Commit 6a9233c9 authored by Len Brown's avatar Len Brown

Merge intel.com:/home/lenb/bk/linux-2.6.8

into intel.com:/home/lenb/src/linux-acpi-test-2.6.8
parents 39ce7250 e7bf2031
...@@ -215,6 +215,8 @@ AES algorithm contributors: ...@@ -215,6 +215,8 @@ AES algorithm contributors:
Herbert Valerio Riedel Herbert Valerio Riedel
Kyle McMartin Kyle McMartin
Adam J. Richter Adam J. Richter
Fruhwirth Clemens (i586)
Linus Torvalds (i586)
CAST5 algorithm contributors: CAST5 algorithm contributors:
Kartikey Mahendra Bhatt (original developers unknown, FSF copyright). Kartikey Mahendra Bhatt (original developers unknown, FSF copyright).
......
...@@ -104,7 +104,8 @@ head-y := arch/i386/kernel/head.o arch/i386/kernel/init_task.o ...@@ -104,7 +104,8 @@ head-y := arch/i386/kernel/head.o arch/i386/kernel/init_task.o
libs-y += arch/i386/lib/ libs-y += arch/i386/lib/
core-y += arch/i386/kernel/ \ core-y += arch/i386/kernel/ \
arch/i386/mm/ \ arch/i386/mm/ \
arch/i386/$(mcore-y)/ arch/i386/$(mcore-y)/ \
arch/i386/crypto/
drivers-$(CONFIG_MATH_EMULATION) += arch/i386/math-emu/ drivers-$(CONFIG_MATH_EMULATION) += arch/i386/math-emu/
drivers-$(CONFIG_PCI) += arch/i386/pci/ drivers-$(CONFIG_PCI) += arch/i386/pci/
# must be linked after kernel/ # must be linked after kernel/
......
#
# i386/crypto/Makefile
#
# Arch-specific CryptoAPI modules.
#
obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o
aes-i586-y := aes-i586-asm.o aes.o
// -------------------------------------------------------------------------
// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK.
// All rights reserved.
//
// LICENSE TERMS
//
// The free distribution and use of this software in both source and binary
// form is allowed (with or without changes) provided that:
//
// 1. distributions of this source code include the above copyright
// notice, this list of conditions and the following disclaimer//
//
// 2. distributions in binary form include the above copyright
// notice, this list of conditions and the following disclaimer
// in the documentation and/or other associated materials//
//
// 3. the copyright holder's name is not used to endorse products
// built using this software without specific written permission.
//
//
// ALTERNATIVELY, provided that this notice is retained in full, this product
// may be distributed under the terms of the GNU General Public License (GPL),
// in which case the provisions of the GPL apply INSTEAD OF those given above.
//
// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>
// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
// DISCLAIMER
//
// This software is provided 'as is' with no explicit or implied warranties
// in respect of its properties including, but not limited to, correctness
// and fitness for purpose.
// -------------------------------------------------------------------------
// Issue Date: 29/07/2002
.file "aes-i586-asm.S"
.text
// aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
// aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words)
// offsets to parameters with one register pushed onto stack
#define in_blk 8 // input byte array address parameter
#define out_blk 12 // output byte array address parameter
#define ctx 16 // AES context structure
// offsets in context structure
#define ekey 0 // encryption key schedule base address
#define nrnd 256 // number of rounds
#define dkey 260 // decryption key schedule base address
// register mapping for encrypt and decrypt subroutines
#define r0 eax
#define r1 ebx
#define r2 ecx
#define r3 edx
#define r4 esi
#define r5 edi
#define r6 ebp
#define eaxl al
#define eaxh ah
#define ebxl bl
#define ebxh bh
#define ecxl cl
#define ecxh ch
#define edxl dl
#define edxh dh
#define _h(reg) reg##h
#define h(reg) _h(reg)
#define _l(reg) reg##l
#define l(reg) _l(reg)
// This macro takes a 32-bit word representing a column and uses
// each of its four bytes to index into four tables of 256 32-bit
// words to obtain values that are then xored into the appropriate
// output registers r0, r1, r4 or r5.
// Parameters:
// %1 out_state[0]
// %2 out_state[1]
// %3 out_state[2]
// %4 out_state[3]
// %5 table base address
// %6 input register for the round (destroyed)
// %7 scratch register for the round
#define do_col(a1, a2, a3, a4, a5, a6, a7) \
movzx %l(a6),%a7; \
xor a5(,%a7,4),%a1; \
movzx %h(a6),%a7; \
shr $16,%a6; \
xor a5+tlen(,%a7,4),%a2; \
movzx %l(a6),%a7; \
movzx %h(a6),%a6; \
xor a5+2*tlen(,%a7,4),%a3; \
xor a5+3*tlen(,%a6,4),%a4;
// initialise output registers from the key schedule
#define do_fcol(a1, a2, a3, a4, a5, a6, a7, a8) \
mov 0 a8,%a1; \
movzx %l(a6),%a7; \
mov 12 a8,%a2; \
xor a5(,%a7,4),%a1; \
mov 4 a8,%a4; \
movzx %h(a6),%a7; \
shr $16,%a6; \
xor a5+tlen(,%a7,4),%a2; \
movzx %l(a6),%a7; \
movzx %h(a6),%a6; \
xor a5+3*tlen(,%a6,4),%a4; \
mov %a3,%a6; \
mov 8 a8,%a3; \
xor a5+2*tlen(,%a7,4),%a3;
// initialise output registers from the key schedule
#define do_icol(a1, a2, a3, a4, a5, a6, a7, a8) \
mov 0 a8,%a1; \
movzx %l(a6),%a7; \
mov 4 a8,%a2; \
xor a5(,%a7,4),%a1; \
mov 12 a8,%a4; \
movzx %h(a6),%a7; \
shr $16,%a6; \
xor a5+tlen(,%a7,4),%a2; \
movzx %l(a6),%a7; \
movzx %h(a6),%a6; \
xor a5+3*tlen(,%a6,4),%a4; \
mov %a3,%a6; \
mov 8 a8,%a3; \
xor a5+2*tlen(,%a7,4),%a3;
// original Gladman had conditional saves to MMX regs.
#define save(a1, a2) \
mov %a2,4*a1(%esp)
#define restore(a1, a2) \
mov 4*a2(%esp),%a1
// This macro performs a forward encryption cycle. It is entered with
// the first previous round column values in r0, r1, r4 and r5 and
// exits with the final values in the same registers, using the MMX
// registers mm0-mm1 or the stack for temporary storage
// mov current column values into the MMX registers
#define fwd_rnd(arg, table) \
/* mov current column values into the MMX registers */ \
mov %r0,%r2; \
save (0,r1); \
save (1,r5); \
\
/* compute new column values */ \
do_fcol(r0,r5,r4,r1,table, r2,r3, arg); \
do_col (r4,r1,r0,r5,table, r2,r3); \
restore(r2,0); \
do_col (r1,r0,r5,r4,table, r2,r3); \
restore(r2,1); \
do_col (r5,r4,r1,r0,table, r2,r3);
// This macro performs an inverse encryption cycle. It is entered with
// the first previous round column values in r0, r1, r4 and r5 and
// exits with the final values in the same registers, using the MMX
// registers mm0-mm1 or the stack for temporary storage
#define inv_rnd(arg, table) \
/* mov current column values into the MMX registers */ \
mov %r0,%r2; \
save (0,r1); \
save (1,r5); \
\
/* compute new column values */ \
do_icol(r0,r1,r4,r5, table, r2,r3, arg); \
do_col (r4,r5,r0,r1, table, r2,r3); \
restore(r2,0); \
do_col (r1,r4,r5,r0, table, r2,r3); \
restore(r2,1); \
do_col (r5,r0,r1,r4, table, r2,r3);
// AES (Rijndael) Encryption Subroutine
.global aes_enc_blk
.extern ft_tab
.extern fl_tab
.align 4
aes_enc_blk:
push %ebp
mov ctx(%esp),%ebp // pointer to context
xor %eax,%eax
// CAUTION: the order and the values used in these assigns
// rely on the register mappings
1: push %ebx
mov in_blk+4(%esp),%r2
push %esi
mov nrnd(%ebp),%r3 // number of rounds
push %edi
lea ekey(%ebp),%r6 // key pointer
// input four columns and xor in first round key
mov (%r2),%r0
mov 4(%r2),%r1
mov 8(%r2),%r4
mov 12(%r2),%r5
xor (%r6),%r0
xor 4(%r6),%r1
xor 8(%r6),%r4
xor 12(%r6),%r5
sub $8,%esp // space for register saves on stack
add $16,%r6 // increment to next round key
sub $10,%r3
je 4f // 10 rounds for 128-bit key
add $32,%r6
sub $2,%r3
je 3f // 12 rounds for 128-bit key
add $32,%r6
2: fwd_rnd( -64(%r6) ,ft_tab) // 14 rounds for 128-bit key
fwd_rnd( -48(%r6) ,ft_tab)
3: fwd_rnd( -32(%r6) ,ft_tab) // 12 rounds for 128-bit key
fwd_rnd( -16(%r6) ,ft_tab)
4: fwd_rnd( (%r6) ,ft_tab) // 10 rounds for 128-bit key
fwd_rnd( +16(%r6) ,ft_tab)
fwd_rnd( +32(%r6) ,ft_tab)
fwd_rnd( +48(%r6) ,ft_tab)
fwd_rnd( +64(%r6) ,ft_tab)
fwd_rnd( +80(%r6) ,ft_tab)
fwd_rnd( +96(%r6) ,ft_tab)
fwd_rnd(+112(%r6) ,ft_tab)
fwd_rnd(+128(%r6) ,ft_tab)
fwd_rnd(+144(%r6) ,fl_tab) // last round uses a different table
// move final values to the output array. CAUTION: the
// order of these assigns rely on the register mappings
add $8,%esp
mov out_blk+12(%esp),%r6
mov %r5,12(%r6)
pop %edi
mov %r4,8(%r6)
pop %esi
mov %r1,4(%r6)
pop %ebx
mov %r0,(%r6)
pop %ebp
mov $1,%eax
ret
// AES (Rijndael) Decryption Subroutine
.global aes_dec_blk
.extern it_tab
.extern il_tab
.align 4
aes_dec_blk:
push %ebp
mov ctx(%esp),%ebp // pointer to context
xor %eax,%eax
// CAUTION: the order and the values used in these assigns
// rely on the register mappings
1: push %ebx
mov in_blk+4(%esp),%r2
push %esi
mov nrnd(%ebp),%r3 // number of rounds
push %edi
lea dkey(%ebp),%r6 // key pointer
mov %r3,%r0
shl $4,%r0
add %r0,%r6
// input four columns and xor in first round key
mov (%r2),%r0
mov 4(%r2),%r1
mov 8(%r2),%r4
mov 12(%r2),%r5
xor (%r6),%r0
xor 4(%r6),%r1
xor 8(%r6),%r4
xor 12(%r6),%r5
sub $8,%esp // space for register saves on stack
sub $16,%r6 // increment to next round key
sub $10,%r3
je 4f // 10 rounds for 128-bit key
sub $32,%r6
sub $2,%r3
je 3f // 12 rounds for 128-bit key
sub $32,%r6
2: inv_rnd( +64(%r6), it_tab) // 14 rounds for 128-bit key
inv_rnd( +48(%r6), it_tab)
3: inv_rnd( +32(%r6), it_tab) // 12 rounds for 128-bit key
inv_rnd( +16(%r6), it_tab)
4: inv_rnd( (%r6), it_tab) // 10 rounds for 128-bit key
inv_rnd( -16(%r6), it_tab)
inv_rnd( -32(%r6), it_tab)
inv_rnd( -48(%r6), it_tab)
inv_rnd( -64(%r6), it_tab)
inv_rnd( -80(%r6), it_tab)
inv_rnd( -96(%r6), it_tab)
inv_rnd(-112(%r6), it_tab)
inv_rnd(-128(%r6), it_tab)
inv_rnd(-144(%r6), il_tab) // last round uses a different table
// move final values to the output array. CAUTION: the
// order of these assigns rely on the register mappings
add $8,%esp
mov out_blk+12(%esp),%r6
mov %r5,12(%r6)
pop %edi
mov %r4,8(%r6)
pop %esi
mov %r1,4(%r6)
pop %ebx
mov %r0,(%r6)
pop %ebp
mov $1,%eax
ret
This diff is collapsed.
...@@ -120,7 +120,7 @@ config CRYPTO_SERPENT ...@@ -120,7 +120,7 @@ config CRYPTO_SERPENT
config CRYPTO_AES config CRYPTO_AES
tristate "AES cipher algorithms" tristate "AES cipher algorithms"
depends on CRYPTO depends on CRYPTO && !(X86 && !X86_64)
help help
AES cipher algorithms (FIPS-197). AES uses the Rijndael AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm. algorithm.
...@@ -138,6 +138,26 @@ config CRYPTO_AES ...@@ -138,6 +138,26 @@ config CRYPTO_AES
See http://csrc.nist.gov/CryptoToolkit/aes/ for more information. See http://csrc.nist.gov/CryptoToolkit/aes/ for more information.
config CRYPTO_AES_586
tristate "AES cipher algorithms (i586)"
depends on CRYPTO && (X86 && !X86_64)
help
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See http://csrc.nist.gov/encryption/aes/ for more information.
config CRYPTO_CAST5 config CRYPTO_CAST5
tristate "CAST5 (CAST-128) cipher algorithm" tristate "CAST5 (CAST-128) cipher algorithm"
depends on CRYPTO depends on CRYPTO
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment