Commit 2ea567cb authored by David S. Miller's avatar David S. Miller

Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc-next

Merge SFC driver changes from Ben Hutchings.
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 2771399a f073dde0
sfc-y += efx.o nic.o falcon.o siena.o tx.o rx.o filter.o \ sfc-y += efx.o nic.o falcon.o siena.o tx.o rx.o filter.o \
falcon_xmac.o mcdi_mac.o \
selftest.o ethtool.o qt202x_phy.o mdio_10g.o \ selftest.o ethtool.o qt202x_phy.o mdio_10g.o \
tenxpress.o txc43128_phy.o falcon_boards.o \ tenxpress.o txc43128_phy.o falcon_boards.o \
mcdi.o mcdi_phy.o mcdi_mon.o ptp.o mcdi.o mcdi_port.o mcdi_mon.o ptp.o
sfc-$(CONFIG_SFC_MTD) += mtd.o sfc-$(CONFIG_SFC_MTD) += mtd.o
sfc-$(CONFIG_SFC_SRIOV) += siena_sriov.o sfc-$(CONFIG_SFC_SRIOV) += siena_sriov.o
......
...@@ -709,7 +709,6 @@ static int efx_ethtool_set_pauseparam(struct net_device *net_dev, ...@@ -709,7 +709,6 @@ static int efx_ethtool_set_pauseparam(struct net_device *net_dev,
struct efx_nic *efx = netdev_priv(net_dev); struct efx_nic *efx = netdev_priv(net_dev);
u8 wanted_fc, old_fc; u8 wanted_fc, old_fc;
u32 old_adv; u32 old_adv;
bool reset;
int rc = 0; int rc = 0;
mutex_lock(&efx->mac_lock); mutex_lock(&efx->mac_lock);
...@@ -732,24 +731,10 @@ static int efx_ethtool_set_pauseparam(struct net_device *net_dev, ...@@ -732,24 +731,10 @@ static int efx_ethtool_set_pauseparam(struct net_device *net_dev,
goto out; goto out;
} }
/* TX flow control may automatically turn itself off if the /* Hook for Falcon bug 11482 workaround */
* link partner (intermittently) stops responding to pause if (efx->type->prepare_enable_fc_tx &&
* frames. There isn't any indication that this has happened, (wanted_fc & EFX_FC_TX) && !(efx->wanted_fc & EFX_FC_TX))
* so the best we do is leave it up to the user to spot this efx->type->prepare_enable_fc_tx(efx);
* and fix it be cycling transmit flow control on this end. */
reset = (wanted_fc & EFX_FC_TX) && !(efx->wanted_fc & EFX_FC_TX);
if (EFX_WORKAROUND_11482(efx) && reset) {
if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
/* Recover by resetting the EM block */
falcon_stop_nic_stats(efx);
falcon_drain_tx_fifo(efx);
falcon_reconfigure_xmac(efx);
falcon_start_nic_stats(efx);
} else {
/* Schedule a reset to recover */
efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
}
}
old_adv = efx->link_advertising; old_adv = efx->link_advertising;
old_fc = efx->wanted_fc; old_fc = efx->wanted_fc;
......
This diff is collapsed.
This diff is collapsed.
...@@ -675,7 +675,7 @@ s32 efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec, ...@@ -675,7 +675,7 @@ s32 efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
BUILD_BUG_ON(EFX_FILTER_INDEX_UC_DEF != 0); BUILD_BUG_ON(EFX_FILTER_INDEX_UC_DEF != 0);
BUILD_BUG_ON(EFX_FILTER_INDEX_MC_DEF != BUILD_BUG_ON(EFX_FILTER_INDEX_MC_DEF !=
EFX_FILTER_MC_DEF - EFX_FILTER_UC_DEF); EFX_FILTER_MC_DEF - EFX_FILTER_UC_DEF);
rep_index = spec->type - EFX_FILTER_INDEX_UC_DEF; rep_index = spec->type - EFX_FILTER_UC_DEF;
ins_index = rep_index; ins_index = rep_index;
spin_lock_bh(&state->lock); spin_lock_bh(&state->lock);
......
...@@ -83,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg) ...@@ -83,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
} }
/* Write a normal 128-bit CSR, locking as appropriate. */ /* Write a normal 128-bit CSR, locking as appropriate. */
static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
unsigned int reg) unsigned int reg)
{ {
unsigned long flags __attribute__ ((unused)); unsigned long flags __attribute__ ((unused));
...@@ -108,7 +108,7 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, ...@@ -108,7 +108,7 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */ /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index) const efx_qword_t *value, unsigned int index)
{ {
unsigned int addr = index * sizeof(*value); unsigned int addr = index * sizeof(*value);
unsigned long flags __attribute__ ((unused)); unsigned long flags __attribute__ ((unused));
...@@ -129,7 +129,7 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, ...@@ -129,7 +129,7 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
} }
/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value, static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
unsigned int reg) unsigned int reg)
{ {
netif_vdbg(efx, hw, efx->net_dev, netif_vdbg(efx, hw, efx->net_dev,
...@@ -190,8 +190,9 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, ...@@ -190,8 +190,9 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
} }
/* Write a 128-bit CSR forming part of a table */ /* Write a 128-bit CSR forming part of a table */
static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value, static inline void
unsigned int reg, unsigned int index) efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
unsigned int reg, unsigned int index)
{ {
efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
} }
...@@ -239,8 +240,9 @@ static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, ...@@ -239,8 +240,9 @@ static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
/* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of /* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
* RX_DESC_UPD or TX_DESC_UPD) * RX_DESC_UPD or TX_DESC_UPD)
*/ */
static inline void _efx_writed_page(struct efx_nic *efx, efx_dword_t *value, static inline void
unsigned int reg, unsigned int page) _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
unsigned int reg, unsigned int page)
{ {
efx_writed(efx, value, EFX_PAGED_REG(page, reg)); efx_writed(efx, value, EFX_PAGED_REG(page, reg));
} }
...@@ -256,7 +258,7 @@ static inline void _efx_writed_page(struct efx_nic *efx, efx_dword_t *value, ...@@ -256,7 +258,7 @@ static inline void _efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
* collector register. * collector register.
*/ */
static inline void _efx_writed_page_locked(struct efx_nic *efx, static inline void _efx_writed_page_locked(struct efx_nic *efx,
efx_dword_t *value, const efx_dword_t *value,
unsigned int reg, unsigned int reg,
unsigned int page) unsigned int page)
{ {
......
This diff is collapsed.
...@@ -65,18 +65,20 @@ struct efx_mcdi_mon { ...@@ -65,18 +65,20 @@ struct efx_mcdi_mon {
unsigned int n_attrs; unsigned int n_attrs;
}; };
extern void efx_mcdi_init(struct efx_nic *efx); extern int efx_mcdi_init(struct efx_nic *efx);
extern int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const u8 *inbuf, extern int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
size_t inlen, u8 *outbuf, size_t outlen, const efx_dword_t *inbuf, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual); size_t *outlen_actual);
extern void efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, extern void efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
const u8 *inbuf, size_t inlen); const efx_dword_t *inbuf, size_t inlen);
extern int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, extern int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
u8 *outbuf, size_t outlen, efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual); size_t *outlen_actual);
extern int efx_mcdi_poll_reboot(struct efx_nic *efx); extern int efx_mcdi_poll_reboot(struct efx_nic *efx);
extern void efx_mcdi_mode_poll(struct efx_nic *efx); extern void efx_mcdi_mode_poll(struct efx_nic *efx);
extern void efx_mcdi_mode_event(struct efx_nic *efx); extern void efx_mcdi_mode_event(struct efx_nic *efx);
...@@ -85,41 +87,82 @@ extern void efx_mcdi_process_event(struct efx_channel *channel, ...@@ -85,41 +87,82 @@ extern void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event); efx_qword_t *event);
extern void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev); extern void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev);
#define MCDI_PTR2(_buf, _ofst) \ /* We expect that 16- and 32-bit fields in MCDI requests and responses
(((u8 *)_buf) + _ofst) * are appropriately aligned, but 64-bit fields are only
#define MCDI_SET_DWORD2(_buf, _ofst, _value) \ * 32-bit-aligned. Also, on Siena we must copy to the MC shared
EFX_POPULATE_DWORD_1(*((efx_dword_t *)MCDI_PTR2(_buf, _ofst)), \ * memory strictly 32 bits at a time, so add any necessary padding.
EFX_DWORD_0, _value) */
#define MCDI_DWORD2(_buf, _ofst) \ #define MCDI_DECLARE_BUF(_name, _len) \
EFX_DWORD_FIELD(*((efx_dword_t *)MCDI_PTR2(_buf, _ofst)), \ efx_dword_t _name[DIV_ROUND_UP(_len, 4)]
EFX_DWORD_0) #define _MCDI_PTR(_buf, _offset) \
#define MCDI_QWORD2(_buf, _ofst) \ ((u8 *)(_buf) + (_offset))
EFX_QWORD_FIELD64(*((efx_qword_t *)MCDI_PTR2(_buf, _ofst)), \ #define MCDI_PTR(_buf, _field) \
EFX_QWORD_0) _MCDI_PTR(_buf, MC_CMD_ ## _field ## _OFST)
#define _MCDI_CHECK_ALIGN(_ofst, _align) \
#define MCDI_PTR(_buf, _ofst) \ ((_ofst) + BUILD_BUG_ON_ZERO((_ofst) & (_align - 1)))
MCDI_PTR2(_buf, MC_CMD_ ## _ofst ## _OFST) #define _MCDI_DWORD(_buf, _field) \
#define MCDI_ARRAY_PTR(_buf, _field, _type, _index) \ ((_buf) + (_MCDI_CHECK_ALIGN(MC_CMD_ ## _field ## _OFST, 4) >> 2))
MCDI_PTR2(_buf, \
MC_CMD_ ## _field ## _OFST + \ #define MCDI_SET_DWORD(_buf, _field, _value) \
(_index) * MC_CMD_ ## _type ## _TYPEDEF_LEN) EFX_POPULATE_DWORD_1(*_MCDI_DWORD(_buf, _field), EFX_DWORD_0, _value)
#define MCDI_SET_DWORD(_buf, _ofst, _value) \ #define MCDI_DWORD(_buf, _field) \
MCDI_SET_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST, _value) EFX_DWORD_FIELD(*_MCDI_DWORD(_buf, _field), EFX_DWORD_0)
#define MCDI_DWORD(_buf, _ofst) \ #define MCDI_SET_QWORD(_buf, _field, _value) \
MCDI_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST) do { \
#define MCDI_QWORD(_buf, _ofst) \ EFX_POPULATE_DWORD_1(_MCDI_DWORD(_buf, _field)[0], \
MCDI_QWORD2(_buf, MC_CMD_ ## _ofst ## _OFST) EFX_DWORD_0, (u32)(_value)); \
EFX_POPULATE_DWORD_1(_MCDI_DWORD(_buf, _field)[1], \
EFX_DWORD_0, (u64)(_value) >> 32); \
} while (0)
#define MCDI_QWORD(_buf, _field) \
(EFX_DWORD_FIELD(_MCDI_DWORD(_buf, _field)[0], EFX_DWORD_0) | \
(u64)EFX_DWORD_FIELD(_MCDI_DWORD(_buf, _field)[1], EFX_DWORD_0) << 32)
#define MCDI_FIELD(_ptr, _type, _field) \
EFX_EXTRACT_DWORD( \
*(efx_dword_t *) \
_MCDI_PTR(_ptr, MC_CMD_ ## _type ## _ ## _field ## _OFST & ~3),\
MC_CMD_ ## _type ## _ ## _field ## _LBN & 0x1f, \
(MC_CMD_ ## _type ## _ ## _field ## _LBN & 0x1f) + \
MC_CMD_ ## _type ## _ ## _field ## _WIDTH - 1)
#define _MCDI_ARRAY_PTR(_buf, _field, _index, _align) \
(_MCDI_PTR(_buf, _MCDI_CHECK_ALIGN(MC_CMD_ ## _field ## _OFST, _align))\
+ (_index) * _MCDI_CHECK_ALIGN(MC_CMD_ ## _field ## _LEN, _align))
#define MCDI_DECLARE_STRUCT_PTR(_name) \
efx_dword_t *_name
#define MCDI_ARRAY_STRUCT_PTR(_buf, _field, _index) \
((efx_dword_t *)_MCDI_ARRAY_PTR(_buf, _field, _index, 4))
#define MCDI_VAR_ARRAY_LEN(_len, _field) \
min_t(size_t, MC_CMD_ ## _field ## _MAXNUM, \
((_len) - MC_CMD_ ## _field ## _OFST) / MC_CMD_ ## _field ## _LEN)
#define MCDI_ARRAY_WORD(_buf, _field, _index) \
(BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 2) + \
le16_to_cpu(*(__force const __le16 *) \
_MCDI_ARRAY_PTR(_buf, _field, _index, 2)))
#define _MCDI_ARRAY_DWORD(_buf, _field, _index) \
(BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 4) + \
(efx_dword_t *)_MCDI_ARRAY_PTR(_buf, _field, _index, 4))
#define MCDI_SET_ARRAY_DWORD(_buf, _field, _index, _value) \
EFX_SET_DWORD_FIELD(*_MCDI_ARRAY_DWORD(_buf, _field, _index), \
EFX_DWORD_0, _value)
#define MCDI_ARRAY_DWORD(_buf, _field, _index) \
EFX_DWORD_FIELD(*_MCDI_ARRAY_DWORD(_buf, _field, _index), EFX_DWORD_0)
#define _MCDI_ARRAY_QWORD(_buf, _field, _index) \
(BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 8) + \
(efx_dword_t *)_MCDI_ARRAY_PTR(_buf, _field, _index, 4))
#define MCDI_SET_ARRAY_QWORD(_buf, _field, _index, _value) \
do { \
EFX_SET_DWORD_FIELD(_MCDI_ARRAY_QWORD(_buf, _field, _index)[0],\
EFX_DWORD_0, (u32)(_value)); \
EFX_SET_DWORD_FIELD(_MCDI_ARRAY_QWORD(_buf, _field, _index)[1],\
EFX_DWORD_0, (u64)(_value) >> 32); \
} while (0)
#define MCDI_ARRAY_FIELD(_buf, _field1, _type, _index, _field2) \
MCDI_FIELD(MCDI_ARRAY_STRUCT_PTR(_buf, _field1, _index), \
_type ## _TYPEDEF, _field2)
#define MCDI_EVENT_FIELD(_ev, _field) \ #define MCDI_EVENT_FIELD(_ev, _field) \
EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field) EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field)
#define MCDI_ARRAY_FIELD(_buf, _field1, _type, _index, _field2) \
EFX_EXTRACT_DWORD( \
*((efx_dword_t *) \
(MCDI_ARRAY_PTR(_buf, _field1, _type, _index) + \
(MC_CMD_ ## _type ## _TYPEDEF_ ## _field2 ## _OFST & ~3))), \
MC_CMD_ ## _type ## _TYPEDEF_ ## _field2 ## _LBN & 0x1f, \
(MC_CMD_ ## _type ## _TYPEDEF_ ## _field2 ## _LBN & 0x1f) + \
MC_CMD_ ## _type ## _TYPEDEF_ ## _field2 ## _WIDTH - 1)
extern void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len); extern void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len);
extern int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, extern int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
...@@ -147,19 +190,23 @@ extern int efx_mcdi_nvram_update_finish(struct efx_nic *efx, ...@@ -147,19 +190,23 @@ extern int efx_mcdi_nvram_update_finish(struct efx_nic *efx,
extern int efx_mcdi_nvram_test_all(struct efx_nic *efx); extern int efx_mcdi_nvram_test_all(struct efx_nic *efx);
extern int efx_mcdi_handle_assertion(struct efx_nic *efx); extern int efx_mcdi_handle_assertion(struct efx_nic *efx);
extern void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode); extern void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode);
extern int efx_mcdi_reset_port(struct efx_nic *efx);
extern int efx_mcdi_reset_mc(struct efx_nic *efx);
extern int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, extern int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,
const u8 *mac, int *id_out); const u8 *mac, int *id_out);
extern int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out); extern int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out);
extern int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id); extern int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id);
extern int efx_mcdi_wol_filter_reset(struct efx_nic *efx); extern int efx_mcdi_wol_filter_reset(struct efx_nic *efx);
extern int efx_mcdi_flush_rxqs(struct efx_nic *efx); extern int efx_mcdi_flush_rxqs(struct efx_nic *efx);
extern int efx_mcdi_port_probe(struct efx_nic *efx);
extern void efx_mcdi_port_remove(struct efx_nic *efx);
extern int efx_mcdi_port_reconfigure(struct efx_nic *efx);
extern void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev);
extern int efx_mcdi_set_mac(struct efx_nic *efx); extern int efx_mcdi_set_mac(struct efx_nic *efx);
extern int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr, #define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
u32 dma_len, int enable, int clear); extern void efx_mcdi_mac_start_stats(struct efx_nic *efx);
extern int efx_mcdi_mac_reconfigure(struct efx_nic *efx); extern void efx_mcdi_mac_stop_stats(struct efx_nic *efx);
extern bool efx_mcdi_mac_check_fault(struct efx_nic *efx); extern bool efx_mcdi_mac_check_fault(struct efx_nic *efx);
extern enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason);
extern int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method);
#ifdef CONFIG_SFC_MCDI_MON #ifdef CONFIG_SFC_MCDI_MON
extern int efx_mcdi_mon_probe(struct efx_nic *efx); extern int efx_mcdi_mon_probe(struct efx_nic *efx);
......
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2009-2010 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
int efx_mcdi_set_mac(struct efx_nic *efx)
{
u32 reject, fcntl;
u8 cmdbytes[MC_CMD_SET_MAC_IN_LEN];
memcpy(cmdbytes + MC_CMD_SET_MAC_IN_ADDR_OFST,
efx->net_dev->dev_addr, ETH_ALEN);
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_MTU,
EFX_MAX_FRAME_LEN(efx->net_dev->mtu));
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_DRAIN, 0);
/* The MCDI command provides for controlling accept/reject
* of broadcast packets too, but the driver doesn't currently
* expose this. */
reject = (efx->promiscuous) ? 0 :
(1 << MC_CMD_SET_MAC_IN_REJECT_UNCST_LBN);
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_REJECT, reject);
switch (efx->wanted_fc) {
case EFX_FC_RX | EFX_FC_TX:
fcntl = MC_CMD_FCNTL_BIDIR;
break;
case EFX_FC_RX:
fcntl = MC_CMD_FCNTL_RESPOND;
break;
default:
fcntl = MC_CMD_FCNTL_OFF;
break;
}
if (efx->wanted_fc & EFX_FC_AUTO)
fcntl = MC_CMD_FCNTL_AUTO;
if (efx->fc_disable)
fcntl = MC_CMD_FCNTL_OFF;
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_FCNTL, fcntl);
return efx_mcdi_rpc(efx, MC_CMD_SET_MAC, cmdbytes, sizeof(cmdbytes),
NULL, 0, NULL);
}
bool efx_mcdi_mac_check_fault(struct efx_nic *efx)
{
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
size_t outlength;
int rc;
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), &outlength);
if (rc) {
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc);
return true;
}
return MCDI_DWORD(outbuf, GET_LINK_OUT_MAC_FAULT) != 0;
}
int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
u32 dma_len, int enable, int clear)
{
u8 inbuf[MC_CMD_MAC_STATS_IN_LEN];
int rc;
efx_dword_t *cmd_ptr;
int period = enable ? 1000 : 0;
u32 addr_hi;
u32 addr_lo;
BUILD_BUG_ON(MC_CMD_MAC_STATS_OUT_DMA_LEN != 0);
addr_lo = ((u64)dma_addr) >> 0;
addr_hi = ((u64)dma_addr) >> 32;
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_LO, addr_lo);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_HI, addr_hi);
cmd_ptr = (efx_dword_t *)MCDI_PTR(inbuf, MAC_STATS_IN_CMD);
EFX_POPULATE_DWORD_7(*cmd_ptr,
MC_CMD_MAC_STATS_IN_DMA, !!enable,
MC_CMD_MAC_STATS_IN_CLEAR, clear,
MC_CMD_MAC_STATS_IN_PERIODIC_CHANGE, 1,
MC_CMD_MAC_STATS_IN_PERIODIC_ENABLE, !!enable,
MC_CMD_MAC_STATS_IN_PERIODIC_CLEAR, 0,
MC_CMD_MAC_STATS_IN_PERIODIC_NOEVENT, 1,
MC_CMD_MAC_STATS_IN_PERIOD_MS, period);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
rc = efx_mcdi_rpc(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: %s failed rc=%d\n",
__func__, enable ? "enable" : "disable", rc);
return rc;
}
int efx_mcdi_mac_reconfigure(struct efx_nic *efx)
{
int rc;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
rc = efx_mcdi_set_mac(efx);
if (rc != 0)
return rc;
return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
efx->multicast_hash.byte,
sizeof(efx->multicast_hash),
NULL, 0, NULL);
}
...@@ -92,13 +92,11 @@ struct efx_mcdi_mon_attribute { ...@@ -92,13 +92,11 @@ struct efx_mcdi_mon_attribute {
static int efx_mcdi_mon_update(struct efx_nic *efx) static int efx_mcdi_mon_update(struct efx_nic *efx)
{ {
struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx); struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
u8 inbuf[MC_CMD_READ_SENSORS_IN_LEN]; MCDI_DECLARE_BUF(inbuf, MC_CMD_READ_SENSORS_IN_LEN);
int rc; int rc;
MCDI_SET_DWORD(inbuf, READ_SENSORS_IN_DMA_ADDR_LO, MCDI_SET_QWORD(inbuf, READ_SENSORS_IN_DMA_ADDR,
hwmon->dma_buf.dma_addr & 0xffffffff); hwmon->dma_buf.dma_addr);
MCDI_SET_DWORD(inbuf, READ_SENSORS_IN_DMA_ADDR_HI,
(u64)hwmon->dma_buf.dma_addr >> 32);
rc = efx_mcdi_rpc(efx, MC_CMD_READ_SENSORS, rc = efx_mcdi_rpc(efx, MC_CMD_READ_SENSORS,
inbuf, sizeof(inbuf), NULL, 0, NULL); inbuf, sizeof(inbuf), NULL, 0, NULL);
...@@ -236,7 +234,7 @@ int efx_mcdi_mon_probe(struct efx_nic *efx) ...@@ -236,7 +234,7 @@ int efx_mcdi_mon_probe(struct efx_nic *efx)
{ {
struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx); struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
unsigned int n_attrs, n_temp = 0, n_cool = 0, n_in = 0; unsigned int n_attrs, n_temp = 0, n_cool = 0, n_in = 0;
u8 outbuf[MC_CMD_SENSOR_INFO_OUT_LENMAX]; MCDI_DECLARE_BUF(outbuf, MC_CMD_SENSOR_INFO_OUT_LENMAX);
size_t outlen; size_t outlen;
char name[12]; char name[12];
u32 mask; u32 mask;
...@@ -400,8 +398,7 @@ int efx_mcdi_mon_probe(struct efx_nic *efx) ...@@ -400,8 +398,7 @@ int efx_mcdi_mon_probe(struct efx_nic *efx)
void efx_mcdi_mon_remove(struct efx_nic *efx) void efx_mcdi_mon_remove(struct efx_nic *efx)
{ {
struct siena_nic_data *nic_data = efx->nic_data; struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
struct efx_mcdi_mon *hwmon = &nic_data->hwmon;
unsigned int i; unsigned int i;
for (i = 0; i < hwmon->n_attrs; i++) for (i = 0; i < hwmon->n_attrs; i++)
......
...@@ -100,7 +100,9 @@ ...@@ -100,7 +100,9 @@
#define MCDI_HEADER_XFLAGS_EVREQ 0x01 #define MCDI_HEADER_XFLAGS_EVREQ 0x01
/* Maximum number of payload bytes */ /* Maximum number of payload bytes */
#define MCDI_CTL_SDU_LEN_MAX 0xfc #define MCDI_CTL_SDU_LEN_MAX_V1 0xfc
#define MCDI_CTL_SDU_LEN_MAX MCDI_CTL_SDU_LEN_MAX_V1
/* The MC can generate events for two reasons: /* The MC can generate events for two reasons:
* - To complete a shared memory request if XFLAGS_EVREQ was set * - To complete a shared memory request if XFLAGS_EVREQ was set
......
...@@ -946,6 +946,7 @@ static inline unsigned int efx_port_num(struct efx_nic *efx) ...@@ -946,6 +946,7 @@ static inline unsigned int efx_port_num(struct efx_nic *efx)
* @set_id_led: Set state of identifying LED or revert to automatic function * @set_id_led: Set state of identifying LED or revert to automatic function
* @push_irq_moderation: Apply interrupt moderation value * @push_irq_moderation: Apply interrupt moderation value
* @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
* @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
* @reconfigure_mac: Push MAC address, MTU, flow control and filter settings * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
* to the hardware. Serialised by the mac_lock. * to the hardware. Serialised by the mac_lock.
* @check_mac_fault: Check MAC fault state. True if fault present. * @check_mac_fault: Check MAC fault state. True if fault present.
...@@ -995,6 +996,7 @@ struct efx_nic_type { ...@@ -995,6 +996,7 @@ struct efx_nic_type {
void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
void (*push_irq_moderation)(struct efx_channel *channel); void (*push_irq_moderation)(struct efx_channel *channel);
int (*reconfigure_port)(struct efx_nic *efx); int (*reconfigure_port)(struct efx_nic *efx);
void (*prepare_enable_fc_tx)(struct efx_nic *efx);
int (*reconfigure_mac)(struct efx_nic *efx); int (*reconfigure_mac)(struct efx_nic *efx);
bool (*check_mac_fault)(struct efx_nic *efx); bool (*check_mac_fault)(struct efx_nic *efx);
void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
......
...@@ -297,13 +297,6 @@ extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota); ...@@ -297,13 +297,6 @@ extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota);
extern void efx_nic_eventq_read_ack(struct efx_channel *channel); extern void efx_nic_eventq_read_ack(struct efx_channel *channel);
extern bool efx_nic_event_present(struct efx_channel *channel); extern bool efx_nic_event_present(struct efx_channel *channel);
/* MAC/PHY */
extern void falcon_drain_tx_fifo(struct efx_nic *efx);
extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
extern bool falcon_xmac_check_fault(struct efx_nic *efx);
extern int falcon_reconfigure_xmac(struct efx_nic *efx);
extern void falcon_update_stats_xmac(struct efx_nic *efx);
/* Some statistics are computed as A - B where A and B each increase /* Some statistics are computed as A - B where A and B each increase
* linearly with some hardware counter(s) and the counters are read * linearly with some hardware counter(s) and the counters are read
* asynchronously. If the counters contributing to B are always read * asynchronously. If the counters contributing to B are always read
...@@ -348,7 +341,6 @@ extern void siena_prepare_flush(struct efx_nic *efx); ...@@ -348,7 +341,6 @@ extern void siena_prepare_flush(struct efx_nic *efx);
extern void siena_finish_flush(struct efx_nic *efx); extern void siena_finish_flush(struct efx_nic *efx);
extern void falcon_start_nic_stats(struct efx_nic *efx); extern void falcon_start_nic_stats(struct efx_nic *efx);
extern void falcon_stop_nic_stats(struct efx_nic *efx); extern void falcon_stop_nic_stats(struct efx_nic *efx);
extern void falcon_setup_xaui(struct efx_nic *efx);
extern int falcon_reset_xaui(struct efx_nic *efx); extern int falcon_reset_xaui(struct efx_nic *efx);
extern void extern void
efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw); efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
...@@ -371,43 +363,9 @@ extern int efx_nic_test_registers(struct efx_nic *efx, ...@@ -371,43 +363,9 @@ extern int efx_nic_test_registers(struct efx_nic *efx,
extern size_t efx_nic_get_regs_len(struct efx_nic *efx); extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
extern void efx_nic_get_regs(struct efx_nic *efx, void *buf); extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);
/************************************************************************** #define EFX_MAX_FLUSH_TIME 5000
*
* Falcon MAC stats
*
**************************************************************************
*/
#define FALCON_STAT_OFFSET(falcon_stat) EFX_VAL(falcon_stat, offset)
#define FALCON_STAT_WIDTH(falcon_stat) EFX_VAL(falcon_stat, WIDTH)
/* Retrieve statistic from statistics block */
#define FALCON_STAT(efx, falcon_stat, efx_stat) do { \
if (FALCON_STAT_WIDTH(falcon_stat) == 16) \
(efx)->mac_stats.efx_stat += le16_to_cpu( \
*((__force __le16 *) \
(efx->stats_buffer.addr + \
FALCON_STAT_OFFSET(falcon_stat)))); \
else if (FALCON_STAT_WIDTH(falcon_stat) == 32) \
(efx)->mac_stats.efx_stat += le32_to_cpu( \
*((__force __le32 *) \
(efx->stats_buffer.addr + \
FALCON_STAT_OFFSET(falcon_stat)))); \
else \
(efx)->mac_stats.efx_stat += le64_to_cpu( \
*((__force __le64 *) \
(efx->stats_buffer.addr + \
FALCON_STAT_OFFSET(falcon_stat)))); \
} while (0)
#define FALCON_MAC_STATS_SIZE 0x100
#define MAC_DATA_LBN 0
#define MAC_DATA_WIDTH 32
extern void efx_generate_event(struct efx_nic *efx, unsigned int evq, extern void efx_generate_event(struct efx_nic *efx, unsigned int evq,
efx_qword_t *event); efx_qword_t *event);
extern void falcon_poll_xmac(struct efx_nic *efx);
#endif /* EFX_NIC_H */ #endif /* EFX_NIC_H */
...@@ -47,21 +47,4 @@ extern const struct efx_phy_operations falcon_txc_phy_ops; ...@@ -47,21 +47,4 @@ extern const struct efx_phy_operations falcon_txc_phy_ops;
extern void falcon_txc_set_gpio_dir(struct efx_nic *efx, int pin, int dir); extern void falcon_txc_set_gpio_dir(struct efx_nic *efx, int pin, int dir);
extern void falcon_txc_set_gpio_val(struct efx_nic *efx, int pin, int val); extern void falcon_txc_set_gpio_val(struct efx_nic *efx, int pin, int val);
/****************************************************************************
* Siena managed PHYs
*/
extern const struct efx_phy_operations efx_mcdi_phy_ops;
extern int efx_mcdi_mdio_read(struct efx_nic *efx, unsigned int bus,
unsigned int prtad, unsigned int devad,
u16 addr, u16 *value_out, u32 *status_out);
extern int efx_mcdi_mdio_write(struct efx_nic *efx, unsigned int bus,
unsigned int prtad, unsigned int devad,
u16 addr, u16 value, u32 *status_out);
extern void efx_mcdi_phy_decode_link(struct efx_nic *efx,
struct efx_link_state *link_state,
u32 speed, u32 flags, u32 fcntl);
extern int efx_mcdi_phy_reconfigure(struct efx_nic *efx);
extern void efx_mcdi_phy_check_fcntl(struct efx_nic *efx, u32 lpa);
#endif #endif
...@@ -294,8 +294,7 @@ struct efx_ptp_data { ...@@ -294,8 +294,7 @@ struct efx_ptp_data {
struct work_struct pps_work; struct work_struct pps_work;
struct workqueue_struct *pps_workwq; struct workqueue_struct *pps_workwq;
bool nic_ts_enabled; bool nic_ts_enabled;
u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN( MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
struct efx_ptp_timeset struct efx_ptp_timeset
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
}; };
...@@ -311,7 +310,7 @@ static int efx_phc_enable(struct ptp_clock_info *ptp, ...@@ -311,7 +310,7 @@ static int efx_phc_enable(struct ptp_clock_info *ptp,
/* Enable MCDI PTP support. */ /* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx) static int efx_ptp_enable(struct efx_nic *efx)
{ {
u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN]; MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
...@@ -329,7 +328,7 @@ static int efx_ptp_enable(struct efx_nic *efx) ...@@ -329,7 +328,7 @@ static int efx_ptp_enable(struct efx_nic *efx)
*/ */
static int efx_ptp_disable(struct efx_nic *efx) static int efx_ptp_disable(struct efx_nic *efx)
{ {
u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN]; MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
...@@ -396,7 +395,8 @@ static void efx_ptp_send_times(struct efx_nic *efx, ...@@ -396,7 +395,8 @@ static void efx_ptp_send_times(struct efx_nic *efx,
} }
/* Read a timeset from the MC's results and partial process. */ /* Read a timeset from the MC's results and partial process. */
static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset) static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
struct efx_ptp_timeset *timeset)
{ {
unsigned start_ns, end_ns; unsigned start_ns, end_ns;
...@@ -425,12 +425,14 @@ static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset) ...@@ -425,12 +425,14 @@ static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
* busy. A number of readings are taken so that, hopefully, at least one good * busy. A number of readings are taken so that, hopefully, at least one good
* synchronisation will be seen in the results. * synchronisation will be seen in the results.
*/ */
static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf, static int
size_t response_length, efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
const struct pps_event_time *last_time) size_t response_length,
const struct pps_event_time *last_time)
{ {
unsigned number_readings = (response_length / unsigned number_readings =
MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN); MCDI_VAR_ARRAY_LEN(response_length,
PTP_OUT_SYNCHRONIZE_TIMESET);
unsigned i; unsigned i;
unsigned total; unsigned total;
unsigned ngood = 0; unsigned ngood = 0;
...@@ -447,8 +449,10 @@ static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf, ...@@ -447,8 +449,10 @@ static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
* appera to be erroneous. * appera to be erroneous.
*/ */
for (i = 0; i < number_readings; i++) { for (i = 0; i < number_readings; i++) {
efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]); efx_ptp_read_timeset(
synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN; MCDI_ARRAY_STRUCT_PTR(synch_buf,
PTP_OUT_SYNCHRONIZE_TIMESET, i),
&ptp->timeset[i]);
} }
/* Find the last good host-MC synchronization result. The MC times /* Find the last good host-MC synchronization result. The MC times
...@@ -518,7 +522,7 @@ static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf, ...@@ -518,7 +522,7 @@ static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{ {
struct efx_ptp_data *ptp = efx->ptp_data; struct efx_ptp_data *ptp = efx->ptp_data;
u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX]; MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
size_t response_length; size_t response_length;
int rc; int rc;
unsigned long timeout; unsigned long timeout;
...@@ -529,10 +533,8 @@ static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) ...@@ -529,10 +533,8 @@ static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
num_readings); num_readings);
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO, MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
(u32)ptp->start.dma_addr); ptp->start.dma_addr);
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
(u32)((u64)ptp->start.dma_addr >> 32));
/* Clear flag that signals MC ready */ /* Clear flag that signals MC ready */
ACCESS_ONCE(*start) = 0; ACCESS_ONCE(*start) = 0;
...@@ -564,15 +566,14 @@ static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) ...@@ -564,15 +566,14 @@ static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
/* Transmit a PTP packet, via the MCDI interface, to the wire. */ /* Transmit a PTP packet, via the MCDI interface, to the wire. */
static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb) static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
{ {
u8 *txbuf = efx->ptp_data->txbuf; struct efx_ptp_data *ptp_data = efx->ptp_data;
struct skb_shared_hwtstamps timestamps; struct skb_shared_hwtstamps timestamps;
int rc = -EIO; int rc = -EIO;
/* MCDI driver requires word aligned lengths */ MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4); size_t len;
u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
if (skb_shinfo(skb)->nr_frags != 0) { if (skb_shinfo(skb)->nr_frags != 0) {
rc = skb_linearize(skb); rc = skb_linearize(skb);
if (rc != 0) if (rc != 0)
...@@ -585,10 +586,12 @@ static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb) ...@@ -585,10 +586,12 @@ static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
goto fail; goto fail;
} }
skb_copy_from_linear_data(skb, skb_copy_from_linear_data(skb,
&txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST], MCDI_PTR(ptp_data->txbuf,
len); PTP_IN_TRANSMIT_PACKET),
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime, skb->len);
sizeof(txtime), &len); rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
txtime, sizeof(txtime), &len);
if (rc != 0) if (rc != 0)
goto fail; goto fail;
...@@ -1359,7 +1362,7 @@ static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) ...@@ -1359,7 +1362,7 @@ static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
struct efx_ptp_data, struct efx_ptp_data,
phc_clock_info); phc_clock_info);
struct efx_nic *efx = ptp_data->channel->efx; struct efx_nic *efx = ptp_data->channel->efx;
u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN]; MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
s64 adjustment_ns; s64 adjustment_ns;
int rc; int rc;
...@@ -1373,9 +1376,7 @@ static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) ...@@ -1373,9 +1376,7 @@ static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
(PPB_EXTRA_BITS + MAX_PPB_BITS)); (PPB_EXTRA_BITS + MAX_PPB_BITS));
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns); MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
(u32)(adjustment_ns >> 32));
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
...@@ -1394,11 +1395,10 @@ static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) ...@@ -1394,11 +1395,10 @@ static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
phc_clock_info); phc_clock_info);
struct efx_nic *efx = ptp_data->channel->efx; struct efx_nic *efx = ptp_data->channel->efx;
struct timespec delta_ts = ns_to_timespec(delta); struct timespec delta_ts = ns_to_timespec(delta);
u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN]; MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0); MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec); MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec); MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
...@@ -1411,8 +1411,8 @@ static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts) ...@@ -1411,8 +1411,8 @@ static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
struct efx_ptp_data, struct efx_ptp_data,
phc_clock_info); phc_clock_info);
struct efx_nic *efx = ptp_data->channel->efx; struct efx_nic *efx = ptp_data->channel->efx;
u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN]; MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN]; MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
int rc; int rc;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
......
...@@ -2925,264 +2925,4 @@ ...@@ -2925,264 +2925,4 @@
#define FSF_AZ_DRV_GEN_EV_MAGIC_LBN 0 #define FSF_AZ_DRV_GEN_EV_MAGIC_LBN 0
#define FSF_AZ_DRV_GEN_EV_MAGIC_WIDTH 32 #define FSF_AZ_DRV_GEN_EV_MAGIC_WIDTH 32
/**************************************************************************
*
* Falcon MAC stats
*
**************************************************************************
*
*/
#define GRxGoodOct_offset 0x0
#define GRxGoodOct_WIDTH 48
#define GRxBadOct_offset 0x8
#define GRxBadOct_WIDTH 48
#define GRxMissPkt_offset 0x10
#define GRxMissPkt_WIDTH 32
#define GRxFalseCRS_offset 0x14
#define GRxFalseCRS_WIDTH 32
#define GRxPausePkt_offset 0x18
#define GRxPausePkt_WIDTH 32
#define GRxBadPkt_offset 0x1C
#define GRxBadPkt_WIDTH 32
#define GRxUcastPkt_offset 0x20
#define GRxUcastPkt_WIDTH 32
#define GRxMcastPkt_offset 0x24
#define GRxMcastPkt_WIDTH 32
#define GRxBcastPkt_offset 0x28
#define GRxBcastPkt_WIDTH 32
#define GRxGoodLt64Pkt_offset 0x2C
#define GRxGoodLt64Pkt_WIDTH 32
#define GRxBadLt64Pkt_offset 0x30
#define GRxBadLt64Pkt_WIDTH 32
#define GRx64Pkt_offset 0x34
#define GRx64Pkt_WIDTH 32
#define GRx65to127Pkt_offset 0x38
#define GRx65to127Pkt_WIDTH 32
#define GRx128to255Pkt_offset 0x3C
#define GRx128to255Pkt_WIDTH 32
#define GRx256to511Pkt_offset 0x40
#define GRx256to511Pkt_WIDTH 32
#define GRx512to1023Pkt_offset 0x44
#define GRx512to1023Pkt_WIDTH 32
#define GRx1024to15xxPkt_offset 0x48
#define GRx1024to15xxPkt_WIDTH 32
#define GRx15xxtoJumboPkt_offset 0x4C
#define GRx15xxtoJumboPkt_WIDTH 32
#define GRxGtJumboPkt_offset 0x50
#define GRxGtJumboPkt_WIDTH 32
#define GRxFcsErr64to15xxPkt_offset 0x54
#define GRxFcsErr64to15xxPkt_WIDTH 32
#define GRxFcsErr15xxtoJumboPkt_offset 0x58
#define GRxFcsErr15xxtoJumboPkt_WIDTH 32
#define GRxFcsErrGtJumboPkt_offset 0x5C
#define GRxFcsErrGtJumboPkt_WIDTH 32
#define GTxGoodBadOct_offset 0x80
#define GTxGoodBadOct_WIDTH 48
#define GTxGoodOct_offset 0x88
#define GTxGoodOct_WIDTH 48
#define GTxSglColPkt_offset 0x90
#define GTxSglColPkt_WIDTH 32
#define GTxMultColPkt_offset 0x94
#define GTxMultColPkt_WIDTH 32
#define GTxExColPkt_offset 0x98
#define GTxExColPkt_WIDTH 32
#define GTxDefPkt_offset 0x9C
#define GTxDefPkt_WIDTH 32
#define GTxLateCol_offset 0xA0
#define GTxLateCol_WIDTH 32
#define GTxExDefPkt_offset 0xA4
#define GTxExDefPkt_WIDTH 32
#define GTxPausePkt_offset 0xA8
#define GTxPausePkt_WIDTH 32
#define GTxBadPkt_offset 0xAC
#define GTxBadPkt_WIDTH 32
#define GTxUcastPkt_offset 0xB0
#define GTxUcastPkt_WIDTH 32
#define GTxMcastPkt_offset 0xB4
#define GTxMcastPkt_WIDTH 32
#define GTxBcastPkt_offset 0xB8
#define GTxBcastPkt_WIDTH 32
#define GTxLt64Pkt_offset 0xBC
#define GTxLt64Pkt_WIDTH 32
#define GTx64Pkt_offset 0xC0
#define GTx64Pkt_WIDTH 32
#define GTx65to127Pkt_offset 0xC4
#define GTx65to127Pkt_WIDTH 32
#define GTx128to255Pkt_offset 0xC8
#define GTx128to255Pkt_WIDTH 32
#define GTx256to511Pkt_offset 0xCC
#define GTx256to511Pkt_WIDTH 32
#define GTx512to1023Pkt_offset 0xD0
#define GTx512to1023Pkt_WIDTH 32
#define GTx1024to15xxPkt_offset 0xD4
#define GTx1024to15xxPkt_WIDTH 32
#define GTx15xxtoJumboPkt_offset 0xD8
#define GTx15xxtoJumboPkt_WIDTH 32
#define GTxGtJumboPkt_offset 0xDC
#define GTxGtJumboPkt_WIDTH 32
#define GTxNonTcpUdpPkt_offset 0xE0
#define GTxNonTcpUdpPkt_WIDTH 16
#define GTxMacSrcErrPkt_offset 0xE4
#define GTxMacSrcErrPkt_WIDTH 16
#define GTxIpSrcErrPkt_offset 0xE8
#define GTxIpSrcErrPkt_WIDTH 16
#define GDmaDone_offset 0xEC
#define GDmaDone_WIDTH 32
#define XgRxOctets_offset 0x0
#define XgRxOctets_WIDTH 48
#define XgRxOctetsOK_offset 0x8
#define XgRxOctetsOK_WIDTH 48
#define XgRxPkts_offset 0x10
#define XgRxPkts_WIDTH 32
#define XgRxPktsOK_offset 0x14
#define XgRxPktsOK_WIDTH 32
#define XgRxBroadcastPkts_offset 0x18
#define XgRxBroadcastPkts_WIDTH 32
#define XgRxMulticastPkts_offset 0x1C
#define XgRxMulticastPkts_WIDTH 32
#define XgRxUnicastPkts_offset 0x20
#define XgRxUnicastPkts_WIDTH 32
#define XgRxUndersizePkts_offset 0x24
#define XgRxUndersizePkts_WIDTH 32
#define XgRxOversizePkts_offset 0x28
#define XgRxOversizePkts_WIDTH 32
#define XgRxJabberPkts_offset 0x2C
#define XgRxJabberPkts_WIDTH 32
#define XgRxUndersizeFCSerrorPkts_offset 0x30
#define XgRxUndersizeFCSerrorPkts_WIDTH 32
#define XgRxDropEvents_offset 0x34
#define XgRxDropEvents_WIDTH 32
#define XgRxFCSerrorPkts_offset 0x38
#define XgRxFCSerrorPkts_WIDTH 32
#define XgRxAlignError_offset 0x3C
#define XgRxAlignError_WIDTH 32
#define XgRxSymbolError_offset 0x40
#define XgRxSymbolError_WIDTH 32
#define XgRxInternalMACError_offset 0x44
#define XgRxInternalMACError_WIDTH 32
#define XgRxControlPkts_offset 0x48
#define XgRxControlPkts_WIDTH 32
#define XgRxPausePkts_offset 0x4C
#define XgRxPausePkts_WIDTH 32
#define XgRxPkts64Octets_offset 0x50
#define XgRxPkts64Octets_WIDTH 32
#define XgRxPkts65to127Octets_offset 0x54
#define XgRxPkts65to127Octets_WIDTH 32
#define XgRxPkts128to255Octets_offset 0x58
#define XgRxPkts128to255Octets_WIDTH 32
#define XgRxPkts256to511Octets_offset 0x5C
#define XgRxPkts256to511Octets_WIDTH 32
#define XgRxPkts512to1023Octets_offset 0x60
#define XgRxPkts512to1023Octets_WIDTH 32
#define XgRxPkts1024to15xxOctets_offset 0x64
#define XgRxPkts1024to15xxOctets_WIDTH 32
#define XgRxPkts15xxtoMaxOctets_offset 0x68
#define XgRxPkts15xxtoMaxOctets_WIDTH 32
#define XgRxLengthError_offset 0x6C
#define XgRxLengthError_WIDTH 32
#define XgTxPkts_offset 0x80
#define XgTxPkts_WIDTH 32
#define XgTxOctets_offset 0x88
#define XgTxOctets_WIDTH 48
#define XgTxMulticastPkts_offset 0x90
#define XgTxMulticastPkts_WIDTH 32
#define XgTxBroadcastPkts_offset 0x94
#define XgTxBroadcastPkts_WIDTH 32
#define XgTxUnicastPkts_offset 0x98
#define XgTxUnicastPkts_WIDTH 32
#define XgTxControlPkts_offset 0x9C
#define XgTxControlPkts_WIDTH 32
#define XgTxPausePkts_offset 0xA0
#define XgTxPausePkts_WIDTH 32
#define XgTxPkts64Octets_offset 0xA4
#define XgTxPkts64Octets_WIDTH 32
#define XgTxPkts65to127Octets_offset 0xA8
#define XgTxPkts65to127Octets_WIDTH 32
#define XgTxPkts128to255Octets_offset 0xAC
#define XgTxPkts128to255Octets_WIDTH 32
#define XgTxPkts256to511Octets_offset 0xB0
#define XgTxPkts256to511Octets_WIDTH 32
#define XgTxPkts512to1023Octets_offset 0xB4
#define XgTxPkts512to1023Octets_WIDTH 32
#define XgTxPkts1024to15xxOctets_offset 0xB8
#define XgTxPkts1024to15xxOctets_WIDTH 32
#define XgTxPkts1519toMaxOctets_offset 0xBC
#define XgTxPkts1519toMaxOctets_WIDTH 32
#define XgTxUndersizePkts_offset 0xC0
#define XgTxUndersizePkts_WIDTH 32
#define XgTxOversizePkts_offset 0xC4
#define XgTxOversizePkts_WIDTH 32
#define XgTxNonTcpUdpPkt_offset 0xC8
#define XgTxNonTcpUdpPkt_WIDTH 16
#define XgTxMacSrcErrPkt_offset 0xCC
#define XgTxMacSrcErrPkt_WIDTH 16
#define XgTxIpSrcErrPkt_offset 0xD0
#define XgTxIpSrcErrPkt_WIDTH 16
#define XgDmaDone_offset 0xD4
#define XgDmaDone_WIDTH 32
#define FALCON_STATS_NOT_DONE 0x00000000
#define FALCON_STATS_DONE 0xffffffff
/**************************************************************************
*
* Falcon non-volatile configuration
*
**************************************************************************
*/
/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
struct falcon_nvconfig_board_v2 {
__le16 nports;
u8 port0_phy_addr;
u8 port0_phy_type;
u8 port1_phy_addr;
u8 port1_phy_type;
__le16 asic_sub_revision;
__le16 board_revision;
} __packed;
/* Board configuration v3 extra information */
struct falcon_nvconfig_board_v3 {
__le32 spi_device_type[2];
} __packed;
/* Bit numbers for spi_device_type */
#define SPI_DEV_TYPE_SIZE_LBN 0
#define SPI_DEV_TYPE_SIZE_WIDTH 5
#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
#define SPI_DEV_TYPE_FIELD(type, field) \
(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
#define FALCON_NVCONFIG_OFFSET 0x300
#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
struct falcon_nvconfig {
efx_oword_t ee_vpd_cfg_reg; /* 0x300 */
u8 mac_address[2][8]; /* 0x310 */
efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */
efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
efx_oword_t hw_init_reg; /* 0x350 */
efx_oword_t nic_stat_reg; /* 0x360 */
efx_oword_t glb_ctl_reg; /* 0x370 */
efx_oword_t srm_cfg_reg; /* 0x380 */
efx_oword_t spare_reg; /* 0x390 */
__le16 board_magic_num; /* 0x3A0 */
__le16 board_struct_ver;
__le16 board_checksum;
struct falcon_nvconfig_board_v2 board_v2;
efx_oword_t ee_base_page_reg; /* 0x3B0 */
struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
} __packed;
#endif /* EFX_REGS_H */ #endif /* EFX_REGS_H */
...@@ -30,7 +30,6 @@ ...@@ -30,7 +30,6 @@
/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */ /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
static void siena_init_wol(struct efx_nic *efx); static void siena_init_wol(struct efx_nic *efx);
static int siena_reset_hw(struct efx_nic *efx, enum reset_type method);
static void siena_push_irq_moderation(struct efx_channel *channel) static void siena_push_irq_moderation(struct efx_channel *channel)
...@@ -52,81 +51,6 @@ static void siena_push_irq_moderation(struct efx_channel *channel) ...@@ -52,81 +51,6 @@ static void siena_push_irq_moderation(struct efx_channel *channel)
channel->channel); channel->channel);
} }
static int siena_mdio_write(struct net_device *net_dev,
int prtad, int devad, u16 addr, u16 value)
{
struct efx_nic *efx = netdev_priv(net_dev);
uint32_t status;
int rc;
rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
addr, value, &status);
if (rc)
return rc;
if (status != MC_CMD_MDIO_STATUS_GOOD)
return -EIO;
return 0;
}
static int siena_mdio_read(struct net_device *net_dev,
int prtad, int devad, u16 addr)
{
struct efx_nic *efx = netdev_priv(net_dev);
uint16_t value;
uint32_t status;
int rc;
rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
addr, &value, &status);
if (rc)
return rc;
if (status != MC_CMD_MDIO_STATUS_GOOD)
return -EIO;
return (int)value;
}
/* This call is responsible for hooking in the MAC and PHY operations */
static int siena_probe_port(struct efx_nic *efx)
{
int rc;
/* Hook in PHY operations table */
efx->phy_op = &efx_mcdi_phy_ops;
/* Set up MDIO structure for PHY */
efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
efx->mdio.mdio_read = siena_mdio_read;
efx->mdio.mdio_write = siena_mdio_write;
/* Fill out MDIO structure, loopback modes, and initial link state */
rc = efx->phy_op->probe(efx);
if (rc != 0)
return rc;
/* Allocate buffer for stats */
rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
MC_CMD_MAC_NSTATS * sizeof(u64));
if (rc)
return rc;
netif_dbg(efx, probe, efx->net_dev,
"stats buffer at %llx (virt %p phys %llx)\n",
(u64)efx->stats_buffer.dma_addr,
efx->stats_buffer.addr,
(u64)virt_to_phys(efx->stats_buffer.addr));
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
return 0;
}
static void siena_remove_port(struct efx_nic *efx)
{
efx->phy_op->remove(efx);
efx_nic_free_buffer(efx, &efx->stats_buffer);
}
void siena_prepare_flush(struct efx_nic *efx) void siena_prepare_flush(struct efx_nic *efx)
{ {
if (efx->fc_disable++ == 0) if (efx->fc_disable++ == 0)
...@@ -178,7 +102,7 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) ...@@ -178,7 +102,7 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
/* Reset the chip immediately so that it is completely /* Reset the chip immediately so that it is completely
* quiescent regardless of what any VF driver does. * quiescent regardless of what any VF driver does.
*/ */
rc = siena_reset_hw(efx, reset_method); rc = efx_mcdi_reset(efx, reset_method);
if (rc) if (rc)
goto out; goto out;
...@@ -187,7 +111,7 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) ...@@ -187,7 +111,7 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
ARRAY_SIZE(siena_register_tests)) ARRAY_SIZE(siena_register_tests))
? -1 : 1; ? -1 : 1;
rc = siena_reset_hw(efx, reset_method); rc = efx_mcdi_reset(efx, reset_method);
out: out:
rc2 = efx_reset_up(efx, reset_method, rc == 0); rc2 = efx_reset_up(efx, reset_method, rc == 0);
return rc ? rc : rc2; return rc ? rc : rc2;
...@@ -200,11 +124,6 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) ...@@ -200,11 +124,6 @@ static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
************************************************************************** **************************************************************************
*/ */
static enum reset_type siena_map_reset_reason(enum reset_type reason)
{
return RESET_TYPE_RECOVER_OR_ALL;
}
static int siena_map_reset_flags(u32 *flags) static int siena_map_reset_flags(u32 *flags)
{ {
enum { enum {
...@@ -230,21 +149,6 @@ static int siena_map_reset_flags(u32 *flags) ...@@ -230,21 +149,6 @@ static int siena_map_reset_flags(u32 *flags)
return -EINVAL; return -EINVAL;
} }
static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
{
int rc;
/* Recover from a failed assertion pre-reset */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
return rc;
if (method == RESET_TYPE_WORLD)
return efx_mcdi_reset_mc(efx);
else
return efx_mcdi_reset_port(efx);
}
#ifdef CONFIG_EEH #ifdef CONFIG_EEH
/* When a PCI device is isolated from the bus, a subsequent MMIO read is /* When a PCI device is isolated from the bus, a subsequent MMIO read is
* required for the kernel EEH mechanisms to notice. As the Solarflare driver * required for the kernel EEH mechanisms to notice. As the Solarflare driver
...@@ -306,10 +210,7 @@ static int siena_probe_nic(struct efx_nic *efx) ...@@ -306,10 +210,7 @@ static int siena_probe_nic(struct efx_nic *efx)
efx_reado(efx, &reg, FR_AZ_CS_DEBUG); efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1; efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
efx_mcdi_init(efx); rc = efx_mcdi_init(efx);
/* Recover from a failed assertion before probing */
rc = efx_mcdi_handle_assertion(efx);
if (rc) if (rc)
goto fail1; goto fail1;
...@@ -327,7 +228,7 @@ static int siena_probe_nic(struct efx_nic *efx) ...@@ -327,7 +228,7 @@ static int siena_probe_nic(struct efx_nic *efx)
"Host already registered with MCPU\n"); "Host already registered with MCPU\n");
/* Now we can reset the NIC */ /* Now we can reset the NIC */
rc = siena_reset_hw(efx, RESET_TYPE_ALL); rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
if (rc) { if (rc) {
netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n"); netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
goto fail3; goto fail3;
...@@ -458,7 +359,7 @@ static void siena_remove_nic(struct efx_nic *efx) ...@@ -458,7 +359,7 @@ static void siena_remove_nic(struct efx_nic *efx)
efx_nic_free_buffer(efx, &efx->irq_status); efx_nic_free_buffer(efx, &efx->irq_status);
siena_reset_hw(efx, RESET_TYPE_ALL); efx_mcdi_reset(efx, RESET_TYPE_ALL);
/* Relinquish the device back to the BMC */ /* Relinquish the device back to the BMC */
efx_mcdi_drv_attach(efx, false, NULL); efx_mcdi_drv_attach(efx, false, NULL);
...@@ -468,8 +369,6 @@ static void siena_remove_nic(struct efx_nic *efx) ...@@ -468,8 +369,6 @@ static void siena_remove_nic(struct efx_nic *efx)
efx->nic_data = NULL; efx->nic_data = NULL;
} }
#define STATS_GENERATION_INVALID ((__force __le64)(-1))
static int siena_try_update_nic_stats(struct efx_nic *efx) static int siena_try_update_nic_stats(struct efx_nic *efx)
{ {
__le64 *dma_stats; __le64 *dma_stats;
...@@ -480,7 +379,7 @@ static int siena_try_update_nic_stats(struct efx_nic *efx) ...@@ -480,7 +379,7 @@ static int siena_try_update_nic_stats(struct efx_nic *efx)
dma_stats = efx->stats_buffer.addr; dma_stats = efx->stats_buffer.addr;
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END]; generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == STATS_GENERATION_INVALID) if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
return 0; return 0;
rmb(); rmb();
...@@ -583,19 +482,25 @@ static void siena_update_nic_stats(struct efx_nic *efx) ...@@ -583,19 +482,25 @@ static void siena_update_nic_stats(struct efx_nic *efx)
/* Use the old values instead */ /* Use the old values instead */
} }
static void siena_start_nic_stats(struct efx_nic *efx) static int siena_mac_reconfigure(struct efx_nic *efx)
{ {
__le64 *dma_stats = efx->stats_buffer.addr; MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
int rc;
dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID; BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
sizeof(efx->multicast_hash));
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, WARN_ON(!mutex_is_locked(&efx->mac_lock));
MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
}
static void siena_stop_nic_stats(struct efx_nic *efx) rc = efx_mcdi_set_mac(efx);
{ if (rc != 0)
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0); return rc;
memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
efx->multicast_hash.byte, sizeof(efx->multicast_hash));
return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
inbuf, sizeof(inbuf), NULL, 0, NULL);
} }
/************************************************************************** /**************************************************************************
...@@ -688,21 +593,21 @@ const struct efx_nic_type siena_a0_nic_type = { ...@@ -688,21 +593,21 @@ const struct efx_nic_type siena_a0_nic_type = {
#else #else
.monitor = NULL, .monitor = NULL,
#endif #endif
.map_reset_reason = siena_map_reset_reason, .map_reset_reason = efx_mcdi_map_reset_reason,
.map_reset_flags = siena_map_reset_flags, .map_reset_flags = siena_map_reset_flags,
.reset = siena_reset_hw, .reset = efx_mcdi_reset,
.probe_port = siena_probe_port, .probe_port = efx_mcdi_port_probe,
.remove_port = siena_remove_port, .remove_port = efx_mcdi_port_remove,
.prepare_flush = siena_prepare_flush, .prepare_flush = siena_prepare_flush,
.finish_flush = siena_finish_flush, .finish_flush = siena_finish_flush,
.update_stats = siena_update_nic_stats, .update_stats = siena_update_nic_stats,
.start_stats = siena_start_nic_stats, .start_stats = efx_mcdi_mac_start_stats,
.stop_stats = siena_stop_nic_stats, .stop_stats = efx_mcdi_mac_stop_stats,
.set_id_led = efx_mcdi_set_id_led, .set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = siena_push_irq_moderation, .push_irq_moderation = siena_push_irq_moderation,
.reconfigure_mac = efx_mcdi_mac_reconfigure, .reconfigure_mac = siena_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault, .check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_phy_reconfigure, .reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = siena_get_wol, .get_wol = siena_get_wol,
.set_wol = siena_set_wol, .set_wol = siena_set_wol,
.resume_wol = siena_init_wol, .resume_wol = siena_init_wol,
......
...@@ -197,8 +197,8 @@ static unsigned abs_index(struct efx_vf *vf, unsigned index) ...@@ -197,8 +197,8 @@ static unsigned abs_index(struct efx_vf *vf, unsigned index)
static int efx_sriov_cmd(struct efx_nic *efx, bool enable, static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
unsigned *vi_scale_out, unsigned *vf_total_out) unsigned *vi_scale_out, unsigned *vf_total_out)
{ {
u8 inbuf[MC_CMD_SRIOV_IN_LEN]; MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
u8 outbuf[MC_CMD_SRIOV_OUT_LEN]; MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
unsigned vi_scale, vf_total; unsigned vi_scale, vf_total;
size_t outlen; size_t outlen;
int rc; int rc;
...@@ -240,64 +240,55 @@ static void efx_sriov_usrev(struct efx_nic *efx, bool enabled) ...@@ -240,64 +240,55 @@ static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req, static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
unsigned int count) unsigned int count)
{ {
u8 *inbuf, *record; MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
unsigned int used; MCDI_DECLARE_STRUCT_PTR(record);
u32 from_rid, from_hi, from_lo; unsigned int index, used;
u64 from_addr;
u32 from_rid;
int rc; int rc;
mb(); /* Finish writing source/reading dest before DMA starts */ mb(); /* Finish writing source/reading dest before DMA starts */
used = MC_CMD_MEMCPY_IN_LEN(count); if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX))
return -ENOBUFS; return -ENOBUFS;
used = MC_CMD_MEMCPY_IN_LEN(count);
/* Allocate room for the largest request */ for (index = 0; index < count; index++) {
inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL); record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
if (inbuf == NULL) MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
return -ENOMEM; count);
record = inbuf;
MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count);
while (count-- > 0) {
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID, MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
req->to_rid); req->to_rid);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO, MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
(u32)req->to_addr); req->to_addr);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI,
(u32)(req->to_addr >> 32));
if (req->from_buf == NULL) { if (req->from_buf == NULL) {
from_rid = req->from_rid; from_rid = req->from_rid;
from_lo = (u32)req->from_addr; from_addr = req->from_addr;
from_hi = (u32)(req->from_addr >> 32);
} else { } else {
if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) { if (WARN_ON(used + req->length >
MCDI_CTL_SDU_LEN_MAX_V1)) {
rc = -ENOBUFS; rc = -ENOBUFS;
goto out; goto out;
} }
from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE; from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
from_lo = used; from_addr = used;
from_hi = 0; memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
memcpy(inbuf + used, req->from_buf, req->length); req->length);
used += req->length; used += req->length;
} }
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid); MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO, MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
from_lo); from_addr);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI,
from_hi);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH, MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
req->length); req->length);
++req; ++req;
record += MC_CMD_MEMCPY_IN_RECORD_LEN;
} }
rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL); rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
out: out:
kfree(inbuf);
mb(); /* Don't write source/read dest before DMA is complete */ mb(); /* Don't write source/read dest before DMA is complete */
return rc; return rc;
...@@ -684,16 +675,12 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf) ...@@ -684,16 +675,12 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx); unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
unsigned timeout = HZ; unsigned timeout = HZ;
unsigned index, rxqs_count; unsigned index, rxqs_count;
__le32 *rxqs; MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
int rc; int rc;
BUILD_BUG_ON(VF_MAX_RX_QUEUES > BUILD_BUG_ON(VF_MAX_RX_QUEUES >
MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL);
if (rxqs == NULL)
return VFDI_RC_ENOMEM;
rtnl_lock(); rtnl_lock();
siena_prepare_flush(efx); siena_prepare_flush(efx);
rtnl_unlock(); rtnl_unlock();
...@@ -708,14 +695,19 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf) ...@@ -708,14 +695,19 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
vf_offset + index); vf_offset + index);
efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ); efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
} }
if (test_bit(index, vf->rxq_mask)) if (test_bit(index, vf->rxq_mask)) {
rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index); MCDI_SET_ARRAY_DWORD(
inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
rxqs_count, vf_offset + index);
rxqs_count++;
}
} }
atomic_set(&vf->rxq_retry_count, 0); atomic_set(&vf->rxq_retry_count, 0);
while (timeout && (vf->rxq_count || vf->txq_count)) { while (timeout && (vf->rxq_count || vf->txq_count)) {
rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs, rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
rxqs_count * sizeof(*rxqs), NULL, 0, NULL); MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
NULL, 0, NULL);
WARN_ON(rc < 0); WARN_ON(rc < 0);
timeout = wait_event_timeout(vf->flush_waitq, timeout = wait_event_timeout(vf->flush_waitq,
...@@ -725,8 +717,10 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf) ...@@ -725,8 +717,10 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
for (index = 0; index < count; ++index) { for (index = 0; index < count; ++index) {
if (test_and_clear_bit(index, vf->rxq_retry_mask)) { if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
atomic_dec(&vf->rxq_retry_count); atomic_dec(&vf->rxq_retry_count);
rxqs[rxqs_count++] = MCDI_SET_ARRAY_DWORD(
cpu_to_le32(vf_offset + index); inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
rxqs_count, vf_offset + index);
rxqs_count++;
} }
} }
} }
...@@ -749,7 +743,6 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf) ...@@ -749,7 +743,6 @@ static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
} }
efx_sriov_bufs(efx, vf->buftbl_base, NULL, efx_sriov_bufs(efx, vf->buftbl_base, NULL,
EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx)); EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
kfree(rxqs);
efx_vfdi_flush_clear(vf); efx_vfdi_flush_clear(vf);
vf->evq0_count = 0; vf->evq0_count = 0;
......
...@@ -30,8 +30,6 @@ ...@@ -30,8 +30,6 @@
/* TX_EV_PKT_ERR can be caused by a dangling TX descriptor /* TX_EV_PKT_ERR can be caused by a dangling TX descriptor
* or a PCIe error (bug 11028) */ * or a PCIe error (bug 11028) */
#define EFX_WORKAROUND_10727 EFX_WORKAROUND_ALWAYS #define EFX_WORKAROUND_10727 EFX_WORKAROUND_ALWAYS
/* Transmit flow control may get disabled */
#define EFX_WORKAROUND_11482 EFX_WORKAROUND_FALCON_AB
/* Truncated IPv4 packets can confuse the TX packet parser */ /* Truncated IPv4 packets can confuse the TX packet parser */
#define EFX_WORKAROUND_15592 EFX_WORKAROUND_FALCON_AB #define EFX_WORKAROUND_15592 EFX_WORKAROUND_FALCON_AB
/* Legacy ISR read can return zero once */ /* Legacy ISR read can return zero once */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment