Commit 142a0e11 authored by Mauro Carvalho Chehab's avatar Mauro Carvalho Chehab

Merge tag 'docs-next' of git://git.lwn.net/linux.git into patchwork

Merge back from docs-next in order to get the cdomain extension.

With such extension, the number of warnings when building docs
in nitpick mode reduced from 22 to 2 warnings.

* docs-next/docs-next:
  docs/driver-model: fix typo
  DMA-API-HOWTO: <asm/generic/scatterlist.h> is no more
  doc-rst:c-domain: function-like macros arguments
  doc-rst:c-domain: fix sphinx version incompatibility
  Documentation/filesystems: Fixed typo
  docs: Don't format internal MPT docs
  docs: split up serial-interfaces.rst
  docs: Pull the HSI documentation together
  docs: Special-case function-pointer parameters in kernel-doc
  docs: make kernel-doc handle varargs properly
  x86: fix memory ranges in mm documentation
  documentation/scsi: Remove nodisconnect parameter
  doc: ioctl: Add some clarifications to botching-up-ioctls
  docs: split up the driver book
  Docs: sphinxify device-drivers.tmpl
parents 6ff7b7af 2cfd100b
...@@ -931,10 +931,8 @@ to "Closing". ...@@ -931,10 +931,8 @@ to "Closing".
1) Struct scatterlist requirements. 1) Struct scatterlist requirements.
Don't invent the architecture specific struct scatterlist; just use You need to enable CONFIG_NEED_SG_DMA_LENGTH if the architecture
<asm-generic/scatterlist.h>. You need to enable supports IOMMUs (including software IOMMU).
CONFIG_NEED_SG_DMA_LENGTH if the architecture supports IOMMUs
(including software IOMMU).
2) ARCH_DMA_MINALIGN 2) ARCH_DMA_MINALIGN
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
# To add a new book the only step required is to add the book to the # To add a new book the only step required is to add the book to the
# list of DOCBOOKS. # list of DOCBOOKS.
DOCBOOKS := z8530book.xml device-drivers.xml \ DOCBOOKS := z8530book.xml \
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \ kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
writing_usb_driver.xml networking.xml \ writing_usb_driver.xml networking.xml \
kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
......
This diff is collapsed.
Driver Basics
=============
Driver Entry and Exit points
----------------------------
.. kernel-doc:: include/linux/init.h
:internal:
Atomic and pointer manipulation
-------------------------------
.. kernel-doc:: arch/x86/include/asm/atomic.h
:internal:
Delaying, scheduling, and timer routines
----------------------------------------
.. kernel-doc:: include/linux/sched.h
:internal:
.. kernel-doc:: kernel/sched/core.c
:export:
.. kernel-doc:: kernel/sched/cpupri.c
:internal:
.. kernel-doc:: kernel/sched/fair.c
:internal:
.. kernel-doc:: include/linux/completion.h
:internal:
.. kernel-doc:: kernel/time/timer.c
:export:
Wait queues and Wake events
---------------------------
.. kernel-doc:: include/linux/wait.h
:internal:
.. kernel-doc:: kernel/sched/wait.c
:export:
High-resolution timers
----------------------
.. kernel-doc:: include/linux/ktime.h
:internal:
.. kernel-doc:: include/linux/hrtimer.h
:internal:
.. kernel-doc:: kernel/time/hrtimer.c
:export:
Workqueues and Kevents
----------------------
.. kernel-doc:: include/linux/workqueue.h
:internal:
.. kernel-doc:: kernel/workqueue.c
:export:
Internal Functions
------------------
.. kernel-doc:: kernel/exit.c
:internal:
.. kernel-doc:: kernel/signal.c
:internal:
.. kernel-doc:: include/linux/kthread.h
:internal:
.. kernel-doc:: kernel/kthread.c
:export:
Kernel objects manipulation
---------------------------
.. kernel-doc:: lib/kobject.c
:export:
Kernel utility functions
------------------------
.. kernel-doc:: include/linux/kernel.h
:internal:
.. kernel-doc:: kernel/printk/printk.c
:export:
.. kernel-doc:: kernel/panic.c
:export:
.. kernel-doc:: kernel/sys.c
:export:
.. kernel-doc:: kernel/rcu/srcu.c
:export:
.. kernel-doc:: kernel/rcu/tree.c
:export:
.. kernel-doc:: kernel/rcu/tree_plugin.h
:export:
.. kernel-doc:: kernel/rcu/update.c
:export:
Device Resource Management
--------------------------
.. kernel-doc:: drivers/base/devres.c
:export:
Frame Buffer Library
====================
The frame buffer drivers depend heavily on four data structures. These
structures are declared in include/linux/fb.h. They are fb_info,
fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. The last
three can be made available to and from userland.
fb_info defines the current state of a particular video card. Inside
fb_info, there exists a fb_ops structure which is a collection of
needed functions to make fbdev and fbcon work. fb_info is only visible
to the kernel.
fb_var_screeninfo is used to describe the features of a video card
that are user defined. With fb_var_screeninfo, things such as depth
and the resolution may be defined.
The next structure is fb_fix_screeninfo. This defines the properties
of a card that are created when a mode is set and can't be changed
otherwise. A good example of this is the start of the frame buffer
memory. This "locks" the address of the frame buffer memory, so that it
cannot be changed or moved.
The last structure is fb_monospecs. In the old API, there was little
importance for fb_monospecs. This allowed for forbidden things such as
setting a mode of 800x600 on a fix frequency monitor. With the new API,
fb_monospecs prevents such things, and if used correctly, can prevent a
monitor from being cooked. fb_monospecs will not be useful until
kernels 2.5.x.
Frame Buffer Memory
-------------------
.. kernel-doc:: drivers/video/fbdev/core/fbmem.c
:export:
Frame Buffer Colormap
---------------------
.. kernel-doc:: drivers/video/fbdev/core/fbcmap.c
:export:
Frame Buffer Video Mode Database
--------------------------------
.. kernel-doc:: drivers/video/fbdev/core/modedb.c
:internal:
.. kernel-doc:: drivers/video/fbdev/core/modedb.c
:export:
Frame Buffer Macintosh Video Mode Database
------------------------------------------
.. kernel-doc:: drivers/video/fbdev/macmodes.c
:export:
Frame Buffer Fonts
------------------
Refer to the file lib/fonts/fonts.c for more information.
HSI - High-speed Synchronous Serial Interface High Speed Synchronous Serial Interface (HSI)
=============================================
1. Introduction Introduction
~~~~~~~~~~~~~~~ ---------------
High Speed Syncronous Interface (HSI) is a fullduplex, low latency protocol, High Speed Syncronous Interface (HSI) is a fullduplex, low latency protocol,
that is optimized for die-level interconnect between an Application Processor that is optimized for die-level interconnect between an Application Processor
...@@ -17,25 +18,27 @@ signal can be used to wakeup the chips from standby modes. The signals are ...@@ -17,25 +18,27 @@ signal can be used to wakeup the chips from standby modes. The signals are
commonly prefixed by AC for signals going from the application die to the commonly prefixed by AC for signals going from the application die to the
cellular die and CA for signals going the other way around. cellular die and CA for signals going the other way around.
+------------+ +---------------+ ::
| Cellular | | Application |
| Die | | Die | +------------+ +---------------+
| | - - - - - - CAWAKE - - - - - - >| | | Cellular | | Application |
| T|------------ CADATA ------------>|R | | Die | | Die |
| X|------------ CAFLAG ------------>|X | | | - - - - - - CAWAKE - - - - - - >| |
| |<----------- ACREADY ------------| | | T|------------ CADATA ------------>|R |
| | | | | X|------------ CAFLAG ------------>|X |
| | | | | |<----------- ACREADY ------------| |
| |< - - - - - ACWAKE - - - - - - -| | | | | |
| R|<----------- ACDATA -------------|T | | | | |
| X|<----------- ACFLAG -------------|X | | |< - - - - - ACWAKE - - - - - - -| |
| |------------ CAREADY ----------->| | | R|<----------- ACDATA -------------|T |
| | | | | X|<----------- ACFLAG -------------|X |
| | | | | |------------ CAREADY ----------->| |
+------------+ +---------------+ | | | |
| | | |
2. HSI Subsystem in Linux +------------+ +---------------+
~~~~~~~~~~~~~~~~~~~~~~~~~
HSI Subsystem in Linux
-------------------------
In the Linux kernel the hsi subsystem is supposed to be used for HSI devices. In the Linux kernel the hsi subsystem is supposed to be used for HSI devices.
The hsi subsystem contains drivers for hsi controllers including support for The hsi subsystem contains drivers for hsi controllers including support for
...@@ -45,31 +48,41 @@ It also contains HSI client drivers, which make use of the generic API to ...@@ -45,31 +48,41 @@ It also contains HSI client drivers, which make use of the generic API to
implement a protocol used on the HSI interface. These client drivers can implement a protocol used on the HSI interface. These client drivers can
use an arbitrary number of channels. use an arbitrary number of channels.
3. hsi-char Device hsi-char Device
~~~~~~~~~~~~~~~~~~ ------------------
Each port automatically registers a generic client driver called hsi_char, Each port automatically registers a generic client driver called hsi_char,
which provides a charecter device for userspace representing the HSI port. which provides a charecter device for userspace representing the HSI port.
It can be used to communicate via HSI from userspace. Userspace may It can be used to communicate via HSI from userspace. Userspace may
configure the hsi_char device using the following ioctl commands: configure the hsi_char device using the following ioctl commands:
* HSC_RESET: HSC_RESET
- flush the HSI port flush the HSI port
* HSC_SET_PM HSC_SET_PM
- enable or disable the client. enable or disable the client.
* HSC_SEND_BREAK HSC_SEND_BREAK
- send break send break
* HSC_SET_RX HSC_SET_RX
- set RX configuration set RX configuration
* HSC_GET_RX HSC_GET_RX
- get RX configuration get RX configuration
* HSC_SET_TX HSC_SET_TX
- set TX configuration set TX configuration
HSC_GET_TX
get TX configuration
The kernel HSI API
------------------
.. kernel-doc:: include/linux/hsi/hsi.h
:internal:
.. kernel-doc:: drivers/hsi/hsi_core.c
:export:
* HSC_GET_TX
- get TX configuration
I\ :sup:`2`\ C and SMBus Subsystem
==================================
I\ :sup:`2`\ C (or without fancy typography, "I2C") is an acronym for
the "Inter-IC" bus, a simple bus protocol which is widely used where low
data rate communications suffice. Since it's also a licensed trademark,
some vendors use another name (such as "Two-Wire Interface", TWI) for
the same bus. I2C only needs two signals (SCL for clock, SDA for data),
conserving board real estate and minimizing signal quality issues. Most
I2C devices use seven bit addresses, and bus speeds of up to 400 kHz;
there's a high speed extension (3.4 MHz) that's not yet found wide use.
I2C is a multi-master bus; open drain signaling is used to arbitrate
between masters, as well as to handshake and to synchronize clocks from
slower clients.
The Linux I2C programming interfaces support only the master side of bus
interactions, not the slave side. The programming interface is
structured around two kinds of driver, and two kinds of device. An I2C
"Adapter Driver" abstracts the controller hardware; it binds to a
physical device (perhaps a PCI device or platform_device) and exposes a
:c:type:`struct i2c_adapter <i2c_adapter>` representing each
I2C bus segment it manages. On each I2C bus segment will be I2C devices
represented by a :c:type:`struct i2c_client <i2c_client>`.
Those devices will be bound to a :c:type:`struct i2c_driver
<i2c_driver>`, which should follow the standard Linux driver
model. (At this writing, a legacy model is more widely used.) There are
functions to perform various I2C protocol operations; at this writing
all such functions are usable only from task context.
The System Management Bus (SMBus) is a sibling protocol. Most SMBus
systems are also I2C conformant. The electrical constraints are tighter
for SMBus, and it standardizes particular protocol messages and idioms.
Controllers that support I2C can also support most SMBus operations, but
SMBus controllers don't support all the protocol options that an I2C
controller will. There are functions to perform various SMBus protocol
operations, either using I2C primitives or by issuing SMBus commands to
i2c_adapter devices which don't support those I2C operations.
.. kernel-doc:: include/linux/i2c.h
:internal:
.. kernel-doc:: drivers/i2c/i2c-boardinfo.c
:functions: i2c_register_board_info
.. kernel-doc:: drivers/i2c/i2c-core.c
:export:
========================================
The Linux driver implementer's API guide
========================================
The kernel offers a wide variety of interfaces to support the development
of device drivers. This document is an only somewhat organized collection
of some of those interfaces — it will hopefully get better over time! The
available subsections can be seen below.
.. class:: toc-title
Table of contents
.. toctree::
:maxdepth: 2
basics
infrastructure
message-based
sound
frame-buffer
input
spi
i2c
hsi
miscellaneous
Device drivers infrastructure
=============================
The Basic Device Driver-Model Structures
----------------------------------------
.. kernel-doc:: include/linux/device.h
:internal:
Device Drivers Base
-------------------
.. kernel-doc:: drivers/base/init.c
:internal:
.. kernel-doc:: drivers/base/driver.c
:export:
.. kernel-doc:: drivers/base/core.c
:export:
.. kernel-doc:: drivers/base/syscore.c
:export:
.. kernel-doc:: drivers/base/class.c
:export:
.. kernel-doc:: drivers/base/node.c
:internal:
.. kernel-doc:: drivers/base/firmware_class.c
:export:
.. kernel-doc:: drivers/base/transport_class.c
:export:
.. kernel-doc:: drivers/base/dd.c
:export:
.. kernel-doc:: include/linux/platform_device.h
:internal:
.. kernel-doc:: drivers/base/platform.c
:export:
.. kernel-doc:: drivers/base/bus.c
:export:
Buffer Sharing and Synchronization
----------------------------------
The dma-buf subsystem provides the framework for sharing buffers for
hardware (DMA) access across multiple device drivers and subsystems, and
for synchronizing asynchronous hardware access.
This is used, for example, by drm "prime" multi-GPU support, but is of
course not limited to GPU use cases.
The three main components of this are: (1) dma-buf, representing a
sg_table and exposed to userspace as a file descriptor to allow passing
between devices, (2) fence, which provides a mechanism to signal when
one device as finished access, and (3) reservation, which manages the
shared or exclusive fence(s) associated with the buffer.
dma-buf
~~~~~~~
.. kernel-doc:: drivers/dma-buf/dma-buf.c
:export:
.. kernel-doc:: include/linux/dma-buf.h
:internal:
reservation
~~~~~~~~~~~
.. kernel-doc:: drivers/dma-buf/reservation.c
:doc: Reservation Object Overview
.. kernel-doc:: drivers/dma-buf/reservation.c
:export:
.. kernel-doc:: include/linux/reservation.h
:internal:
fence
~~~~~
.. kernel-doc:: drivers/dma-buf/fence.c
:export:
.. kernel-doc:: include/linux/fence.h
:internal:
.. kernel-doc:: drivers/dma-buf/seqno-fence.c
:export:
.. kernel-doc:: include/linux/seqno-fence.h
:internal:
.. kernel-doc:: drivers/dma-buf/fence-array.c
:export:
.. kernel-doc:: include/linux/fence-array.h
:internal:
.. kernel-doc:: drivers/dma-buf/reservation.c
:export:
.. kernel-doc:: include/linux/reservation.h
:internal:
.. kernel-doc:: drivers/dma-buf/sync_file.c
:export:
.. kernel-doc:: include/linux/sync_file.h
:internal:
Device Drivers DMA Management
-----------------------------
.. kernel-doc:: drivers/base/dma-coherent.c
:export:
.. kernel-doc:: drivers/base/dma-mapping.c
:export:
Device Drivers Power Management
-------------------------------
.. kernel-doc:: drivers/base/power/main.c
:export:
Device Drivers ACPI Support
---------------------------
.. kernel-doc:: drivers/acpi/scan.c
:export:
.. kernel-doc:: drivers/acpi/scan.c
:internal:
Device drivers PnP support
--------------------------
.. kernel-doc:: drivers/pnp/core.c
:internal:
.. kernel-doc:: drivers/pnp/card.c
:export:
.. kernel-doc:: drivers/pnp/driver.c
:internal:
.. kernel-doc:: drivers/pnp/manager.c
:export:
.. kernel-doc:: drivers/pnp/support.c
:export:
Userspace IO devices
--------------------
.. kernel-doc:: drivers/uio/uio.c
:export:
.. kernel-doc:: include/linux/uio_driver.h
:internal:
Input Subsystem
===============
Input core
----------
.. kernel-doc:: include/linux/input.h
:internal:
.. kernel-doc:: drivers/input/input.c
:export:
.. kernel-doc:: drivers/input/ff-core.c
:export:
.. kernel-doc:: drivers/input/ff-memless.c
:export:
Multitouch Library
------------------
.. kernel-doc:: include/linux/input/mt.h
:internal:
.. kernel-doc:: drivers/input/input-mt.c
:export:
Polled input devices
--------------------
.. kernel-doc:: include/linux/input-polldev.h
:internal:
.. kernel-doc:: drivers/input/input-polldev.c
:export:
Matrix keyboards/keypads
------------------------
.. kernel-doc:: include/linux/input/matrix_keypad.h
:internal:
Sparse keymap support
---------------------
.. kernel-doc:: include/linux/input/sparse-keymap.h
:internal:
.. kernel-doc:: drivers/input/sparse-keymap.c
:export:
Message-based devices
=====================
Fusion message devices
----------------------
.. kernel-doc:: drivers/message/fusion/mptbase.c
:export:
.. kernel-doc:: drivers/message/fusion/mptscsih.c
:export:
Parallel Port Devices
=====================
.. kernel-doc:: include/linux/parport.h
:internal:
.. kernel-doc:: drivers/parport/ieee1284.c
:export:
.. kernel-doc:: drivers/parport/share.c
:export:
.. kernel-doc:: drivers/parport/daisy.c
:internal:
16x50 UART Driver
=================
.. kernel-doc:: drivers/tty/serial/serial_core.c
:export:
.. kernel-doc:: drivers/tty/serial/8250/8250_core.c
:export:
Pulse-Width Modulation (PWM)
============================
Pulse-width modulation is a modulation technique primarily used to
control power supplied to electrical devices.
The PWM framework provides an abstraction for providers and consumers of
PWM signals. A controller that provides one or more PWM signals is
registered as :c:type:`struct pwm_chip <pwm_chip>`. Providers
are expected to embed this structure in a driver-specific structure.
This structure contains fields that describe a particular chip.
A chip exposes one or more PWM signal sources, each of which exposed as
a :c:type:`struct pwm_device <pwm_device>`. Operations can be
performed on PWM devices to control the period, duty cycle, polarity and
active state of the signal.
Note that PWM devices are exclusive resources: they can always only be
used by one consumer at a time.
.. kernel-doc:: include/linux/pwm.h
:internal:
.. kernel-doc:: drivers/pwm/core.c
:export:
Sound Devices
=============
.. kernel-doc:: include/sound/core.h
:internal:
.. kernel-doc:: sound/sound_core.c
:export:
.. kernel-doc:: include/sound/pcm.h
:internal:
.. kernel-doc:: sound/core/pcm.c
:export:
.. kernel-doc:: sound/core/device.c
:export:
.. kernel-doc:: sound/core/info.c
:export:
.. kernel-doc:: sound/core/rawmidi.c
:export:
.. kernel-doc:: sound/core/sound.c
:export:
.. kernel-doc:: sound/core/memory.c
:export:
.. kernel-doc:: sound/core/pcm_memory.c
:export:
.. kernel-doc:: sound/core/init.c
:export:
.. kernel-doc:: sound/core/isadma.c
:export:
.. kernel-doc:: sound/core/control.c
:export:
.. kernel-doc:: sound/core/pcm_lib.c
:export:
.. kernel-doc:: sound/core/hwdep.c
:export:
.. kernel-doc:: sound/core/pcm_native.c
:export:
.. kernel-doc:: sound/core/memalloc.c
:export:
Serial Peripheral Interface (SPI)
=================================
SPI is the "Serial Peripheral Interface", widely used with embedded
systems because it is a simple and efficient interface: basically a
multiplexed shift register. Its three signal wires hold a clock (SCK,
often in the range of 1-20 MHz), a "Master Out, Slave In" (MOSI) data
line, and a "Master In, Slave Out" (MISO) data line. SPI is a full
duplex protocol; for each bit shifted out the MOSI line (one per clock)
another is shifted in on the MISO line. Those bits are assembled into
words of various sizes on the way to and from system memory. An
additional chipselect line is usually active-low (nCS); four signals are
normally used for each peripheral, plus sometimes an interrupt.
The SPI bus facilities listed here provide a generalized interface to
declare SPI busses and devices, manage them according to the standard
Linux driver model, and perform input/output operations. At this time,
only "master" side interfaces are supported, where Linux talks to SPI
peripherals and does not implement such a peripheral itself. (Interfaces
to support implementing SPI slaves would necessarily look different.)
The programming interface is structured around two kinds of driver, and
two kinds of device. A "Controller Driver" abstracts the controller
hardware, which may be as simple as a set of GPIO pins or as complex as
a pair of FIFOs connected to dual DMA engines on the other side of the
SPI shift register (maximizing throughput). Such drivers bridge between
whatever bus they sit on (often the platform bus) and SPI, and expose
the SPI side of their device as a :c:type:`struct spi_master
<spi_master>`. SPI devices are children of that master,
represented as a :c:type:`struct spi_device <spi_device>` and
manufactured from :c:type:`struct spi_board_info
<spi_board_info>` descriptors which are usually provided by
board-specific initialization code. A :c:type:`struct spi_driver
<spi_driver>` is called a "Protocol Driver", and is bound to a
spi_device using normal driver model calls.
The I/O model is a set of queued messages. Protocol drivers submit one
or more :c:type:`struct spi_message <spi_message>` objects,
which are processed and completed asynchronously. (There are synchronous
wrappers, however.) Messages are built from one or more
:c:type:`struct spi_transfer <spi_transfer>` objects, each of
which wraps a full duplex SPI transfer. A variety of protocol tweaking
options are needed, because different chips adopt very different
policies for how they use the bits transferred with SPI.
.. kernel-doc:: include/linux/spi/spi.h
:internal:
.. kernel-doc:: drivers/spi/spi.c
:functions: spi_register_board_info
.. kernel-doc:: drivers/spi/spi.c
:export:
...@@ -50,7 +50,7 @@ Attributes of devices can be exported by a device driver through sysfs. ...@@ -50,7 +50,7 @@ Attributes of devices can be exported by a device driver through sysfs.
Please see Documentation/filesystems/sysfs.txt for more information Please see Documentation/filesystems/sysfs.txt for more information
on how sysfs works. on how sysfs works.
As explained in Documentation/kobject.txt, device attributes must be be As explained in Documentation/kobject.txt, device attributes must be
created before the KOBJ_ADD uevent is generated. The only way to realize created before the KOBJ_ADD uevent is generated. The only way to realize
that is by defining an attribute group. that is by defining an attribute group.
......
...@@ -145,7 +145,7 @@ Table 1-1: Process specific entries in /proc ...@@ -145,7 +145,7 @@ Table 1-1: Process specific entries in /proc
symbol the task is blocked in - or "0" if not blocked. symbol the task is blocked in - or "0" if not blocked.
pagemap Page table pagemap Page table
stack Report full stack trace, enable via CONFIG_STACKTRACE stack Report full stack trace, enable via CONFIG_STACKTRACE
smaps a extension based on maps, showing the memory consumption of smaps an extension based on maps, showing the memory consumption of
each mapping and flags associated with it each mapping and flags associated with it
numa_maps an extension based on maps, showing the memory locality and numa_maps an extension based on maps, showing the memory locality and
binding policy as well as mem usage (in pages) of each mapping. binding policy as well as mem usage (in pages) of each mapping.
......
...@@ -13,6 +13,7 @@ Contents: ...@@ -13,6 +13,7 @@ Contents:
kernel-documentation kernel-documentation
dev-tools/tools dev-tools/tools
driver-api/index
media/index media/index
gpu/index gpu/index
......
...@@ -34,15 +34,18 @@ will need to add a a 32-bit compat layer: ...@@ -34,15 +34,18 @@ will need to add a a 32-bit compat layer:
64-bit platforms do. So we always need padding to the natural size to get 64-bit platforms do. So we always need padding to the natural size to get
this right. this right.
* Pad the entire struct to a multiple of 64-bits - the structure size will * Pad the entire struct to a multiple of 64-bits if the structure contains
otherwise differ on 32-bit versus 64-bit. Having a different structure size 64-bit types - the structure size will otherwise differ on 32-bit versus
hurts when passing arrays of structures to the kernel, or if the kernel 64-bit. Having a different structure size hurts when passing arrays of
checks the structure size, which e.g. the drm core does. structures to the kernel, or if the kernel checks the structure size, which
e.g. the drm core does.
* Pointers are __u64, cast from/to a uintprt_t on the userspace side and * Pointers are __u64, cast from/to a uintprt_t on the userspace side and
from/to a void __user * in the kernel. Try really hard not to delay this from/to a void __user * in the kernel. Try really hard not to delay this
conversion or worse, fiddle the raw __u64 through your code since that conversion or worse, fiddle the raw __u64 through your code since that
diminishes the checking tools like sparse can provide. diminishes the checking tools like sparse can provide. The macro
u64_to_user_ptr can be used in the kernel to avoid warnings about integers
and pointres of different sizes.
Basics Basics
......
...@@ -2574,8 +2574,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted. ...@@ -2574,8 +2574,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
nodelayacct [KNL] Disable per-task delay accounting nodelayacct [KNL] Disable per-task delay accounting
nodisconnect [HW,SCSI,M68K] Disables SCSI disconnects.
nodsp [SH] Disable hardware DSP at boot time. nodsp [SH] Disable hardware DSP at boot time.
noefi Disable EFI runtime services support. noefi Disable EFI runtime services support.
......
...@@ -79,8 +79,6 @@ parameters may be changed at runtime by the command ...@@ -79,8 +79,6 @@ parameters may be changed at runtime by the command
ncr53c8xx= [HW,SCSI] ncr53c8xx= [HW,SCSI]
nodisconnect [HW,SCSI,M68K] Disables SCSI disconnects.
osst= [HW,SCSI] SCSI Tape Driver osst= [HW,SCSI] SCSI Tape Driver
Format: <buffer_size>,<write_threshold> Format: <buffer_size>,<write_threshold>
See also Documentation/scsi/st.txt. See also Documentation/scsi/st.txt.
......
# -*- coding: utf-8; mode: python -*- # -*- coding: utf-8; mode: python -*-
# pylint: disable=W0141,C0113,C0103,C0325
u""" u"""
cdomain cdomain
~~~~~~~ ~~~~~~~
...@@ -25,15 +26,26 @@ u""" ...@@ -25,15 +26,26 @@ u"""
* :c:func:`VIDIOC_LOG_STATUS` or * :c:func:`VIDIOC_LOG_STATUS` or
* :any:`VIDIOC_LOG_STATUS` (``:any:`` needs sphinx 1.3) * :any:`VIDIOC_LOG_STATUS` (``:any:`` needs sphinx 1.3)
* Handle signatures of function-like macros well. Don't try to deduce
arguments types of function-like macros.
""" """
from docutils import nodes
from docutils.parsers.rst import directives from docutils.parsers.rst import directives
import sphinx
from sphinx import addnodes
from sphinx.domains.c import c_funcptr_sig_re, c_sig_re
from sphinx.domains.c import CObject as Base_CObject from sphinx.domains.c import CObject as Base_CObject
from sphinx.domains.c import CDomain as Base_CDomain from sphinx.domains.c import CDomain as Base_CDomain
__version__ = '1.0' __version__ = '1.0'
# Get Sphinx version
major, minor, patch = map(int, sphinx.__version__.split("."))
def setup(app): def setup(app):
app.override_domain(CDomain) app.override_domain(CDomain)
...@@ -53,9 +65,54 @@ class CObject(Base_CObject): ...@@ -53,9 +65,54 @@ class CObject(Base_CObject):
"name" : directives.unchanged "name" : directives.unchanged
} }
def handle_func_like_macro(self, sig, signode):
u"""Handles signatures of function-like macros.
If the objtype is 'function' and the the signature ``sig`` is a
function-like macro, the name of the macro is returned. Otherwise
``False`` is returned. """
if not self.objtype == 'function':
return False
m = c_funcptr_sig_re.match(sig)
if m is None:
m = c_sig_re.match(sig)
if m is None:
raise ValueError('no match')
rettype, fullname, arglist, _const = m.groups()
arglist = arglist.strip()
if rettype or not arglist:
return False
arglist = arglist.replace('`', '').replace('\\ ', '') # remove markup
arglist = [a.strip() for a in arglist.split(",")]
# has the first argument a type?
if len(arglist[0].split(" ")) > 1:
return False
# This is a function-like macro, it's arguments are typeless!
signode += addnodes.desc_name(fullname, fullname)
paramlist = addnodes.desc_parameterlist()
signode += paramlist
for argname in arglist:
param = addnodes.desc_parameter('', '', noemph=True)
# separate by non-breaking space in the output
param += nodes.emphasis(argname, argname)
paramlist += param
return fullname
def handle_signature(self, sig, signode): def handle_signature(self, sig, signode):
"""Transform a C signature into RST nodes.""" """Transform a C signature into RST nodes."""
fullname = super(CObject, self).handle_signature(sig, signode)
fullname = self.handle_func_like_macro(sig, signode)
if not fullname:
fullname = super(CObject, self).handle_signature(sig, signode)
if "name" in self.options: if "name" in self.options:
if self.objtype == 'function': if self.objtype == 'function':
fullname = self.options["name"] fullname = self.options["name"]
...@@ -85,8 +142,14 @@ class CObject(Base_CObject): ...@@ -85,8 +142,14 @@ class CObject(Base_CObject):
indextext = self.get_index_text(name) indextext = self.get_index_text(name)
if indextext: if indextext:
self.indexnode['entries'].append(('single', indextext, if major == 1 and minor < 4:
targetname, '', None)) # indexnode's tuple changed in 1.4
# https://github.com/sphinx-doc/sphinx/commit/e6a5a3a92e938fcd75866b4227db9e0524d58f7c
self.indexnode['entries'].append(
('single', indextext, targetname, ''))
else:
self.indexnode['entries'].append(
('single', indextext, targetname, '', None))
class CDomain(Base_CDomain): class CDomain(Base_CDomain):
......
...@@ -12,13 +12,13 @@ ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space ...@@ -12,13 +12,13 @@ ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole
ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB) ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ... ... unused hole ...
ffffec0000000000 - fffffc0000000000 (=44 bits) kasan shadow memory (16TB) ffffec0000000000 - fffffbffffffffff (=44 bits) kasan shadow memory (16TB)
... unused hole ... ... unused hole ...
ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
... unused hole ... ... unused hole ...
ffffffef00000000 - ffffffff00000000 (=64 GB) EFI region mapping space ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
... unused hole ... ... unused hole ...
ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0 ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
......
...@@ -5606,7 +5606,7 @@ M: Sebastian Reichel <sre@kernel.org> ...@@ -5606,7 +5606,7 @@ M: Sebastian Reichel <sre@kernel.org>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi.git T: git git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi.git
S: Maintained S: Maintained
F: Documentation/ABI/testing/sysfs-bus-hsi F: Documentation/ABI/testing/sysfs-bus-hsi
F: Documentation/hsi.txt F: Documentation/device-drivers/serial-interfaces.rst
F: drivers/hsi/ F: drivers/hsi/
F: include/linux/hsi/ F: include/linux/hsi/
F: include/uapi/linux/hsi/ F: include/uapi/linux/hsi/
......
...@@ -212,6 +212,7 @@ my $anon_struct_union = 0; ...@@ -212,6 +212,7 @@ my $anon_struct_union = 0;
my $type_constant = '\%([-_\w]+)'; my $type_constant = '\%([-_\w]+)';
my $type_func = '(\w+)\(\)'; my $type_func = '(\w+)\(\)';
my $type_param = '\@(\w+)'; my $type_param = '\@(\w+)';
my $type_fp_param = '\@(\w+)\(\)'; # Special RST handling for func ptr params
my $type_struct = '\&((struct\s*)*[_\w]+)'; my $type_struct = '\&((struct\s*)*[_\w]+)';
my $type_struct_xml = '\\&amp;((struct\s*)*[_\w]+)'; my $type_struct_xml = '\\&amp;((struct\s*)*[_\w]+)';
my $type_env = '(\$\w+)'; my $type_env = '(\$\w+)';
...@@ -292,6 +293,7 @@ my @highlights_rst = ( ...@@ -292,6 +293,7 @@ my @highlights_rst = (
# Note: need to escape () to avoid func matching later # Note: need to escape () to avoid func matching later
[$type_member_func, "\\:c\\:type\\:`\$1\$2\\\\(\\\\) <\$1>`"], [$type_member_func, "\\:c\\:type\\:`\$1\$2\\\\(\\\\) <\$1>`"],
[$type_member, "\\:c\\:type\\:`\$1\$2 <\$1>`"], [$type_member, "\\:c\\:type\\:`\$1\$2 <\$1>`"],
[$type_fp_param, "**\$1\\\\(\\\\)**"],
[$type_func, "\\:c\\:func\\:`\$1()`"], [$type_func, "\\:c\\:func\\:`\$1()`"],
[$type_struct_full, "\\:c\\:type\\:`\$1 \$2 <\$2>`"], [$type_struct_full, "\\:c\\:type\\:`\$1 \$2 <\$2>`"],
[$type_enum_full, "\\:c\\:type\\:`\$1 \$2 <\$2>`"], [$type_enum_full, "\\:c\\:type\\:`\$1 \$2 <\$2>`"],
...@@ -412,7 +414,7 @@ my $doc_com_body = '\s*\* ?'; ...@@ -412,7 +414,7 @@ my $doc_com_body = '\s*\* ?';
my $doc_decl = $doc_com . '(\w+)'; my $doc_decl = $doc_com . '(\w+)';
# @params and a strictly limited set of supported section names # @params and a strictly limited set of supported section names
my $doc_sect = $doc_com . my $doc_sect = $doc_com .
'\s*(\@\w+|description|context|returns?|notes?|examples?)\s*:(.*)'; '\s*(\@[.\w]+|\@\.\.\.|description|context|returns?|notes?|examples?)\s*:(.*)';
my $doc_content = $doc_com_body . '(.*)'; my $doc_content = $doc_com_body . '(.*)';
my $doc_block = $doc_com . 'DOC:\s*(.*)?'; my $doc_block = $doc_com . 'DOC:\s*(.*)?';
my $doc_inline_start = '^\s*/\*\*\s*$'; my $doc_inline_start = '^\s*/\*\*\s*$';
...@@ -2351,6 +2353,7 @@ sub push_parameter($$$) { ...@@ -2351,6 +2353,7 @@ sub push_parameter($$$) {
if ($type eq "" && $param =~ /\.\.\.$/) if ($type eq "" && $param =~ /\.\.\.$/)
{ {
$param = "...";
if (!defined $parameterdescs{$param} || $parameterdescs{$param} eq "") { if (!defined $parameterdescs{$param} || $parameterdescs{$param} eq "") {
$parameterdescs{$param} = "variable arguments"; $parameterdescs{$param} = "variable arguments";
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment