coreasm.h 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifndef XTENSA_COREASM_H
#define XTENSA_COREASM_H

/*
 * THIS FILE IS GENERATED -- DO NOT MODIFY BY HAND
 *
 * include/asm-xtensa/xtensa/coreasm.h -- assembler-specific
 * definitions that depend on CORE configuration.
 *
 * Source for configuration-independent binaries (which link in a
 * configuration-specific HAL library) must NEVER include this file.
 * It is perfectly normal, however, for the HAL itself to include this
 * file.
 *
 * This file must NOT include xtensa/config/system.h.  Any assembler
 * header file that depends on system information should likely go in
 * a new systemasm.h (or sysasm.h) header file.
 *
 *  NOTE: macro beqi32 is NOT configuration-dependent, and is placed
 *        here til we will have configuration-independent header file.
 *
 * This file is subject to the terms and conditions of the GNU General
 * Public License.  See the file "COPYING" in the main directory of
 * this archive for more details.
 *
 * Copyright (C) 2002 Tensilica Inc.
 */


#include <xtensa/config/core.h>
#include <xtensa/config/specreg.h>

/*
 *  Assembly-language specific definitions (assembly macros, etc.).
 */

/*----------------------------------------------------------------------
 *  find_ms_setbit
 *
 *  This macro finds the most significant bit that is set in <as>
 *  and return its index + <base> in <ad>, or <base> - 1 if <as> is zero.
 *  The index counts starting at zero for the lsbit, so the return
 *  value ranges from <base>-1 (no bit set) to <base>+31 (msbit set).
 *
 *  Parameters:
 *	<ad>	destination address register (any register)
 *	<as>	source address register
 *	<at>	temporary address register (must be different than <as>)
 *	<base>	constant value added to result (usually 0 or 1)
 *  On entry:
 *	<ad> = undefined if different than <as>
 *	<as> = value whose most significant set bit is to be found
 *	<at> = undefined
 *	no other registers are used by this macro.
 *  On exit:
 *	<ad> = <base> + index of msbit set in original <as>,
 *	     = <base> - 1 if original <as> was zero.
 *	<as> clobbered (if not <ad>)
 *	<at> clobbered (if not <ad>)
 *  Example:
 *	find_ms_setbit a0, a4, a0, 0		-- return in a0 index of msbit set in a4
 */

	.macro	find_ms_setbit ad, as, at, base
#if XCHAL_HAVE_NSA
	movi	\at, 31+\base
	nsau	\as, \as	// get index of \as, numbered from msbit (32 if absent)
	sub	\ad, \at, \as	// get numbering from lsbit (0..31, -1 if absent)
#else /* XCHAL_HAVE_NSA */
	movi	\at, \base	// start with result of 0 (point to lsbit of 32)

	beqz	\as, 2f		// special case for zero argument: return -1
	bltui	\as, 0x10000, 1f	// is it one of the 16 lsbits? (if so, check lower 16 bits)
	addi	\at, \at, 16	// no, increment result to upper 16 bits (of 32)
	//srli	\as, \as, 16	// check upper half (shift right 16 bits)
	extui	\as, \as, 16, 16	// check upper half (shift right 16 bits)
1:	bltui	\as, 0x100, 1f	// is it one of the 8 lsbits? (if so, check lower 8 bits)
	addi	\at, \at, 8	// no, increment result to upper 8 bits (of 16)
	srli	\as, \as, 8	// shift right to check upper 8 bits
1:	bltui	\as, 0x10, 1f	// is it one of the 4 lsbits? (if so, check lower 4 bits)
	addi	\at, \at, 4	// no, increment result to upper 4 bits (of 8)
	srli	\as, \as, 4	// shift right 4 bits to check upper half
1:	bltui	\as, 0x4, 1f	// is it one of the 2 lsbits? (if so, check lower 2 bits)
	addi	\at, \at, 2	// no, increment result to upper 2 bits (of 4)
	srli	\as, \as, 2	// shift right 2 bits to check upper half
1:	bltui	\as, 0x2, 1f	// is it the lsbit?
	addi	\at, \at, 2	// no, increment result to upper bit (of 2)
2:	addi	\at, \at, -1	// (from just above: add 1;  from beqz: return -1)
	//srli	\as, \as, 1
1:				// done! \at contains index of msbit set (or -1 if none set)
	.if	0x\ad - 0x\at	// destination different than \at ? (works because regs are a0-a15)
	mov	\ad, \at	// then move result to \ad
	.endif
#endif /* XCHAL_HAVE_NSA */
	.endm	// find_ms_setbit

/*----------------------------------------------------------------------
 *  find_ls_setbit
 *
 *  This macro finds the least significant bit that is set in <as>,
 *  and return its index in <ad>.
 *  Usage is the same as for the find_ms_setbit macro.
 *  Example:
 *	find_ls_setbit a0, a4, a0, 0	-- return in a0 index of lsbit set in a4
 */

	.macro	find_ls_setbit ad, as, at, base
	neg	\at, \as	// keep only the least-significant bit that is set...
	and	\as, \at, \as	// ... in \as
	find_ms_setbit	\ad, \as, \at, \base
	.endm	// find_ls_setbit

/*----------------------------------------------------------------------
 *  find_ls_one
 *
 *  Same as find_ls_setbit with base zero.
 *  Source (as) and destination (ad) registers must be different.
 *  Provided for backward compatibility.
 */

	.macro	find_ls_one ad, as
	find_ls_setbit	\ad, \as, \ad, 0
	.endm	// find_ls_one

/*----------------------------------------------------------------------
 *  floop, floopnez, floopgtz, floopend
 *
 *  These macros are used for fast inner loops that
 *  work whether or not the Loops options is configured.
 *  If the Loops option is configured, they simply use
 *  the zero-overhead LOOP instructions; otherwise
 *  they use explicit decrement and branch instructions.
 *
 *  They are used in pairs, with floop, floopnez or floopgtz
 *  at the beginning of the loop, and floopend at the end.
 *
 *  Each pair of loop macro calls must be given the loop count
 *  address register and a unique label for that loop.
 *
 *  Example:
 *
 *	movi	 a3, 16     // loop 16 times
 *	floop    a3, myloop1
 *	:
 *	bnez     a7, end1	// exit loop if a7 != 0
 *	:
 *	floopend a3, myloop1
 *  end1:
 *
 *  Like the LOOP instructions, these macros cannot be
 *  nested, must include at least one instruction,
 *  cannot call functions inside the loop, etc.
 *  The loop can be exited by jumping to the instruction
 *  following floopend (or elsewhere outside the loop),
 *  or continued by jumping to a NOP instruction placed
 *  immediately before floopend.
 *
 *  Unlike LOOP instructions, the register passed to floop*
 *  cannot be used inside the loop, because it is used as
 *  the loop counter if the Loops option is not configured.
 *  And its value is undefined after exiting the loop.
 *  And because the loop counter register is active inside
 *  the loop, you can't easily use this construct to loop
 *  across a register file using ROTW as you might with LOOP
 *  instructions, unless you copy the loop register along.
 */

	/*  Named label version of the macros:  */

	.macro	floop		ar, endlabel
	floop_		\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	.macro	floopnez	ar, endlabel
	floopnez_	\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	.macro	floopgtz	ar, endlabel
	floopgtz_	\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	.macro	floopend	ar, endlabel
	floopend_	\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	/*  Numbered local label version of the macros:  */
#if 0 /*UNTESTED*/
	.macro	floop89		ar
	floop_		\ar, 8, 9f
	.endm

	.macro	floopnez89	ar
	floopnez_	\ar, 8, 9f
	.endm

	.macro	floopgtz89	ar
	floopgtz_	\ar, 8, 9f
	.endm

	.macro	floopend89	ar
	floopend_	\ar, 8b, 9
	.endm
#endif /*0*/

	/*  Underlying version of the macros:  */

	.macro	floop_	ar, startlabel, endlabelref
	.ifdef	_infloop_
	.if	_infloop_
	.err	// Error: floop cannot be nested
	.endif
	.endif
	.set	_infloop_, 1
#if XCHAL_HAVE_LOOPS
	loop	\ar, \endlabelref
#else /* XCHAL_HAVE_LOOPS */
\startlabel:
	addi	\ar, \ar, -1
#endif /* XCHAL_HAVE_LOOPS */
	.endm	// floop_

	.macro	floopnez_	ar, startlabel, endlabelref
	.ifdef	_infloop_
	.if	_infloop_
	.err	// Error: floopnez cannot be nested
	.endif
	.endif
	.set	_infloop_, 1
#if XCHAL_HAVE_LOOPS
	loopnez	\ar, \endlabelref
#else /* XCHAL_HAVE_LOOPS */
	beqz	\ar, \endlabelref
\startlabel:
	addi	\ar, \ar, -1
#endif /* XCHAL_HAVE_LOOPS */
	.endm	// floopnez_

	.macro	floopgtz_	ar, startlabel, endlabelref
	.ifdef	_infloop_
	.if	_infloop_
	.err	// Error: floopgtz cannot be nested
	.endif
	.endif
	.set	_infloop_, 1
#if XCHAL_HAVE_LOOPS
	loopgtz	\ar, \endlabelref
#else /* XCHAL_HAVE_LOOPS */
	bltz	\ar, \endlabelref
	beqz	\ar, \endlabelref
\startlabel:
	addi	\ar, \ar, -1
#endif /* XCHAL_HAVE_LOOPS */
	.endm	// floopgtz_


