spufs.h 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * SPU file system
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#ifndef SPUFS_H
#define SPUFS_H

#include <linux/kref.h>
26
#include <linux/mutex.h>
27 28
#include <linux/spinlock.h>
#include <linux/fs.h>
29
#include <linux/cpumask.h>
30 31

#include <asm/spu.h>
32
#include <asm/spu_csa.h>
33
#include <asm/spu_info.h>
34 35 36 37 38 39

/* The magic number for our file system */
enum {
	SPUFS_MAGIC = 0x23c9b64e,
};

40
struct spu_context_ops;
41 42
struct spu_gang;

43 44 45 46
enum {
	SPU_SCHED_WAS_ACTIVE,	/* was active upon spu_acquire_saved()  */
};

47 48 49 50 51
/* ctx->sched_flags */
enum {
	SPU_SCHED_NOTIFY_ACTIVE,
};

52 53
struct spu_context {
	struct spu *spu;		  /* pointer to a physical SPU */
54
	struct spu_state csa;		  /* SPU context save area. */
55
	spinlock_t mmio_lock;		  /* protects mmio access */
56 57
	struct address_space *local_store; /* local store mapping.  */
	struct address_space *mfc;	   /* 'mfc' area mappings. */
58 59 60 61 62
	struct address_space *cntl;	   /* 'control' area mappings. */
	struct address_space *signal1;	   /* 'signal1' area mappings. */
	struct address_space *signal2;	   /* 'signal2' area mappings. */
	struct address_space *mss;	   /* 'mss' area mappings. */
	struct address_space *psmap;	   /* 'psmap' area mappings. */
63
	struct mutex mapping_lock;
64
	u64 object_id;		   /* user space pointer for oprofile */
65 66

	enum { SPU_STATE_RUNNABLE, SPU_STATE_SAVED } state;
67
	struct mutex state_mutex;
68
	struct mutex run_mutex;
69 70

	struct mm_struct *owner;
71 72

	struct kref kref;
73 74
	wait_queue_head_t ibox_wq;
	wait_queue_head_t wbox_wq;
75
	wait_queue_head_t stop_wq;
76
	wait_queue_head_t mfc_wq;
77 78
	struct fasync_struct *ibox_fasync;
	struct fasync_struct *wbox_fasync;
79 80
	struct fasync_struct *mfc_fasync;
	u32 tagwait;
81
	struct spu_context_ops *ops;
82
	struct work_struct reap_work;
83 84
	unsigned long flags;
	unsigned long event_return;
85 86 87

	struct list_head gang_list;
	struct spu_gang *gang;
88 89
	struct kref *prof_priv_kref;
	void ( * prof_priv_release) (struct kref *kref);
90

91 92 93
	/* owner thread */
	pid_t tid;

94
	/* scheduler fields */
95
	struct list_head rq;
96
	unsigned int time_slice;
97
	unsigned long sched_flags;
98
	cpumask_t cpus_allowed;
99
	int policy;
100
	int prio;
101 102 103 104

	/* statistics */
	struct {
		/* updates protected by ctx->state_mutex */
105 106 107
		enum spu_utilization_state util_state;
		unsigned long long tstamp;	/* time of last state switch */
		unsigned long long times[SPU_UTIL_MAX];
108 109 110 111 112 113 114 115 116 117 118
		unsigned long long vol_ctx_switch;
		unsigned long long invol_ctx_switch;
		unsigned long long min_flt;
		unsigned long long maj_flt;
		unsigned long long hash_flt;
		unsigned long long slb_flt;
		unsigned long long slb_flt_base; /* # at last ctx switch */
		unsigned long long class2_intr;
		unsigned long long class2_intr_base; /* # at last ctx switch */
		unsigned long long libassist;
	} stats;
119 120 121

	struct list_head aff_list;
	int aff_head;
122
	int aff_offset;
123 124 125 126 127 128 129
};

struct spu_gang {
	struct list_head list;
	struct mutex mutex;
	struct kref kref;
	int contexts;
130 131 132 133 134

	struct spu_context *aff_ref_ctx;
	struct list_head aff_list_head;
	struct mutex aff_mutex;
	int aff_flags;
135 136
	struct spu *aff_ref_spu;
	atomic_t aff_sched_count;
137 138
};

139 140 141 142
/* Flag bits for spu_gang aff_flags */
#define AFF_OFFSETS_SET		1
#define AFF_MERGED		2

143 144 145 146 147 148 149 150 151 152 153
struct mfc_dma_command {
	int32_t pad;	/* reserved */
	uint32_t lsa;	/* local storage address */
	uint64_t ea;	/* effective address */
	uint16_t size;	/* transfer size */
	uint16_t tag;	/* command tag */
	uint16_t class;	/* class ID */
	uint16_t cmd;	/* command opcode */
};


154 155 156 157
/* SPU context query/set operations. */
struct spu_context_ops {
	int (*mbox_read) (struct spu_context * ctx, u32 * data);
	 u32(*mbox_stat_read) (struct spu_context * ctx);
158 159
	unsigned int (*mbox_stat_poll)(struct spu_context *ctx,
					unsigned int events);
160 161 162 163 164 165 166 167 168 169 170 171 172 173
	int (*ibox_read) (struct spu_context * ctx, u32 * data);
	int (*wbox_write) (struct spu_context * ctx, u32 data);
	 u32(*signal1_read) (struct spu_context * ctx);
	void (*signal1_write) (struct spu_context * ctx, u32 data);
	 u32(*signal2_read) (struct spu_context * ctx);
	void (*signal2_write) (struct spu_context * ctx, u32 data);
	void (*signal1_type_set) (struct spu_context * ctx, u64 val);
	 u64(*signal1_type_get) (struct spu_context * ctx);
	void (*signal2_type_set) (struct spu_context * ctx, u64 val);
	 u64(*signal2_type_get) (struct spu_context * ctx);
	 u32(*npc_read) (struct spu_context * ctx);
	void (*npc_write) (struct spu_context * ctx, u32 data);
	 u32(*status_read) (struct spu_context * ctx);
	char*(*get_ls) (struct spu_context * ctx);
174
	 u32 (*runcntl_read) (struct spu_context * ctx);
175
	void (*runcntl_write) (struct spu_context * ctx, u32 data);
176 177
	void (*master_start) (struct spu_context * ctx);
	void (*master_stop) (struct spu_context * ctx);
178 179 180
	int (*set_mfc_query)(struct spu_context * ctx, u32 mask, u32 mode);
	u32 (*read_mfc_tagstatus)(struct spu_context * ctx);
	u32 (*get_mfc_free_elements)(struct spu_context *ctx);
181 182 183 184 185 186
	int (*send_mfc_command)(struct spu_context * ctx,
				struct mfc_dma_command * cmd);
	void (*dma_info_read) (struct spu_context * ctx,
			       struct spu_dma_info * info);
	void (*proxydma_info_read) (struct spu_context * ctx,
				    struct spu_proxydma_info * info);
187
	void (*restart_dma)(struct spu_context *ctx);
188 189
};

190 191 192
extern struct spu_context_ops spu_hw_ops;
extern struct spu_context_ops spu_backing_ops;

193 194
struct spufs_inode_info {
	struct spu_context *i_ctx;
195
	struct spu_gang *i_gang;
196
	struct inode vfs_inode;
197
	int i_openers;
198 199 200 201 202
};
#define SPUFS_I(inode) \
	container_of(inode, struct spufs_inode_info, vfs_inode)

extern struct tree_descr spufs_dir_contents[];
203
extern struct tree_descr spufs_dir_nosched_contents[];
204 205

/* system call implementation */
206
long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *status);
207 208
long spufs_create(struct nameidata *nd, unsigned int flags,
			mode_t mode, struct file *filp);
209
extern const struct file_operations spufs_context_fops;
210

211 212 213 214 215 216 217
/* gang management */
struct spu_gang *alloc_spu_gang(void);
struct spu_gang *get_spu_gang(struct spu_gang *gang);
int put_spu_gang(struct spu_gang *gang);
void spu_gang_remove_ctx(struct spu_gang *gang, struct spu_context *ctx);
void spu_gang_add_ctx(struct spu_gang *gang, struct spu_context *ctx);

