Commit 54b6a1bd authored by Huang Ying's avatar Huang Ying Committed by Herbert Xu

crypto: aes-ni - Add support to Intel AES-NI instructions for x86_64 platform

Intel AES-NI is a new set of Single Instruction Multiple Data (SIMD)
instructions that are going to be introduced in the next generation of
Intel processor, as of 2009. These instructions enable fast and secure
data encryption and decryption, using the Advanced Encryption Standard
(AES), defined by FIPS Publication number 197.  The architecture
introduces six instructions that offer full hardware support for
AES. Four of them support high performance data encryption and
decryption, and the other two instructions support the AES key
expansion procedure.

The white paper can be downloaded from:

http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf

AES may be used in soft_irq context, but MMX/SSE context can not be
touched safely in soft_irq context. So in_interrupt() is checked, if
in IRQ or soft_irq context, the general x86_64 implementation are used
instead.
Signed-off-by: default avatarHuang Ying <ying.huang@intel.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 1cac2cbc
......@@ -9,6 +9,7 @@ obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o
obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o
obj-$(CONFIG_CRYPTO_SALSA20_X86_64) += salsa20-x86_64.o
obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o
......@@ -19,3 +20,5 @@ salsa20-i586-y := salsa20-i586-asm_32.o salsa20_glue.o
aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o
This diff is collapsed.
This diff is collapsed.
......@@ -213,6 +213,7 @@ extern const char * const x86_power_flags[32];
#define cpu_has_xmm boot_cpu_has(X86_FEATURE_XMM)
#define cpu_has_xmm2 boot_cpu_has(X86_FEATURE_XMM2)
#define cpu_has_xmm3 boot_cpu_has(X86_FEATURE_XMM3)
#define cpu_has_aes boot_cpu_has(X86_FEATURE_AES)
#define cpu_has_ht boot_cpu_has(X86_FEATURE_HT)
#define cpu_has_mp boot_cpu_has(X86_FEATURE_MP)
#define cpu_has_nx boot_cpu_has(X86_FEATURE_NX)
......
......@@ -470,6 +470,31 @@ config CRYPTO_AES_X86_64
See <http://csrc.nist.gov/encryption/aes/> for more information.
config CRYPTO_AES_NI_INTEL
tristate "AES cipher algorithms (AES-NI)"
depends on (X86 || UML_X86) && 64BIT
select CRYPTO_AES_X86_64
select CRYPTO_CRYPTD
select CRYPTO_ALGAPI
help
Use Intel AES-NI instructions for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
config CRYPTO_ANUBIS
tristate "Anubis cipher algorithm"
select CRYPTO_ALGAPI
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment