Commit 337c9823 authored by Mel Gorman's avatar Mel Gorman Committed by Jiri Slaby

mm: optimize put_mems_allowed() usage

commit d26914d1 upstream.

Since put_mems_allowed() is strictly optional, its a seqcount retry, we
don't need to evaluate the function if the allocation was in fact
successful, saving a smp_rmb some loads and comparisons on some relative
fast-paths.

Since the naming, get/put_mems_allowed() does suggest a mandatory
pairing, rename the interface, as suggested by Mel, to resemble the
seqcount interface.

This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(),
where it is important to note that the return value of the latter call
is inverted from its previous incarnation.
Signed-off-by: default avatarPeter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: default avatarMel Gorman <mgorman@suse.de>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: default avatarMel Gorman <mgorman@suse.de>
Signed-off-by: default avatarJiri Slaby <jslaby@suse.cz>
parent 8010da49
...@@ -87,25 +87,26 @@ extern void rebuild_sched_domains(void); ...@@ -87,25 +87,26 @@ extern void rebuild_sched_domains(void);
extern void cpuset_print_task_mems_allowed(struct task_struct *p); extern void cpuset_print_task_mems_allowed(struct task_struct *p);
/* /*
* get_mems_allowed is required when making decisions involving mems_allowed * read_mems_allowed_begin is required when making decisions involving
* such as during page allocation. mems_allowed can be updated in parallel * mems_allowed such as during page allocation. mems_allowed can be updated in
* and depending on the new value an operation can fail potentially causing * parallel and depending on the new value an operation can fail potentially
* process failure. A retry loop with get_mems_allowed and put_mems_allowed * causing process failure. A retry loop with read_mems_allowed_begin and
* prevents these artificial failures. * read_mems_allowed_retry prevents these artificial failures.
*/ */
static inline unsigned int get_mems_allowed(void) static inline unsigned int read_mems_allowed_begin(void)
{ {
return read_seqcount_begin(&current->mems_allowed_seq); return read_seqcount_begin(&current->mems_allowed_seq);
} }
/* /*
* If this returns false, the operation that took place after get_mems_allowed * If this returns true, the operation that took place after
* may have failed. It is up to the caller to retry the operation if * read_mems_allowed_begin may have failed artificially due to a concurrent
* update of mems_allowed. It is up to the caller to retry the operation if
* appropriate. * appropriate.
*/ */
static inline bool put_mems_allowed(unsigned int seq) static inline bool read_mems_allowed_retry(unsigned int seq)
{ {
return !read_seqcount_retry(&current->mems_allowed_seq, seq); return read_seqcount_retry(&current->mems_allowed_seq, seq);
} }
static inline void set_mems_allowed(nodemask_t nodemask) static inline void set_mems_allowed(nodemask_t nodemask)
...@@ -221,14 +222,14 @@ static inline void set_mems_allowed(nodemask_t nodemask) ...@@ -221,14 +222,14 @@ static inline void set_mems_allowed(nodemask_t nodemask)
{ {
} }
static inline unsigned int get_mems_allowed(void) static inline unsigned int read_mems_allowed_begin(void)
{ {
return 0; return 0;
} }
static inline bool put_mems_allowed(unsigned int seq) static inline bool read_mems_allowed_retry(unsigned int seq)
{ {
return true; return false;
} }
#endif /* !CONFIG_CPUSETS */ #endif /* !CONFIG_CPUSETS */
......
...@@ -1022,7 +1022,7 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk, ...@@ -1022,7 +1022,7 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk,
task_lock(tsk); task_lock(tsk);
/* /*
* Determine if a loop is necessary if another thread is doing * Determine if a loop is necessary if another thread is doing
* get_mems_allowed(). If at least one node remains unchanged and * read_mems_allowed_begin(). If at least one node remains unchanged and
* tsk does not have a mempolicy, then an empty nodemask will not be * tsk does not have a mempolicy, then an empty nodemask will not be
* possible when mems_allowed is larger than a word. * possible when mems_allowed is larger than a word.
*/ */
......
...@@ -520,10 +520,10 @@ struct page *__page_cache_alloc(gfp_t gfp) ...@@ -520,10 +520,10 @@ struct page *__page_cache_alloc(gfp_t gfp)
if (cpuset_do_page_mem_spread()) { if (cpuset_do_page_mem_spread()) {
unsigned int cpuset_mems_cookie; unsigned int cpuset_mems_cookie;
do { do {
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
n = cpuset_mem_spread_node(); n = cpuset_mem_spread_node();
page = alloc_pages_exact_node(n, gfp, 0); page = alloc_pages_exact_node(n, gfp, 0);
} while (!put_mems_allowed(cpuset_mems_cookie) && !page); } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
return page; return page;
} }
......
...@@ -574,7 +574,7 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, ...@@ -574,7 +574,7 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
goto err; goto err;
retry_cpuset: retry_cpuset:
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
zonelist = huge_zonelist(vma, address, zonelist = huge_zonelist(vma, address,
htlb_alloc_mask(h), &mpol, &nodemask); htlb_alloc_mask(h), &mpol, &nodemask);
...@@ -596,7 +596,7 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, ...@@ -596,7 +596,7 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
} }
mpol_cond_put(mpol); mpol_cond_put(mpol);
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset; goto retry_cpuset;
return page; return page;
......
...@@ -1873,7 +1873,7 @@ int node_random(const nodemask_t *maskp) ...@@ -1873,7 +1873,7 @@ int node_random(const nodemask_t *maskp)
* If the effective policy is 'BIND, returns a pointer to the mempolicy's * If the effective policy is 'BIND, returns a pointer to the mempolicy's
* @nodemask for filtering the zonelist. * @nodemask for filtering the zonelist.
* *
* Must be protected by get_mems_allowed() * Must be protected by read_mems_allowed_begin()
*/ */
struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
gfp_t gfp_flags, struct mempolicy **mpol, gfp_t gfp_flags, struct mempolicy **mpol,
...@@ -2037,7 +2037,7 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, ...@@ -2037,7 +2037,7 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
retry_cpuset: retry_cpuset:
pol = get_vma_policy(current, vma, addr); pol = get_vma_policy(current, vma, addr);
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
if (unlikely(pol->mode == MPOL_INTERLEAVE)) { if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
unsigned nid; unsigned nid;
...@@ -2045,7 +2045,7 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, ...@@ -2045,7 +2045,7 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
mpol_cond_put(pol); mpol_cond_put(pol);
page = alloc_page_interleave(gfp, order, nid); page = alloc_page_interleave(gfp, order, nid);
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset; goto retry_cpuset;
return page; return page;
...@@ -2055,7 +2055,7 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, ...@@ -2055,7 +2055,7 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
policy_nodemask(gfp, pol)); policy_nodemask(gfp, pol));
if (unlikely(mpol_needs_cond_ref(pol))) if (unlikely(mpol_needs_cond_ref(pol)))
__mpol_put(pol); __mpol_put(pol);
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset; goto retry_cpuset;
return page; return page;
} }
...@@ -2089,7 +2089,7 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) ...@@ -2089,7 +2089,7 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order)
pol = &default_policy; pol = &default_policy;
retry_cpuset: retry_cpuset:
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
/* /*
* No reference counting needed for current->mempolicy * No reference counting needed for current->mempolicy
...@@ -2102,7 +2102,7 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) ...@@ -2102,7 +2102,7 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order)
policy_zonelist(gfp, pol, numa_node_id()), policy_zonelist(gfp, pol, numa_node_id()),
policy_nodemask(gfp, pol)); policy_nodemask(gfp, pol));
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset; goto retry_cpuset;
return page; return page;
......
...@@ -2711,7 +2711,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, ...@@ -2711,7 +2711,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
return NULL; return NULL;
retry_cpuset: retry_cpuset:
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
/* The preferred zone is used for statistics later */ /* The preferred zone is used for statistics later */
first_zones_zonelist(zonelist, high_zoneidx, first_zones_zonelist(zonelist, high_zoneidx,
...@@ -2766,7 +2766,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, ...@@ -2766,7 +2766,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
* the mask is being updated. If a page allocation is about to fail, * the mask is being updated. If a page allocation is about to fail,
* check if the cpuset changed during allocation and if so, retry. * check if the cpuset changed during allocation and if so, retry.
*/ */
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset; goto retry_cpuset;
memcg_kmem_commit_charge(page, memcg, order); memcg_kmem_commit_charge(page, memcg, order);
...@@ -3034,9 +3034,9 @@ bool skip_free_areas_node(unsigned int flags, int nid) ...@@ -3034,9 +3034,9 @@ bool skip_free_areas_node(unsigned int flags, int nid)
goto out; goto out;
do { do {
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
ret = !node_isset(nid, cpuset_current_mems_allowed); ret = !node_isset(nid, cpuset_current_mems_allowed);
} while (!put_mems_allowed(cpuset_mems_cookie)); } while (read_mems_allowed_retry(cpuset_mems_cookie));
out: out:
return ret; return ret;
} }
......
...@@ -3222,7 +3222,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) ...@@ -3222,7 +3222,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
retry_cpuset: retry_cpuset:
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
zonelist = node_zonelist(slab_node(), flags); zonelist = node_zonelist(slab_node(), flags);
retry: retry:
...@@ -3278,7 +3278,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) ...@@ -3278,7 +3278,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
} }
} }
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset; goto retry_cpuset;
return obj; return obj;
} }
......
...@@ -1635,7 +1635,7 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags, ...@@ -1635,7 +1635,7 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
return NULL; return NULL;
do { do {
cpuset_mems_cookie = get_mems_allowed(); cpuset_mems_cookie = read_mems_allowed_begin();
zonelist = node_zonelist(slab_node(), flags); zonelist = node_zonelist(slab_node(), flags);
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
struct kmem_cache_node *n; struct kmem_cache_node *n;
...@@ -1647,19 +1647,17 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags, ...@@ -1647,19 +1647,17 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
object = get_partial_node(s, n, c, flags); object = get_partial_node(s, n, c, flags);
if (object) { if (object) {
/* /*
* Return the object even if * Don't check read_mems_allowed_retry()
* put_mems_allowed indicated that * here - if mems_allowed was updated in
* the cpuset mems_allowed was * parallel, that was a harmless race
* updated in parallel. It's a * between allocation and the cpuset
* harmless race between the alloc * update
* and the cpuset update.
*/ */
put_mems_allowed(cpuset_mems_cookie);
return object; return object;
} }
} }
} }
} while (!put_mems_allowed(cpuset_mems_cookie)); } while (read_mems_allowed_retry(cpuset_mems_cookie));
#endif #endif
return NULL; return NULL;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment