8063
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8064 8065 8066
{
	struct request_boost *boost;

8067
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8068 8069
		return;

8070
	if (i915_gem_request_completed(req))
8071 8072
		return;

8073 8074 8075 8076
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8077
	boost->req = i915_gem_request_get(req);
8078 8079

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8080
	queue_work(req->i915->wq, &boost->work);
8081 8082
}

8083
void intel_pm_setup(struct drm_i915_private *dev_priv)
8084
{
8085
	mutex_init(&dev_priv->rps.hw_lock);
8086
	spin_lock_init(&dev_priv->rps.client_lock);
8087

8088 8089
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8090
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8091

8092
	dev_priv->pm.suspended = false;
8093
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8094
}