Commit 425752c6 authored by Gautham R. Shenoy's avatar Gautham R. Shenoy Committed by Michael Ellerman

powerpc: Detect the presence of big-cores via "ibm, thread-groups"

On IBM POWER9, the device tree exposes a property array identifed by
"ibm,thread-groups" which will indicate which groups of threads share
a particular set of resources.

As of today we only have one form of grouping identifying the group of
threads in the core that share the L1 cache, translation cache and
instruction data flow.

This patch adds helper functions to parse the contents of
"ibm,thread-groups" and populate a per-cpu variable to cache
information about siblings of each CPU that share the L1, traslation
cache and instruction data-flow.

It also defines a new global variable named "has_big_cores" which
indicates if the cores on this configuration have multiple groups of
threads that share L1 cache.

For each online CPU, it maintains a cpu_smallcore_mask, which
indicates the online siblings which share the L1-cache with it.
Signed-off-by: default avatarGautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: default avatarMichael Ellerman <mpe@ellerman.id.au>
parent bf6cbd0c
...@@ -23,11 +23,13 @@ ...@@ -23,11 +23,13 @@
extern int threads_per_core; extern int threads_per_core;
extern int threads_per_subcore; extern int threads_per_subcore;
extern int threads_shift; extern int threads_shift;
extern bool has_big_cores;
extern cpumask_t threads_core_mask; extern cpumask_t threads_core_mask;
#else #else
#define threads_per_core 1 #define threads_per_core 1
#define threads_per_subcore 1 #define threads_per_subcore 1
#define threads_shift 0 #define threads_shift 0
#define has_big_cores 0
#define threads_core_mask (*get_cpu_mask(0)) #define threads_core_mask (*get_cpu_mask(0))
#endif #endif
......
...@@ -100,6 +100,7 @@ static inline void set_hard_smp_processor_id(int cpu, int phys) ...@@ -100,6 +100,7 @@ static inline void set_hard_smp_processor_id(int cpu, int phys)
DECLARE_PER_CPU(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DECLARE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); DECLARE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
DECLARE_PER_CPU(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU(cpumask_var_t, cpu_core_map);
DECLARE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
static inline struct cpumask *cpu_sibling_mask(int cpu) static inline struct cpumask *cpu_sibling_mask(int cpu)
{ {
...@@ -116,6 +117,11 @@ static inline struct cpumask *cpu_l2_cache_mask(int cpu) ...@@ -116,6 +117,11 @@ static inline struct cpumask *cpu_l2_cache_mask(int cpu)
return per_cpu(cpu_l2_cache_map, cpu); return per_cpu(cpu_l2_cache_map, cpu);
} }
static inline struct cpumask *cpu_smallcore_mask(int cpu)
{
return per_cpu(cpu_smallcore_map, cpu);
}
extern int cpu_to_core_id(int cpu); extern int cpu_to_core_id(int cpu);
/* Since OpenPIC has only 4 IPIs, we use slightly different message numbers. /* Since OpenPIC has only 4 IPIs, we use slightly different message numbers.
...@@ -166,6 +172,11 @@ static inline const struct cpumask *cpu_sibling_mask(int cpu) ...@@ -166,6 +172,11 @@ static inline const struct cpumask *cpu_sibling_mask(int cpu)
return cpumask_of(cpu); return cpumask_of(cpu);
} }
static inline const struct cpumask *cpu_smallcore_mask(int cpu)
{
return cpumask_of(cpu);
}
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
......
...@@ -75,14 +75,32 @@ static DEFINE_PER_CPU(int, cpu_state) = { 0 }; ...@@ -75,14 +75,32 @@ static DEFINE_PER_CPU(int, cpu_state) = { 0 };
#endif #endif
struct thread_info *secondary_ti; struct thread_info *secondary_ti;
bool has_big_cores;
DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map); EXPORT_PER_CPU_SYMBOL(cpu_core_map);
EXPORT_SYMBOL_GPL(has_big_cores);
#define MAX_THREAD_LIST_SIZE 8
#define THREAD_GROUP_SHARE_L1 1
struct thread_groups {
unsigned int property;
unsigned int nr_groups;
unsigned int threads_per_group;
unsigned int thread_list[MAX_THREAD_LIST_SIZE];
};
/*
* On big-cores system, cpu_l1_cache_map for each CPU corresponds to
* the set its siblings that share the L1-cache.
*/
DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
/* SMP operations for this machine */ /* SMP operations for this machine */
struct smp_ops_t *smp_ops; struct smp_ops_t *smp_ops;
...@@ -675,6 +693,185 @@ static void set_cpus_unrelated(int i, int j, ...@@ -675,6 +693,185 @@ static void set_cpus_unrelated(int i, int j,
} }
#endif #endif
/*
* parse_thread_groups: Parses the "ibm,thread-groups" device tree
* property for the CPU device node @dn and stores
* the parsed output in the thread_groups
* structure @tg if the ibm,thread-groups[0]
* matches @property.
*
* @dn: The device node of the CPU device.
* @tg: Pointer to a thread group structure into which the parsed
* output of "ibm,thread-groups" is stored.
* @property: The property of the thread-group that the caller is
* interested in.
*
* ibm,thread-groups[0..N-1] array defines which group of threads in
* the CPU-device node can be grouped together based on the property.
*
* ibm,thread-groups[0] tells us the property based on which the
* threads are being grouped together. If this value is 1, it implies
* that the threads in the same group share L1, translation cache.
*
* ibm,thread-groups[1] tells us how many such thread groups exist.
*
* ibm,thread-groups[2] tells us the number of threads in each such
* group.
*
* ibm,thread-groups[3..N-1] is the list of threads identified by
