drivers/char/mem.c: avoid OOM lockup during large reads from /dev/zero
While running 20 parallel instances of dd as follows: #!/bin/bash for i in `seq 1 20`; do dd if=/dev/zero of=/export/hda3/dd_$i bs=1073741824 count=1 & done wait on a 16G machine, we noticed that rather than just killing the processes, the entire kernel went down. Stracing dd reveals that it first does an mmap2, which makes 1GB worth of zero page mappings. Then it performs a read on those pages from /dev/zero, and finally it performs a write. The machine died during the reads. Looking at the code, it was noticed that /dev/zero's read operation had been changed by 557ed1fa ("remove ZERO_PAGE") from giving zero page mappings to actually zeroing the page. The zeroing of the pages causes physical pages to be allocated to the process. But, when the process exhausts all the memory that it can, the kernel cannot kill it, as it is still in the kernel mode allocating more memory. Consequently, the kernel eventually crashes. To fix this, I propose that when a fatal signal is pending during /dev/zero read operation, we simply return and let the user process die. Signed-off-by: Salman Qazi <sqazi@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Modified error return and comment trivially. - Linus] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing
Please register or sign in to comment