-
Peter Zijlstra authored
On x86 we cannot do fetch_or() with a single instruction and thus end up using a cmpxchg loop, this reduces determinism. Replace the fetch_or() with a composite operation: tas-pending + load. Using two instructions of course opens a window we previously did not have. Consider the scenario: CPU0 CPU1 CPU2 1) lock trylock -> (0,0,1) 2) lock trylock /* fail */ 3) unlock -> (0,0,0) 4) lock trylock -> (0,0,1) 5) tas-pending -> (0,1,1) load-val <- (0,1,0) from 3 6) clear-pending-set-locked -> (0,0,1) FAIL: _2_ owners where 5) is our new composite operation. When we consider each part of the qspinlock state as a separate variable (as we can when _Q_PENDING_BITS == 8) then the above is entirely possible, because tas-pending will only RmW the pending byte, so the later load is able to observe prior tail and lock state (but not earlier than its own trylock, which operates on the whole word, due to coherence). To avoid this we need 2 things: - the load must come after the tas-pending (obviously, otherwise it can trivially observe prior state). - the tas-pending must be a full word RmW instruction, it cannot be an XCHGB for example, such that we cannot observe other state prior to setting pending. On x86 we can realize this by using "LOCK BTS m32, r32" for tas-pending followed by a regular load. Note that observing later state is not a problem: - if we fail to observe a later unlock, we'll simply spin-wait for that store to become visible. - if we observe a later xchg_tail(), there is no difference from that xchg_tail() having taken place before the tas-pending. Suggested-by: Will Deacon <will.deacon@arm.com> Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: andrea.parri@amarulasolutions.com Cc: longman@redhat.com Fixes: 59fb586b ("locking/qspinlock: Remove unbounded cmpxchg() loop from locking slowpath") Link: https://lkml.kernel.org/r/20181003130957.183726335@infradead.orgSigned-off-by: Ingo Molnar <mingo@kernel.org>
7aa54be2