* "ibm,ppc-interrupt-server#s" arranged as per their membership in
* the grouping.
*
* Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
* implies that there are 2 groups of 4 threads each, where each group
* of threads share L1, translation cache.
*
* The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
* and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
* 11, 12} structure
*
* Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*/
static int parse_thread_groups(struct device_node *dn,
struct thread_groups *tg,
unsigned int property)
{
int i;
u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
u32 *thread_list;
size_t total_threads;
int ret;
ret = of_property_read_u32_array(dn, "ibm,thread-groups",
thread_group_array, 3);
if (ret)
return ret;
tg->property = thread_group_array[0];
tg->nr_groups = thread_group_array[1];
tg->threads_per_group = thread_group_array[2];
if (tg->property != property ||
tg->nr_groups < 1 ||
tg->threads_per_group < 1)
return -ENODATA;
total_threads = tg->nr_groups * tg->threads_per_group;
ret = of_property_read_u32_array(dn, "ibm,thread-groups",
thread_group_array,
3 + total_threads);
if (ret)
return ret;
thread_list = &thread_group_array[3];
for (i = 0 ; i < total_threads; i++)
tg->thread_list[i] = thread_list[i];
return 0;
}
/*
* get_cpu_thread_group_start : Searches the thread group in tg->thread_list
* that @cpu belongs to.
*
* @cpu : The logical CPU whose thread group is being searched.
* @tg : The thread-group structure of the CPU node which @cpu belongs
* to.
*
* Returns the index to tg->thread_list that points to the the start
* of the thread_group that @cpu belongs to.
*
* Returns -1 if cpu doesn't belong to any of the groups pointed to by
* tg->thread_list.
*/
static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
{
int hw_cpu_id = get_hard_smp_processor_id(cpu);
int i, j;
for (i = 0; i < tg->nr_groups; i++) {
int group_start = i * tg->threads_per_group;
for (j = 0; j < tg->threads_per_group; j++) {
int idx = group_start + j;
if (tg->thread_list[idx] == hw_cpu_id)
return group_start;
}
}
return -1;
}
static int init_cpu_l1_cache_map(int cpu)
{
struct device_node *dn = of_get_cpu_node(cpu, NULL);
struct thread_groups tg = {.property = 0,
.nr_groups = 0,
.threads_per_group = 0};
int first_thread = cpu_first_thread_sibling(cpu);
int i, cpu_group_start = -1, err = 0;
if (!dn)
return -ENODATA;
err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
if (err)
goto out;
zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
GFP_KERNEL,
cpu_to_node(cpu));
cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
if (unlikely(cpu_group_start == -1)) {
WARN_ON_ONCE(1);
err = -ENODATA;
goto out;
}
for (i = first_thread; i < first_thread + threads_per_core; i++) {
int i_group_start = get_cpu_thread_group_start(i, &tg);
if (unlikely(i_group_start == -1)) {
WARN_ON_ONCE(1);
err = -ENODATA;
goto out;
}
if (i_group_start == cpu_group_start)
cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
}
out:
of_node_put(dn);
return err;
}
static int init_big_cores(void)
{
int cpu;
for_each_possible_cpu(cpu) {
int err = init_cpu_l1_cache_map(cpu);
if (err)
return err;
zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
GFP_KERNEL,
cpu_to_node(cpu));
}
has_big_cores = true;
return 0;
}
void __init smp_prepare_cpus(unsigned int max_cpus) void __init smp_prepare_cpus(unsigned int max_cpus)
{ {
unsigned int cpu; unsigned int cpu;
...@@ -713,6 +910,12 @@ void __init smp_prepare_cpus(unsigned int max_cpus) ...@@ -713,6 +910,12 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
init_big_cores();
if (has_big_cores) {
cpumask_set_cpu(boot_cpuid,
cpu_smallcore_mask(boot_cpuid));
}
if (smp_ops && smp_ops->probe) if (smp_ops && smp_ops->probe)
smp_ops->probe(); smp_ops->probe();
} }
...@@ -1003,10 +1206,28 @@ static void remove_cpu_from_masks(int cpu) ...@@ -1003,10 +1206,28 @@ static void remove_cpu_from_masks(int cpu)
set_cpus_unrelated(cpu, i, cpu_core_mask); set_cpus_unrelated(cpu, i, cpu_core_mask);
set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
set_cpus_unrelated(cpu, i, cpu_sibling_mask); set_cpus_unrelated(cpu, i, cpu_sibling_mask);
if (has_big_cores)
set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
} }
} }
#endif #endif
static inline void add_cpu_to_smallcore_masks(int cpu)
{
struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
int i, first_thread = cpu_first_thread_sibling(cpu);
if (!has_big_cores)
return;
cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
for (i = first_thread; i < first_thread + threads_per_core; i++) {
if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
set_cpus_related(i, cpu, cpu_smallcore_mask);
}
}
static void add_cpu_to_masks(int cpu) static void add_cpu_to_masks(int cpu)
{ {
int first_thread = cpu_first_thread_sibling(cpu); int first_thread = cpu_first_thread_sibling(cpu);
...@@ -1023,6 +1244,7 @@ static void add_cpu_to_masks(int cpu) ...@@ -1023,6 +1244,7 @@ static void add_cpu_to_masks(int cpu)
if (cpu_online(i)) if (cpu_online(i))
set_cpus_related(i, cpu, cpu_sibling_mask); set_cpus_related(i, cpu, cpu_sibling_mask);
add_cpu_to_smallcore_masks(cpu);
/* /*
* Copy the thread sibling mask into the cache sibling mask * Copy the thread sibling mask into the cache sibling mask
* and mark any CPUs that share an L2 with this CPU. * and mark any CPUs that share an L2 with this CPU.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment