genirq: Implement a sane sparse_irq allocator
The current sparse_irq allocator has several short comings due to failures in the design or the lack of it: - Requires iteration over the number of active irqs to find a free slot (Some architectures have grown their own workarounds for this) - Removal of entries is not possible - Racy between create_irq_nr and destroy_irq (plugged by horrible callbacks) - Migration of active irq descriptors is not possible - No bulk allocation of irq ranges - Sprinkeled irq_desc references all over the place outside of kernel/irq/ (The previous chip functions series is addressing this issue) Implement a sane allocator which fixes the above short comings (though migration of active descriptors needs a full tree wide cleanup of the direct and mostly unlocked access to irq_desc). The new allocator still uses a radix_tree, but uses a bitmap for keeping track of allocated irq numbers. That allows: - Fast lookup of a free slot - Allows the removal of descriptors - Prevents the create/destroy race - Bulk allocation of consecutive irq ranges - Basic design is ready for migration of life descriptors after further cleanups The bitmap is also used in the SPARSE_IRQ=n case for lookup and raceless (de)allocation of irq numbers. So it removes the requirement for looping through the descriptor array to find slots. Right now it uses sparse_irq_lock to protect the bitmap and the radix tree, but after cleaning up all users we should be able convert that to a mutex and to switch the radix_tree and decriptor allocations to GFP_KERNEL. [ Folded in a bugfix from Yinghai Lu ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@elte.hu>
Showing
Please register or sign in to comment