218 219 220
/* fault handling */
int spufs_handle_class1(struct spu_context *ctx);

221 222 223
/* affinity */
struct spu *affinity_check(struct spu_context *ctx);

224
/* context management */
225
extern atomic_t nr_spu_contexts;
226 227 228 229 230 231 232 233 234 235
static inline void spu_acquire(struct spu_context *ctx)
{
	mutex_lock(&ctx->state_mutex);
}

static inline void spu_release(struct spu_context *ctx)
{
	mutex_unlock(&ctx->state_mutex);
}

236
struct spu_context * alloc_spu_context(struct spu_gang *gang);
237 238 239
void destroy_spu_context(struct kref *kref);
struct spu_context * get_spu_context(struct spu_context *ctx);
int put_spu_context(struct spu_context *ctx);
240
void spu_unmap_mappings(struct spu_context *ctx);
241

242
void spu_forget(struct spu_context *ctx);
243
int spu_acquire_runnable(struct spu_context *ctx, unsigned long flags);
244
void spu_acquire_saved(struct spu_context *ctx);
245
void spu_release_saved(struct spu_context *ctx);
246

247
int spu_activate(struct spu_context *ctx, unsigned long flags);
248 249
void spu_deactivate(struct spu_context *ctx);
void spu_yield(struct spu_context *ctx);
250
void spu_switch_notify(struct spu *spu, struct spu_context *ctx);
251
void spu_set_timeslice(struct spu_context *ctx);
252 253
void spu_update_sched_info(struct spu_context *ctx);
void __spu_update_sched_info(struct spu_context *ctx);
254
int __init spu_sched_init(void);
255
void spu_sched_exit(void);
256

257 258
extern char *isolated_loader;

259 260
/*
 * spufs_wait
261
 *	Same as wait_event_interruptible(), except that here
262 263 264 265 266 267 268 269 270 271 272 273
 *	we need to call spu_release(ctx) before sleeping, and
 *	then spu_acquire(ctx) when awoken.
 */

#define spufs_wait(wq, condition)					\
({									\
	int __ret = 0;							\
	DEFINE_WAIT(__wait);						\
	for (;;) {							\
		prepare_to_wait(&(wq), &__wait, TASK_INTERRUPTIBLE);	\
		if (condition)						\
			break;						\
274 275 276
		if (signal_pending(current)) {				\
			__ret = -ERESTARTSYS;				\
			break;						\
277
		}							\
278 279 280
		spu_release(ctx);					\
		schedule();						\
		spu_acquire(ctx);					\
281 282 283 284 285
	}								\
	finish_wait(&(wq), &__wait);					\
	__ret;								\
})

286 287 288 289 290 291
size_t spu_wbox_write(struct spu_context *ctx, u32 data);
size_t spu_ibox_read(struct spu_context *ctx, u32 *data);

/* irq callback funcs. */
void spufs_ibox_callback(struct spu *spu);
void spufs_wbox_callback(struct spu *spu);
292
void spufs_stop_callback(struct spu *spu);
293
void spufs_mfc_callback(struct spu *spu);
294
void spufs_dma_callback(struct spu *spu, int type);
295

296 297 298 299 300 301 302 303 304 305 306
extern struct spu_coredump_calls spufs_coredump_calls;
struct spufs_coredump_reader {
	char *name;
	ssize_t (*read)(struct spu_context *ctx,
			char __user *buffer, size_t size, loff_t *pos);
	u64 (*get)(void *data);
	size_t size;
};
extern struct spufs_coredump_reader spufs_coredump_read[];
extern int spufs_coredump_num_notes;

307 308 309 310 311 312
/*
 * This function is a little bit too large for an inline, but
 * as fault.c is built into the kernel we can't move it out of
 * line.
 */
static inline void spuctx_switch_state(struct spu_context *ctx,
313
		enum spu_utilization_state new_state)
314
{
315 316 317 318 319
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;
320

321 322 323
	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
340 341 342 343
		spu->stats.tstamp = curtime;
	}
}

344
#endif