rt61pci.c 93.5 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt61pci
	Abstract: rt61pci device specific routines.
	Supported chipsets: RT2561, RT2561s, RT2661.
 */

27
#include <linux/crc-itu-t.h>
28 29 30 31 32
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/slab.h>
34 35 36 37 38 39 40
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt61pci.h"

41 42 43 44 45 46 47
/*
 * Allow hardware encryption to be disabled.
 */
static int modparam_nohwcrypt = 0;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

48 49 50 51 52 53 54
/*
 * Register access.
 * BBP and RF register require indirect register access,
 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
55
 * between each attempt. When the busy bit is still set at that time,
56 57 58
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
59 60 61 62 63 64 65
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			       H2M_MAILBOX_CSR_OWNER, (__reg))
66

Adam Baker's avatar
Adam Baker committed
67
static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 69 70 71
			      const unsigned int word, const u8 value)
{
	u32 reg;

72 73
	mutex_lock(&rt2x00dev->csr_mutex);

74
	/*
75 76
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
77
	 */
78 79 80 81 82 83 84 85 86
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
	}
87 88

	mutex_unlock(&rt2x00dev->csr_mutex);
89 90
}

Adam Baker's avatar
Adam Baker committed
91
static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 93 94 95
			     const unsigned int word, u8 *value)
{
	u32 reg;

96 97
	mutex_lock(&rt2x00dev->csr_mutex);

98
	/*
99 100 101 102 103 104
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
105
	 */
106 107 108 109 110
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111

112
		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113

114 115
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
116 117

	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 119

	mutex_unlock(&rt2x00dev->csr_mutex);
120 121
}

Adam Baker's avatar
Adam Baker committed
122
static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 124 125 126
			     const unsigned int word, const u32 value)
{
	u32 reg;

127 128
	mutex_lock(&rt2x00dev->csr_mutex);

129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
142 143
	}

144
	mutex_unlock(&rt2x00dev->csr_mutex);
145 146
}

Adam Baker's avatar
Adam Baker committed
147
static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 149 150 151 152
				const u8 command, const u8 token,
				const u8 arg0, const u8 arg1)
{
	u32 reg;

153 154
	mutex_lock(&rt2x00dev->csr_mutex);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
	}
171 172 173

	mutex_unlock(&rt2x00dev->csr_mutex);

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt61pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
210 211 212 213
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
214 215 216 217 218 219
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
220
		.word_base	= EEPROM_BASE,
221 222 223 224 225 226
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt61pci_bbp_read,
		.write		= rt61pci_bbp_write,
227
		.word_base	= BBP_BASE,
228 229 230 231 232 233
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt61pci_rf_write,
234
		.word_base	= RF_BASE,
235 236 237 238 239 240 241 242 243 244 245
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246
	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 248
}

249
#ifdef CONFIG_RT2X00_LIB_LEDS
250
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
				   enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int a_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);

	if (led->type == LED_TYPE_RADIO) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_RADIO_STATUS, enabled);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_A_STATUS, a_mode);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * this means we need to convert the brightness
		 * argument into the matching level within that range.
		 */
		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				    brightness / (LED_FULL / 6), 0);
	}
}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

static int rt61pci_blink_set(struct led_classdev *led_cdev,
			     unsigned long *delay_on,
			     unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);

	return 0;
}
303 304 305 306 307 308 309 310 311 312 313

static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00_led *led,
			     enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt61pci_brightness_set;
	led->led_dev.blink_set = rt61pci_blink_set;
	led->flags = LED_INITIALIZED;
}
314
#endif /* CONFIG_RT2X00_LIB_LEDS */
315

316 317 318
/*
 * Configuration handlers.
 */
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
				     struct rt2x00lib_crypto *crypto,
				     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for shared keys. We have 1 register
		 * with key valid bits. The goal is simple, read
		 * the register, if that is full we have no slots
		 * left.
		 * Note that each BSS is allowed to have up to 4
		 * shared keys, so put a mask over the allowed
		 * entries.
		 */
		mask = (0xf << crypto->bssidx);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

347
		key->hw_key_idx += reg ? ffz(reg) : 0;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		/*
		 * The cipher types are stored over 2 registers.
		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
		 * Using the correct defines correctly will cause overhead,
		 * so just calculate the correct offset.
		 */
		if (key->hw_key_idx < 8) {
			field.bit_offset = (3 * key->hw_key_idx);
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
		} else {
			field.bit_offset = (3 * (key->hw_key_idx - 8));
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
		}

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
390
		 * to be provided separately for the descriptor.
391 392 393 394 395 396 397 398 399 400
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR0 contains only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
401
	 * defines directly will cause a lot of overhead, we use
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	 * a calculation to determine the correct bit directly.
	 */
	mask = 1 << key->hw_key_idx;

	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
	if (crypto->cmd == SET_KEY)
		reg |= mask;
	else if (crypto->cmd == DISABLE_KEY)
		reg &= ~mask;
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);

	return 0;
}

static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct hw_pairwise_ta_entry addr_entry;
	struct hw_key_entry key_entry;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for pairwise keys. We have 2 registers
429 430
		 * with key valid bits. The goal is simple: read
		 * the first register. If that is full, move to
431
		 * the next register.
432 433
		 * When both registers are full, we drop the key.
		 * Otherwise, we use the first invalid entry.
434 435 436 437 438 439 440 441 442
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (reg && reg == ~0) {
			key->hw_key_idx = 32;
			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
			if (reg && reg == ~0)
				return -ENOSPC;
		}

443
		key->hw_key_idx += reg ? ffz(reg) : 0;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		memset(&addr_entry, 0, sizeof(addr_entry));
		memcpy(&addr_entry, crypto->address, ETH_ALEN);
		addr_entry.cipher = crypto->cipher;

		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &addr_entry, sizeof(addr_entry));

		/*
468 469
		 * Enable pairwise lookup table for given BSS idx.
		 * Without this, received frames will not be decrypted
470 471 472 473 474 475 476 477 478 479
		 * by the hardware.
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
		reg |= (1 << crypto->bssidx);
		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
480
		 * to be provided separately for the descriptor.
481 482 483 484 485 486 487 488 489 490
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
491
	 * defines directly will cause a lot of overhead, we use
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	 * a calculation to determine the correct bit directly.
	 */
	if (key->hw_key_idx < 32) {
		mask = 1 << key->hw_key_idx;

		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
	} else {
		mask = 1 << (key->hw_key_idx - 32);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
	}

	return 0;
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
				  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534
			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535 536 537
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 539
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
540 541 542 543 544 545 546 547 548
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

549 550 551 552
static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
				struct rt2x00_intf *intf,
				struct rt2x00intf_conf *conf,
				const unsigned int flags)
553
{
554
	u32 reg;
555

556 557 558 559 560 561 562 563
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
	}
564

565 566 567 568
	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);
569

570 571 572
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
					      conf->mac, sizeof(conf->mac));
	}
573

574 575 576 577
	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
		conf->bssid[1] = cpu_to_le32(reg);
578

579 580 581
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
					      conf->bssid, sizeof(conf->bssid));
	}
582 583
}

584
static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
585 586
			       struct rt2x00lib_erp *erp,
			       u32 changed)
587 588 589 590
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
591
	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
592
	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
593 594
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

595 596 597 598 599 600 601
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
				   !!erp->short_preamble);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
	}
602

603 604 605
	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
					 erp->basic_rates);
606

607 608 609 610 611 612
	if (changed & BSS_CHANGED_BEACON_INT) {
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
	}
613

614 615 616 617
	if (changed & BSS_CHANGED_ERP_SLOT) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618

619 620 621 622 623 624
		rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
	}
625 626 627
}

static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
628
				      struct antenna_setup *ant)
629 630 631 632 633 634 635 636 637
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

638
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
639 640 641 642

	/*
	 * Configure the RX antenna.
	 */
643
	switch (ant->rx) {
644
	case ANTENNA_HW_DIVERSITY:
645
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647
				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648 649
		break;
	case ANTENNA_A:
650
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653 654 655
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656 657
		break;
	case ANTENNA_B:
658
	default:
659
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662 663 664
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665 666 667 668 669 670 671 672 673
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674
				      struct antenna_setup *ant)
675 676 677 678 679 680 681 682 683
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

684
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
685
	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
686
			  !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
687

688 689 690
	/*
	 * Configure the RX antenna.
	 */
691
	switch (ant->rx) {
692
	case ANTENNA_HW_DIVERSITY:
693
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
694 695
		break;
	case ANTENNA_A:
696 697
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
698 699
		break;
	case ANTENNA_B:
700
	default:
701 702
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
					   const int p1, const int p2)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);

718 719 720 721 722 723 724
	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);

	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
725 726 727
}

static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
728
					struct antenna_setup *ant)
729 730 731 732 733 734 735 736
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);
737 738 739 740 741 742

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
743 744 745
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
746 747 748
		break;
	case ANTENNA_HW_DIVERSITY:
		/*
749 750 751
		 * FIXME: Antenna selection for the rf 2529 is very confusing
		 * in the legacy driver. Just default to antenna B until the
		 * legacy code can be properly translated into rt2x00 code.
752 753
		 */
	case ANTENNA_B:
754
	default:
755 756 757
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
758 759 760 761
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

struct antenna_sel {
	u8 word;
	/*
	 * value[0] -> non-LNA
	 * value[1] -> LNA
	 */
	u8 value[2];
};

static const struct antenna_sel antenna_sel_a[] = {
	{ 96,  { 0x58, 0x78 } },
	{ 104, { 0x38, 0x48 } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x60, 0x60 } },
	{ 97,  { 0x58, 0x58 } },
	{ 98,  { 0x58, 0x58 } },
};

static const struct antenna_sel antenna_sel_bg[] = {
	{ 96,  { 0x48, 0x68 } },
	{ 104, { 0x2c, 0x3c } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x50, 0x50 } },
	{ 97,  { 0x48, 0x48 } },
	{ 98,  { 0x48, 0x48 } },
};

797 798
static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
			       struct antenna_setup *ant)
799 800 801 802 803 804
{
	const struct antenna_sel *sel;
	unsigned int lna;
	unsigned int i;
	u32 reg;

805 806 807 808 809 810 811
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

812
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
813
		sel = antenna_sel_a;
814
		lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
815 816
	} else {
		sel = antenna_sel_bg;
817
		lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
818 819
	}

820 821 822 823 824
	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);

	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);

825
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
826
			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
827
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
828
			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
829

830 831
	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);

832
	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
833
		rt61pci_config_antenna_5x(rt2x00dev, ant);
834
	else if (rt2x00_rf(rt2x00dev, RF2527))
835
		rt61pci_config_antenna_2x(rt2x00dev, ant);
836
	else if (rt2x00_rf(rt2x00dev, RF2529)) {
837
		if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
838
			rt61pci_config_antenna_2x(rt2x00dev, ant);
839
		else
840
			rt61pci_config_antenna_2529(rt2x00dev, ant);
841 842 843
	}
}

844 845 846 847 848 849 850
static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain = 0;

	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
851
		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
852 853 854 855 856
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
	} else {
857
		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
	}

	rt2x00dev->lna_gain = lna_gain;
}

static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
				   struct rf_channel *rf, const int txpower)
{
	u8 r3;
	u8 r94;
	u8 smart;

	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

877
	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
	rt61pci_bbp_write(rt2x00dev, 3, r3);

	r94 = 6;
	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
		r94 += txpower - MAX_TXPOWER;
	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
		r94 += txpower;
	rt61pci_bbp_write(rt2x00dev, 94, r94);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	msleep(1);
}

static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				   const int txpower)
{
	struct rf_channel rf;

	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);

	rt61pci_config_channel(rt2x00dev, &rf, txpower);
}

static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
926
				    struct rt2x00lib_conf *libconf)
927 928 929
{
	u32 reg;

930
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
931 932 933
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
934 935 936 937 938 939
	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
}
940

941 942 943 944 945 946 947 948 949 950 951
static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952
				   rt2x00dev->beacon_int - 10);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);

		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);

		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
	}
}

985
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986 987
			   struct rt2x00lib_conf *libconf,
			   const unsigned int flags)
988
{
989 990 991
	/* Always recalculate LNA gain before changing configuration */
	rt61pci_config_lna_gain(rt2x00dev, libconf);

992
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993 994
		rt61pci_config_channel(rt2x00dev, &libconf->rf,
				       libconf->conf->power_level);
995 996
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997
		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998 999
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt61pci_config_retry_limit(rt2x00dev, libconf);
1000 1001
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt61pci_config_ps(rt2x00dev, libconf);
1002 1003 1004 1005 1006
}

/*
 * Link tuning
 */
1007 1008
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual)
1009 1010 1011 1012 1013 1014 1015
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016
	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017 1018 1019 1020 1021

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022
	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 1024
}

1025 1026
static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				   struct link_qual *qual, u8 vgc_level)
1027
{
1028
	if (qual->vgc_level != vgc_level) {
1029
		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030 1031
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
1032 1033 1034
	}
}

1035 1036
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				struct link_qual *qual)
1037
{
1038
	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 1040
}

1041 1042
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual, const u32 count)
1043 1044 1045 1046 1047 1048 1049
{
	u8 up_bound;
	u8 low_bound;

	/*
	 * Determine r17 bounds.
	 */
1050
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051 1052
		low_bound = 0x28;
		up_bound = 0x48;
1053
		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1054 1055 1056 1057 1058 1059
			low_bound += 0x10;
			up_bound += 0x10;
		}
	} else {
		low_bound = 0x20;
		up_bound = 0x40;
1060
		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1061 1062 1063 1064 1065
			low_bound += 0x10;
			up_bound += 0x10;
		}
	}

1066 1067 1068 1069 1070 1071 1072
	/*
	 * If we are not associated, we should go straight to the
	 * dynamic CCA tuning.
	 */
	if (!rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

1073 1074 1075
	/*
	 * Special big-R17 for very short distance
	 */
1076 1077
	if (qual->rssi >= -35) {
		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078 1079 1080 1081 1082 1083
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
1084 1085
	if (qual->rssi >= -58) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086 1087 1088 1089 1090 1091
		return;
	}

	/*
	 * Special big-R17 for middle-short distance
	 */
1092 1093
	if (qual->rssi >= -66) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094 1095 1096 1097 1098 1099
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
1100 1101
	if (qual->rssi >= -74) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102 1103 1104 1105 1106 1107 1108
		return;
	}

	/*
	 * Special case: Change up_bound based on the rssi.
	 * Lower up_bound when rssi is weaker then -74 dBm.
	 */
1109
	up_bound -= 2 * (-74 - qual->rssi);
1110 1111 1112
	if (low_bound > up_bound)
		up_bound = low_bound;

1113 1114
	if (qual->vgc_level > up_bound) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115 1116 1117
		return;
	}

1118 1119
dynamic_cca_tune:

1120 1121 1122 1123
	/*
	 * r17 does not yet exceed upper limit, continue and base
	 * the r17 tuning on the false CCA count.
	 */
1124 1125 1126 1127
	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Queue handlers.
 */
static void rt61pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
		break;
	case QID_BEACON:
1145 1146 1147 1148 1149
		/*
		 * Allow the tbtt tasklet to be scheduled.
		 */
		tasklet_enable(&rt2x00dev->tbtt_tasklet);

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
		break;
	default:
		break;
	}
}

static void rt61pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
Ivo van Doorn's avatar
Ivo van Doorn committed
1167
	case QID_AC_VO:
1168 1169 1170 1171
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
Ivo van Doorn's avatar
Ivo van Doorn committed
1172
	case QID_AC_VI:
1173 1174 1175 1176
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
Ivo van Doorn's avatar
Ivo van Doorn committed
1177
	case QID_AC_BE:
1178 1179 1180 1181
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
Ivo van Doorn's avatar
Ivo van Doorn committed
1182
	case QID_AC_BK:
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	default:
		break;
	}
}

static void rt61pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
Ivo van Doorn's avatar
Ivo van Doorn committed
1198
	case QID_AC_VO:
1199 1200 1201 1202
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
Ivo van Doorn's avatar
Ivo van Doorn committed
1203
	case QID_AC_VI:
1204 1205 1206 1207
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
Ivo van Doorn's avatar
Ivo van Doorn committed
1208
	case QID_AC_BE:
1209 1210 1211 1212
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
Ivo van Doorn's avatar
Ivo van Doorn committed
1213
	case QID_AC_BK:
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_RX:
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
		break;
	case QID_BEACON:
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1229 1230 1231 1232 1233

		/*
		 * Wait for possibly running tbtt tasklets.
		 */
		tasklet_disable(&rt2x00dev->tbtt_tasklet);
1234 1235 1236 1237 1238 1239
		break;
	default:
		break;
	}
}

1240
/*
1241
 * Firmware functions
1242 1243 1244
 */
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
1245
	u16 chip;
1246 1247
	char *fw_name;

1248 1249 1250
	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
	switch (chip) {
	case RT2561_PCI_ID:
1251 1252
		fw_name = FIRMWARE_RT2561;
		break;
1253
	case RT2561s_PCI_ID:
1254 1255
		fw_name = FIRMWARE_RT2561s;
		break;
1256
	case RT2661_PCI_ID:
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		fw_name = FIRMWARE_RT2661;
		break;
	default:
		fw_name = NULL;
		break;
	}

	return fw_name;
}

1267 1268
static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				  const u8 *data, const size_t len)
1269
{
1270
	u16 fw_crc;
1271 1272 1273
	u16 crc;

	/*
1274 1275 1276 1277 1278 1279
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
1280 1281
	 * The last 2 bytes in the firmware array are the crc checksum itself.
	 * This means that we should never pass those 2 bytes to the crc
1282 1283
	 * algorithm.
	 */
1284 1285 1286 1287 1288
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc itu-t algorithm.
	 */
1289 1290 1291 1292
	crc = crc_itu_t(0, data, len - 2);
	crc = crc_itu_t_byte(crc, 0);
	crc = crc_itu_t_byte(crc, 0);

1293
	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1294 1295
}

1296 1297
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				 const u8 *data, const size_t len)
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
		if (reg)
			break;
		msleep(1);
	}

	if (!reg) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

	/*
	 * Prepare MCU and mailbox for firmware loading.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);

	/*
	 * Write firmware to device.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
			break;
		msleep(1);
	}

	if (i == 100) {
		ERROR(rt2x00dev, "MCU Control register not ready.\n");
		return -EBUSY;
	}

1356 1357 1358 1359 1360
	/*
	 * Hardware needs another millisecond before it is ready.
	 */
	msleep(1);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * Reset MAC and BBP registers.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1381 1382 1383
/*
 * Initialization functions.
 */
1384
static bool rt61pci_get_entry_state(struct queue_entry *entry)
1385
{
1386
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1387 1388
	u32 word;

1389 1390
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1391

1392 1393 1394 1395 1396 1397 1398
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);

		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
1399 1400
}

1401
static void rt61pci_clear_entry(struct queue_entry *entry)
1402
{
1403
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1404
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1405 1406
	u32 word;

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 5, &word);
		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 5, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
1422 1423
}

1424
static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1425
{
1426
	struct queue_entry_priv_pci *entry_priv;
1427 1428 1429 1430 1431 1432 1433
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1434
			   rt2x00dev->tx[0].limit);
1435
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1436
			   rt2x00dev->tx[1].limit);
1437
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1438
			   rt2x00dev->tx[2].limit);
1439
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1440
			   rt2x00dev->tx[3].limit);
1441 1442 1443 1444
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1445
			   rt2x00dev->tx[0].desc_size / 4);
1446 1447
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);

1448
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1449
	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1450
	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1451
			   entry_priv->desc_dma);
1452 1453
	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);

1454
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1455
	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1456
	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1457
			   entry_priv->desc_dma);
1458 1459
	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);

1460
	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1461
	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1462
	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1463
			   entry_priv->desc_dma);
1464 1465
	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);

1466
	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1467
	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1468
	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1469
			   entry_priv->desc_dma);
1470 1471 1472
	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1473
	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1474 1475 1476 1477 1478
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
			   rt2x00dev->rx->desc_size / 4);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);

1479
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1480
	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1481
	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1482
			   entry_priv->desc_dma);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);

	/*
	 * CCK TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);

	/*
	 * OFDM TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);

1567 1568 1569 1570 1571 1572 1573 1574 1575
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);

	/*
	 * Invalidate all Shared Keys (SEC_CSR0),
	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
	 */
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);

	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);

	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);

	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);

	/*
	 * Reset MAC and BBP registers.
	 */
	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1650
static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1651 1652 1653 1654 1655 1656 1657
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt61pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
1658
			return 0;
1659 1660 1661 1662 1663
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
}

static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
	rt61pci_bbp_write(rt2x00dev, 107, 0x04);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt61pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
1720
	int mask = (state == STATE_RADIO_IRQ_OFF);
1721
	u32 reg;
1722
	unsigned long flags;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1734 1735 1736 1737 1738 1739 1740

		/*
		 * Enable tasklets.
		 */
		tasklet_enable(&rt2x00dev->txstatus_tasklet);
		tasklet_enable(&rt2x00dev->rxdone_tasklet);
		tasklet_enable(&rt2x00dev->autowake_tasklet);
1741 1742 1743 1744 1745 1746
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
1747 1748
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);

1749 1750 1751
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1752
	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1766
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1767
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished.
		 */
		tasklet_disable(&rt2x00dev->txstatus_tasklet);
		tasklet_disable(&rt2x00dev->rxdone_tasklet);
		tasklet_disable(&rt2x00dev->autowake_tasklet);
	}
1779 1780 1781 1782 1783 1784 1785 1786 1787
}

static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize all registers.
	 */
1788 1789 1790
	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
		     rt61pci_init_registers(rt2x00dev) ||
		     rt61pci_init_bbp(rt2x00dev)))
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		return -EIO;

	/*
	 * Enable RX.
	 */
	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1806
	 * Disable power
1807
	 */
1808
	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1809 1810 1811 1812
}

static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
1813
	u32 reg, reg2;
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	unsigned int i;
	char put_to_sleep;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1830 1831
		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1832
		if (state == !put_to_sleep)
1833
			return 0;
1834
		rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
		msleep(10);
	}

	return -EBUSY;
}

static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				    enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt61pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt61pci_disable_radio(rt2x00dev);
		break;
1853 1854 1855
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt61pci_toggle_irq(rt2x00dev, state);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt61pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1868 1869 1870 1871
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1872 1873 1874 1875 1876 1877
	return retval;
}

/*
 * TX descriptor initialization
 */
1878
static void rt61pci_write_tx_desc(struct queue_entry *entry,
1879
				  struct txentry_desc *txdesc)
1880
{
1881 1882
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1883
	__le32 *txd = entry_priv->desc;
1884 1885 1886 1887 1888 1889
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	rt2x00_desc_read(txd, 1, &word);
1890 1891 1892 1893
	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1894
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1895 1896
	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1897
	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1898 1899 1900
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
1901 1902 1903 1904 1905 1906
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
1907 1908
	rt2x00_desc_write(txd, 2, word);

1909
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1910 1911
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1912 1913
	}

1914
	rt2x00_desc_read(txd, 5, &word);
1915
	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1916 1917
	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
			   skbdesc->entry->entry_idx);
1918
	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1919
			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1920 1921 1922
	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
	rt2x00_desc_write(txd, 5, word);

1923
	if (entry->queue->qid != QID_BEACON) {
1924 1925 1926 1927
		rt2x00_desc_read(txd, 6, &word);
		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(txd, 6, word);
1928

1929
		rt2x00_desc_read(txd, 11, &word);
1930 1931
		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
				   txdesc->length);
1932 1933
		rt2x00_desc_write(txd, 11, word);
	}
1934

1935 1936 1937 1938 1939
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1940 1941 1942 1943
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1944
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1945
	rt2x00_set_field32(&word, TXD_W0_ACK,
1946
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1947
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1948
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1949
	rt2x00_set_field32(&word, TXD_W0_OFDM,
1950
			   (txdesc->rate_mode == RATE_MODE_OFDM));
1951
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1952
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1953
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1954 1955 1956 1957 1958
	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1959
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1960
	rt2x00_set_field32(&word, TXD_W0_BURST,
1961
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1962
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1963
	rt2x00_desc_write(txd, 0, word);
1964 1965 1966 1967 1968

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
1969 1970
	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
			    TXD_DESC_SIZE;
1971 1972 1973 1974 1975
}

/*
 * TX data initialization
 */
1976 1977
static void rt61pci_write_beacon(struct queue_entry *entry,
				 struct txentry_desc *txdesc)
1978 1979
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1980
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1981
	unsigned int beacon_base;
1982
	unsigned int padding_len;
1983
	u32 orig_reg, reg;
1984 1985 1986 1987 1988 1989

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1990
	orig_reg = reg;
1991 1992 1993
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1994 1995 1996
	/*
	 * Write the TX descriptor for the beacon.
	 */
1997
	rt61pci_write_tx_desc(entry, txdesc);
1998 1999 2000 2001 2002 2003

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);

2004
	/*
2005
	 * Write entire beacon with descriptor and padding to register.
2006
	 */
2007
	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2008 2009 2010 2011 2012 2013 2014 2015
	if (padding_len && skb_pad(entry->skb, padding_len)) {
		ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
		/* skb freed by skb_pad() on failure */
		entry->skb = NULL;
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
		return;
	}

2016
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2017 2018 2019
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
				      entry_priv->desc, TXINFO_SIZE);
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2020 2021
				      entry->skb->data,
				      entry->skb->len + padding_len);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	/*
	 * Enable beaconing again.
	 *
	 * For Wi-Fi faily generated beacons between participating
	 * stations. Set TBTT phase adaptive adjustment step to 8us.
	 */
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);

	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

2034 2035 2036 2037 2038 2039 2040
	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static void rt61pci_clear_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

	/*
	 * Clear beacon.
	 */
	rt2x00pci_register_write(rt2x00dev,
				 HW_BEACON_OFFSET(entry->entry_idx), 0);

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
}

2067 2068 2069 2070 2071
/*
 * RX control handlers
 */
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
2072
	u8 offset = rt2x00dev->lna_gain;
2073 2074 2075 2076 2077
	u8 lna;

	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
	switch (lna) {
	case 3:
2078
		offset += 90;
2079 2080
		break;
	case 2:
2081
		offset += 74;
2082 2083
		break;
	case 1:
2084
		offset += 64;
2085 2086 2087 2088 2089
		break;
	default:
		return 0;
	}

2090
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2091 2092 2093 2094 2095 2096 2097
		if (lna == 3 || lna == 2)
			offset += 10;
	}

	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}

2098
static void rt61pci_fill_rxdone(struct queue_entry *entry,
2099
				struct rxdone_entry_desc *rxdesc)
2100
{
2101
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2102
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2103 2104 2105
	u32 word0;
	u32 word1;

2106 2107
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 1, &word1);
2108

2109
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2110
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2111

2112 2113
	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2114 2115

	if (rxdesc->cipher != CIPHER_NONE) {
2116 2117
		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2118 2119
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

2120
		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2121
		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2122 2123 2124

		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
2125
		 * decryption. It has provided the data separately but rt2x00lib
2126 2127 2128 2129 2130
		 * should decide if it should be reinserted.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		/*
2131 2132
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
2133 2134 2135 2136 2137 2138 2139 2140 2141
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

2142 2143
	/*
	 * Obtain the status about this packet.
Ivo van Doorn's avatar
Ivo van Doorn committed
2144 2145 2146
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
2147
	 */
2148
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2149
	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2150
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2151 2152 2153

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
Ivo van Doorn's avatar
Ivo van Doorn committed
2154 2155
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2156 2157
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
2158 2159 2160 2161 2162 2163 2164
}

/*
 * Interrupt functions.
 */
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
2165 2166 2167
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
2168
	struct queue_entry_priv_pci *entry_priv;
2169
	struct txdone_entry_desc txdesc;
2170 2171 2172 2173
	u32 word;
	u32 reg;
	int type;
	int index;
2174
	int i;
2175 2176

	/*
2177 2178 2179 2180 2181 2182 2183
	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
	 * flag is not set anymore.
	 *
	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
	 * tx ring size for now.
2184
	 */
2185
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2186 2187 2188 2189 2190 2191
		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
			break;

		/*
		 * Skip this entry when it contains an invalid
2192
		 * queue identication number.
2193 2194
		 */
		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2195
		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2196
		if (unlikely(!queue))
2197 2198 2199 2200 2201 2202 2203
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2204
		if (unlikely(index >= queue->limit))
2205 2206
			continue;

2207
		entry = &queue->entries[index];
2208 2209
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
2210 2211 2212 2213 2214

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			return;

2215
		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2216
		while (entry != entry_done) {
2217 2218 2219
			/* Catch up.
			 * Just report any entries we missed as failed.
			 */
2220
			WARNING(rt2x00dev,
2221 2222 2223
				"TX status report missed for entry %d\n",
				entry_done->entry_idx);

2224
			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2225
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2226 2227
		}

2228 2229 2230
		/*
		 * Obtain the status about this packet.
		 */
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		txdesc.flags = 0;
		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
		case 0: /* Success, maybe with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 6: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
2242
		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2243

2244 2245 2246 2247 2248 2249 2250
		/*
		 * the frame was retried at least once
		 * -> hw used fallback rates
		 */
		if (txdesc.retry)
			__set_bit(TXDONE_FALLBACK, &txdesc.flags);

2251
		rt2x00lib_txdone(entry, &txdesc);
2252 2253 2254
	}
}

2255 2256 2257 2258 2259 2260 2261 2262
static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

2263 2264
static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					    struct rt2x00_field32 irq_field)
2265
{
2266
	u32 reg;
2267 2268

	/*
2269 2270
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
2271
	 */
2272
	spin_lock_irq(&rt2x00dev->irqmask_lock);
2273

2274 2275 2276
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, irq_field, 0);
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2277

2278
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2279
}
2280

2281 2282 2283 2284
static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00_field32 irq_field)
{
	u32 reg;
2285

2286
	/*
2287 2288
	 * Enable a single MCU interrupt. The interrupt mask register
	 * access needs locking.
2289
	 */
2290
	spin_lock_irq(&rt2x00dev->irqmask_lock);
2291

2292 2293 2294
	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, irq_field, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2295

2296
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static void rt61pci_txstatus_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt61pci_txdone(rt2x00dev);
	rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
}

static void rt61pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
	rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
}

static void rt61pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316 2317 2318 2319
	if (rt2x00pci_rxdone(rt2x00dev))
		rt2x00pci_rxdone(rt2x00dev);
	else
		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
}

static void rt61pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt61pci_wakeup(rt2x00dev);
	rt2x00pci_register_write(rt2x00dev,
				 M2H_CMD_DONE_CSR, 0xffffffff);
	rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
}
2330 2331 2332 2333

static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
2334 2335
	u32 reg_mcu, mask_mcu;
	u32 reg, mask;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);

	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg && !reg_mcu)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	/*
	 * Schedule tasklets for interrupt handling.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);

	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = reg;
	mask_mcu = reg_mcu;

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
2380
	spin_lock(&rt2x00dev->irqmask_lock);
2381 2382 2383 2384

	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	reg |= mask;
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2385

2386 2387 2388 2389
	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	reg |= mask_mcu;
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);

2390
	spin_unlock(&rt2x00dev->irqmask_lock);
2391 2392

	return IRQ_HANDLED;
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/*
 * Device probe functions.
 */
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;
	s8 value;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt61pci_eepromregister_read;
	eeprom.register_write = rt61pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
2427
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2428 2429 2430 2431 2432
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2433 2434 2435 2436
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_B);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2449 2450
		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495
		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
	}

	return 0;
}

static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2525 2526
	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2527

2528 2529 2530 2531
	if (!rt2x00_rf(rt2x00dev, RF5225) &&
	    !rt2x00_rf(rt2x00dev, RF5325) &&
	    !rt2x00_rf(rt2x00dev, RF2527) &&
	    !rt2x00_rf(rt2x00dev, RF2529)) {
2532 2533 2534 2535
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

2536
	/*
Luis Correia's avatar
Luis Correia committed
2537
	 * Determine number of antennas.
2538 2539
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2540
		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2541

2542 2543 2544
	/*
	 * Identify default antenna configuration.
	 */
2545
	rt2x00dev->default_ant.tx =
2546
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2547
	rt2x00dev->default_ant.rx =
2548 2549 2550 2551 2552 2553
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Read the Frame type.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2554
		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2555 2556

	/*
2557
	 * Detect if this device has a hardware controlled radio.
2558 2559
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2560
		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2561 2562 2563 2564 2565 2566

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2567
		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2568 2569 2570 2571 2572 2573 2574 2575 2576

	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2577
		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2578
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2579
		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2580

2581
	/*
2582
	 * When working with a RF2529 chip without double antenna,
2583 2584 2585
	 * the antenna settings should be gathered from the NIC
	 * eeprom word.
	 */
2586
	if (rt2x00_rf(rt2x00dev, RF2529) &&
2587
	    !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2588 2589 2590 2591
		rt2x00dev->default_ant.rx =
		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
		rt2x00dev->default_ant.tx =
		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2592 2593 2594 2595 2596 2597 2598

		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
	}

2599 2600 2601 2602 2603
	/*
	 * Store led settings, for correct led behaviour.
	 * If the eeprom value is invalid,
	 * switch to default led mode.
	 */
2604
#ifdef CONFIG_RT2X00_LIB_LEDS
2605
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2606 2607
	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);

2608 2609 2610 2611 2612
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	if (value == LED_MODE_SIGNAL_STRENGTH)
		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				 LED_TYPE_QUALITY);
2613

2614 2615
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2616 2617
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_0));
2618
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2619 2620
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_1));
2621
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2622 2623
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_2));
2624
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2625 2626
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_3));
2627
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2628 2629
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_4));
2630
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2631
			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2632
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2633 2634
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_G));
2635
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2636 2637
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_A));
2638
#endif /* CONFIG_RT2X00_LIB_LEDS */
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	return 0;
}

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 */
static const struct rf_channel rf_vals_noseq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },

	/* 802.11 UNII */
	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 */
static const struct rf_channel rf_vals_seq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },

	/* 802.11 UNII */
	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};

2757
static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2758 2759
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
2760 2761
	struct channel_info *info;
	char *tx_power;
2762 2763
	unsigned int i;

2764 2765 2766 2767 2768
	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

2769 2770 2771 2772
	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
2773
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2774 2775 2776
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
	    IEEE80211_HW_PS_NULLFUNC_STACK;
2777

2778
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2779 2780 2781 2782 2783
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
2784 2785 2786
	 * As rt61 has a global fallback table we cannot specify
	 * more then one tx rate per frame but since the hw will
	 * try several rates (based on the fallback table) we should
2787
	 * initialize max_report_rates to the maximum number of rates
2788 2789 2790 2791
	 * we are going to try. Otherwise mac80211 will truncate our
	 * reported tx rates and the rc algortihm will end up with
	 * incorrect data.
	 */
2792 2793
	rt2x00dev->hw->max_rates = 1;
	rt2x00dev->hw->max_report_rates = 7;
2794 2795 2796
	rt2x00dev->hw->max_rate_tries = 1;

	/*
2797 2798
	 * Initialize hw_mode information.
	 */
2799 2800
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2801

2802
	if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2803 2804 2805 2806 2807 2808 2809
		spec->num_channels = 14;
		spec->channels = rf_vals_noseq;
	} else {
		spec->num_channels = 14;
		spec->channels = rf_vals_seq;
	}

2810
	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2811
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2812
		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2813 2814 2815 2816 2817
	}

	/*
	 * Create channel information array
	 */
2818
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2819 2820 2821 2822
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;
2823

2824
	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2825 2826 2827 2828
	for (i = 0; i < 14; i++) {
		info[i].max_power = MAX_TXPOWER;
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}
2829

2830 2831
	if (spec->num_channels > 14) {
		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2832 2833 2834 2835
		for (i = 14; i < spec->num_channels; i++) {
			info[i].max_power = MAX_TXPOWER;
			info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
		}
2836
	}
2837 2838

	return 0;
2839 2840 2841 2842 2843 2844
}

static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

Pavel Roskin's avatar
Pavel Roskin committed
2845 2846 2847 2848 2849
	/*
	 * Disable power saving.
	 */
	rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	/*
	 * Allocate eeprom data.
	 */
	retval = rt61pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt61pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
2864 2865 2866
	retval = rt61pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
2867

2868 2869 2870 2871
	/*
	 * This device has multiple filters for control frames,
	 * but has no a separate filter for PS Poll frames.
	 */
2872
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873

2874
	/*
2875
	 * This device requires firmware and DMA mapped skbs.
2876
	 */
2877 2878
	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879
	if (!modparam_nohwcrypt)
2880 2881
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
2894 2895 2896 2897 2898 2899 2900 2901
static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
			   const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
2902
	u32 offset;
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
	if (retval)
		return retval;

2914 2915
	/*
	 * We only need to perform additional register initialization
2916
	 * for WMM queues.
2917 2918 2919 2920
	 */
	if (queue_idx >= 4)
		return 0;

2921
	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2922 2923

	/* Update WMM TXOP register */
2924 2925 2926 2927 2928 2929 2930
	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, field, queue->txop);
	rt2x00pci_register_write(rt2x00dev, offset, reg);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->aifs);
	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_min);
	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_max);
	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);

	return 0;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);

	return tsf;
}

static const struct ieee80211_ops rt61pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
2967 2968
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
2969 2970 2971
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
2972
	.configure_filter	= rt2x00mac_configure_filter,
2973
	.set_key		= rt2x00mac_set_key,
2974 2975
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2976
	.get_stats		= rt2x00mac_get_stats,
2977
	.bss_info_changed	= rt2x00mac_bss_info_changed,
2978
	.conf_tx		= rt61pci_conf_tx,
2979
	.get_tsf		= rt61pci_get_tsf,
2980
	.rfkill_poll		= rt2x00mac_rfkill_poll,
2981
	.flush			= rt2x00mac_flush,
2982 2983 2984 2985
};

static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
	.irq_handler		= rt61pci_interrupt,
2986 2987 2988 2989
	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
	.autowake_tasklet	= rt61pci_autowake_tasklet,
2990 2991
	.probe_hw		= rt61pci_probe_hw,
	.get_firmware_name	= rt61pci_get_firmware_name,
2992
	.check_firmware		= rt61pci_check_firmware,
2993 2994 2995
	.load_firmware		= rt61pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
2996 2997
	.get_entry_state	= rt61pci_get_entry_state,
	.clear_entry		= rt61pci_clear_entry,
2998 2999 3000 3001 3002
	.set_device_state	= rt61pci_set_device_state,
	.rfkill_poll		= rt61pci_rfkill_poll,
	.link_stats		= rt61pci_link_stats,
	.reset_tuner		= rt61pci_reset_tuner,
	.link_tuner		= rt61pci_link_tuner,
3003 3004 3005
	.start_queue		= rt61pci_start_queue,
	.kick_queue		= rt61pci_kick_queue,
	.stop_queue		= rt61pci_stop_queue,
3006
	.flush_queue		= rt2x00pci_flush_queue,
3007
	.write_tx_desc		= rt61pci_write_tx_desc,
3008
	.write_beacon		= rt61pci_write_beacon,
3009
	.clear_beacon		= rt61pci_clear_beacon,
3010
	.fill_rxdone		= rt61pci_fill_rxdone,
3011 3012
	.config_shared_key	= rt61pci_config_shared_key,
	.config_pairwise_key	= rt61pci_config_pairwise_key,
3013
	.config_filter		= rt61pci_config_filter,
3014
	.config_intf		= rt61pci_config_intf,
3015
	.config_erp		= rt61pci_config_erp,
3016
	.config_ant		= rt61pci_config_ant,
3017 3018 3019
	.config			= rt61pci_config,
};

3020
static const struct data_queue_desc rt61pci_queue_rx = {
3021
	.entry_num		= 32,
3022 3023
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
3024
	.priv_size		= sizeof(struct queue_entry_priv_pci),
3025 3026 3027
};

static const struct data_queue_desc rt61pci_queue_tx = {
3028
	.entry_num		= 32,
3029 3030
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
3031
	.priv_size		= sizeof(struct queue_entry_priv_pci),
3032 3033 3034
};

static const struct data_queue_desc rt61pci_queue_bcn = {
3035
	.entry_num		= 4,
3036
	.data_size		= 0, /* No DMA required for beacons */
3037
	.desc_size		= TXINFO_SIZE,
3038
	.priv_size		= sizeof(struct queue_entry_priv_pci),
3039 3040
};

3041
static const struct rt2x00_ops rt61pci_ops = {
3042 3043 3044 3045 3046 3047
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 4,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
3048
	.extra_tx_headroom	= 0,
3049 3050 3051 3052 3053
	.rx			= &rt61pci_queue_rx,
	.tx			= &rt61pci_queue_tx,
	.bcn			= &rt61pci_queue_bcn,
	.lib			= &rt61pci_rt2x00_ops,
	.hw			= &rt61pci_mac80211_ops,
3054
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3055
	.debugfs		= &rt61pci_rt2x00debug,
3056 3057 3058 3059 3060 3061
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT61pci module information.
 */
3062
static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3063
	/* RT2561s */
3064
	{ PCI_DEVICE(0x1814, 0x0301) },
3065
	/* RT2561 v2 */
3066
	{ PCI_DEVICE(0x1814, 0x0302) },
3067
	/* RT2661 */
3068
	{ PCI_DEVICE(0x1814, 0x0401) },
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
			"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");

3083 3084 3085 3086 3087 3088
static int rt61pci_probe(struct pci_dev *pci_dev,
			 const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
}

3089
static struct pci_driver rt61pci_driver = {
3090
	.name		= KBUILD_MODNAME,
3091
	.id_table	= rt61pci_device_table,
3092
	.probe		= rt61pci_probe,
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt61pci_init(void)
{
	return pci_register_driver(&rt61pci_driver);
}

static void __exit rt61pci_exit(void)
{
	pci_unregister_driver(&rt61pci_driver);
}

module_init(rt61pci_init);
module_exit(rt61pci_exit);