	.macro	floopend_	ar, startlabelref, endlabel
	.ifndef	_infloop_
	.err	// Error: floopend without matching floopXXX
	.endif
	.ifeq	_infloop_
	.err	// Error: floopend without matching floopXXX
	.endif
	.set	_infloop_, 0
#if ! XCHAL_HAVE_LOOPS
	bnez	\ar, \startlabelref
#endif /* XCHAL_HAVE_LOOPS */
\endlabel:
	.endm	// floopend_

/*----------------------------------------------------------------------
 *  crsil  --  conditional RSIL (read/set interrupt level)
 *
 *  Executes the RSIL instruction if it exists, else just reads PS.
 *  The RSIL instruction does not exist in the new exception architecture
 *  if the interrupt option is not selected.
 */

	.macro	crsil	ar, newlevel
#if XCHAL_HAVE_OLD_EXC_ARCH || XCHAL_HAVE_INTERRUPTS
	rsil	\ar, \newlevel
#else
	rsr	\ar, PS
#endif
	.endm	// crsil

/*----------------------------------------------------------------------
 *  window_spill{4,8,12}
 *
 *  These macros spill callers' register windows to the stack.
 *  They work for both privileged and non-privileged tasks.
 *  Must be called from a windowed ABI context, eg. within
 *  a windowed ABI function (ie. valid stack frame, window
 *  exceptions enabled, not in exception mode, etc).
 *
 *  This macro requires a single invocation of the window_spill_common
 *  macro in the same assembly unit and section.
 *
 *  Note that using window_spill{4,8,12} macros is more efficient
 *  than calling a function implemented using window_spill_function,
 *  because the latter needs extra code to figure out the size of
 *  the call to the spilling function.
 *
 *  Example usage:
 *
 *		.text
 *		.align	4
 *		.global	some_function
 *		.type	some_function,@function
 *	some_function:
 *		entry	a1, 16
 *		:
 *		:
 *
 *		window_spill4	// spill windows of some_function's callers; preserves a0..a3 only;
 *				// to use window_spill{8,12} in this example function we'd have
 *				// to increase space allocated by the entry instruction, because
 *				// 16 bytes only allows call4; 32 or 48 bytes (+locals) are needed
 *				// for call8/window_spill8 or call12/window_spill12 respectively.
 *		:
 *
 *		retw
 *
 *		window_spill_common	// instantiates code used by window_spill4
 *
 *
 *  On entry:
 *	none (if window_spill4)
 *	stack frame has enough space allocated for call8 (if window_spill8)
 *	stack frame has enough space allocated for call12 (if window_spill12)
 *  On exit:
 *	 a4..a15 clobbered (if window_spill4)
 *	 a8..a15 clobbered (if window_spill8)
 *	a12..a15 clobbered (if window_spill12)
 *	no caller windows are in live registers
 */

	.macro	window_spill4
#if XCHAL_HAVE_WINDOWED
# if XCHAL_NUM_AREGS == 16
	movi	a15, 0			// for 16-register files, no need to call to reach the end
# elif XCHAL_NUM_AREGS == 32
	call4	.L__wdwspill_assist28	// call deep enough to clear out any live callers
# elif XCHAL_NUM_AREGS == 64
	call4	.L__wdwspill_assist60	// call deep enough to clear out any live callers
# endif
#endif
	.endm	// window_spill4

	.macro	window_spill8
#if XCHAL_HAVE_WINDOWED
# if XCHAL_NUM_AREGS == 16
	movi	a15, 0			// for 16-register files, no need to call to reach the end
# elif XCHAL_NUM_AREGS == 32
	call8	.L__wdwspill_assist24	// call deep enough to clear out any live callers
# elif XCHAL_NUM_AREGS == 64
	call8	.L__wdwspill_assist56	// call deep enough to clear out any live callers
# endif
#endif
	.endm	// window_spill8

	.macro	window_spill12
#if XCHAL_HAVE_WINDOWED
# if XCHAL_NUM_AREGS == 16
	movi	a15, 0			// for 16-register files, no need to call to reach the end
# elif XCHAL_NUM_AREGS == 32
	call12	.L__wdwspill_assist20	// call deep enough to clear out any live callers
# elif XCHAL_NUM_AREGS == 64
	call12	.L__wdwspill_assist52	// call deep enough to clear out any live callers
# endif
#endif
	.endm	// window_spill12

/*----------------------------------------------------------------------
 *  window_spill_function
 *
 *  This macro outputs a function that will spill its caller's callers'
 *  register windows to the stack.  Eg. it could be used to implement
 *  a version of xthal_window_spill() that works in non-privileged tasks.
 *  This works for both privileged and non-privileged tasks.
 *
 *  Typical usage:
 *
 *		.text
 *		.align	4
 *		.global	my_spill_function
 *		.type	my_spill_function,@function
 *	my_spill_function:
 *		window_spill_function
 *
 *  On entry to resulting function:
 *	none
 *  On exit from resulting function:
 *	none (no caller windows are in live registers)
 */

	.macro	window_spill_function
#if XCHAL_HAVE_WINDOWED
# if XCHAL_NUM_AREGS == 32
	entry	sp, 48
	bbci.l	a0, 31, 1f		// branch if called with call4
	bbsi.l	a0, 30, 2f		// branch if called with call12
	call8	.L__wdwspill_assist16	// called with call8, only need another 8
	retw
1:	call12	.L__wdwspill_assist16	// called with call4, only need another 12
	retw
2:	call4	.L__wdwspill_assist16	// called with call12, only need another 4
	retw
# elif XCHAL_NUM_AREGS == 64
	entry	sp, 48
	bbci.l	a0, 31, 1f		// branch if called with call4
	bbsi.l	a0, 30, 2f		// branch if called with call12
	call4	.L__wdwspill_assist52	// called with call8, only need a call4
	retw
1:	call8	.L__wdwspill_assist52	// called with call4, only need a call8
	retw
2:	call12	.L__wdwspill_assist40	// called with call12, can skip a call12
	retw
# elif XCHAL_NUM_AREGS == 16
	entry	sp, 16
	bbci.l	a0, 31, 1f	// branch if called with call4
	bbsi.l	a0, 30, 2f	// branch if called with call12
	movi	a7, 0		// called with call8
	retw
1:	movi	a11, 0		// called with call4
2:	retw			// if called with call12, everything already spilled

//	movi	a15, 0		// trick to spill all but the direct caller
//	j	1f
//	//  The entry instruction is magical in the assembler (gets auto-aligned)
//	//  so we have to jump to it to avoid falling through the padding.
//	//  We need entry/retw to know where to return.
//1:	entry	sp, 16
//	retw
# else
#  error "unrecognized address register file size"
# endif
#endif /* XCHAL_HAVE_WINDOWED */
	window_spill_common
	.endm	// window_spill_function

/*----------------------------------------------------------------------
 *  window_spill_common
 *
 *  Common code used by any number of invocations of the window_spill##
 *  and window_spill_function macros.
 *
 *  Must be instantiated exactly once within a given assembly unit,
 *  within call/j range of and same section as window_spill##
 *  macro invocations for that assembly unit.
 *  (Is automatically instantiated by the window_spill_function macro.)
 */

	.macro	window_spill_common
#if XCHAL_HAVE_WINDOWED && (XCHAL_NUM_AREGS == 32 || XCHAL_NUM_AREGS == 64)
	.ifndef	.L__wdwspill_defined
# if XCHAL_NUM_AREGS >= 64
.L__wdwspill_assist60:
	entry	sp, 32
	call8	.L__wdwspill_assist52
	retw
.L__wdwspill_assist56:
	entry	sp, 16
	call4	.L__wdwspill_assist52
	retw
.L__wdwspill_assist52:
	entry	sp, 48
	call12	.L__wdwspill_assist40
	retw
.L__wdwspill_assist40:
	entry	sp, 48
	call12	.L__wdwspill_assist28
	retw
# endif
.L__wdwspill_assist28:
	entry	sp, 48
	call12	.L__wdwspill_assist16
	retw
.L__wdwspill_assist24:
	entry	sp, 32
	call8	.L__wdwspill_assist16
	retw
.L__wdwspill_assist20:
	entry	sp, 16
	call4	.L__wdwspill_assist16
	retw
.L__wdwspill_assist16:
	entry	sp, 16
	movi	a15, 0
	retw
	.set	.L__wdwspill_defined, 1
	.endif
#endif /* XCHAL_HAVE_WINDOWED with 32 or 64 aregs */
	.endm	// window_spill_common

/*----------------------------------------------------------------------
 *  beqi32
 *
 *  macro implements version of beqi for arbitrary 32-bit immidiate value
 *
 *     beqi32 ax, ay, imm32, label
 *
 *  Compares value in register ax with imm32 value and jumps to label if
 *  equal. Clobberes register ay if needed
 *
 */
   .macro beqi32	ax, ay, imm, label
    .ifeq ((\imm-1) & ~7)	// 1..8 ?
		beqi	\ax, \imm, \label
    .else
      .ifeq (\imm+1)		// -1 ?
		beqi	\ax, \imm, \label
      .else
        .ifeq (\imm)		// 0 ?
		beqz	\ax, \label
        .else
		//  We could also handle immediates 10,12,16,32,64,128,256
		//  but it would be a long macro...
		movi	\ay, \imm
		beq	\ax, \ay, \label
        .endif
      .endif
    .endif
   .endm // beqi32

#endif /*XTENSA_COREASM_H*/