Commit 7371fd11 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6

* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6:
  [IA64] fix personality(PER_LINUX32) performance issue
  [IA64] Properly unregister legacy interrupts
  [IA64] Remove NULL pointer check for argument never passed as NULL.
  [IA64] trivial cleanup for perfmon.c
  [IA64] trivial cleanup for entry.S
  [IA64] fix interrupt masking for pending works on kernel leave
  [IA64] allow user to force_pal_cache_flush
  [IA64] Don't reserve crashkernel memory > 4 GB
  [IA64] machvec support for SGI UV platform
  [IA64] Add header files for SGI UV platform
parents 487ad7ef 839052d2
...@@ -686,6 +686,12 @@ and is between 256 and 4096 characters. It is defined in the file ...@@ -686,6 +686,12 @@ and is between 256 and 4096 characters. It is defined in the file
floppy= [HW] floppy= [HW]
See Documentation/floppy.txt. See Documentation/floppy.txt.
force_pal_cache_flush
[IA-64] Avoid check_sal_cache_flush which may hang on
buggy SAL_CACHE_FLUSH implementations. Using this
parameter will force ia64_sal_cache_flush to call
ia64_pal_cache_flush instead of SAL_CACHE_FLUSH.
gamecon.map[2|3]= gamecon.map[2|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad [HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port) support via parallel port (up to 5 devices per port)
......
...@@ -135,6 +135,7 @@ config IA64_GENERIC ...@@ -135,6 +135,7 @@ config IA64_GENERIC
HP-zx1/sx1000 For HP systems HP-zx1/sx1000 For HP systems
HP-zx1/sx1000+swiotlb For HP systems with (broken) DMA-constrained devices. HP-zx1/sx1000+swiotlb For HP systems with (broken) DMA-constrained devices.
SGI-SN2 For SGI Altix systems SGI-SN2 For SGI Altix systems
SGI-UV For SGI UV systems
Ski-simulator For the HP simulator <http://www.hpl.hp.com/research/linux/ski/> Ski-simulator For the HP simulator <http://www.hpl.hp.com/research/linux/ski/>
If you don't know what to do, choose "generic". If you don't know what to do, choose "generic".
...@@ -170,6 +171,18 @@ config IA64_SGI_SN2 ...@@ -170,6 +171,18 @@ config IA64_SGI_SN2
to select this option. If in doubt, select ia64 generic support to select this option. If in doubt, select ia64 generic support
instead. instead.
config IA64_SGI_UV`
bool "SGI-UV`"
select NUMA
select ACPI_NUMA
select SWIOTLB
help
Selecting this option will optimize the kernel for use on UV based
systems, but the resulting kernel binary will not run on other
types of ia64 systems. If you have an SGI UV system, it's safe
to select this option. If in doubt, select ia64 generic support
instead.
config IA64_HP_SIM config IA64_HP_SIM
bool "Ski-simulator" bool "Ski-simulator"
select SWIOTLB select SWIOTLB
......
...@@ -63,7 +63,7 @@ drivers-$(CONFIG_PCI) += arch/ia64/pci/ ...@@ -63,7 +63,7 @@ drivers-$(CONFIG_PCI) += arch/ia64/pci/
drivers-$(CONFIG_IA64_HP_SIM) += arch/ia64/hp/sim/ drivers-$(CONFIG_IA64_HP_SIM) += arch/ia64/hp/sim/
drivers-$(CONFIG_IA64_HP_ZX1) += arch/ia64/hp/common/ arch/ia64/hp/zx1/ drivers-$(CONFIG_IA64_HP_ZX1) += arch/ia64/hp/common/ arch/ia64/hp/zx1/
drivers-$(CONFIG_IA64_HP_ZX1_SWIOTLB) += arch/ia64/hp/common/ arch/ia64/hp/zx1/ drivers-$(CONFIG_IA64_HP_ZX1_SWIOTLB) += arch/ia64/hp/common/ arch/ia64/hp/zx1/
drivers-$(CONFIG_IA64_GENERIC) += arch/ia64/hp/common/ arch/ia64/hp/zx1/ arch/ia64/hp/sim/ arch/ia64/sn/ drivers-$(CONFIG_IA64_GENERIC) += arch/ia64/hp/common/ arch/ia64/hp/zx1/ arch/ia64/hp/sim/ arch/ia64/sn/ arch/ia64/uv/
drivers-$(CONFIG_OPROFILE) += arch/ia64/oprofile/ drivers-$(CONFIG_OPROFILE) += arch/ia64/oprofile/
boot := arch/ia64/hp/sim/boot boot := arch/ia64/hp/sim/boot
......
...@@ -15,7 +15,6 @@ ...@@ -15,7 +15,6 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/personality.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <asm/intrinsics.h> #include <asm/intrinsics.h>
...@@ -29,7 +28,6 @@ ...@@ -29,7 +28,6 @@
extern int die_if_kernel (char *str, struct pt_regs *regs, long err); extern int die_if_kernel (char *str, struct pt_regs *regs, long err);
struct exec_domain ia32_exec_domain;
struct page *ia32_shared_page[NR_CPUS]; struct page *ia32_shared_page[NR_CPUS];
unsigned long *ia32_boot_gdt; unsigned long *ia32_boot_gdt;
unsigned long *cpu_gdt_table[NR_CPUS]; unsigned long *cpu_gdt_table[NR_CPUS];
...@@ -240,14 +238,6 @@ ia32_cpu_init (void) ...@@ -240,14 +238,6 @@ ia32_cpu_init (void)
static int __init static int __init
ia32_init (void) ia32_init (void)
{ {
ia32_exec_domain.name = "Linux/x86";
ia32_exec_domain.handler = NULL;
ia32_exec_domain.pers_low = PER_LINUX32;
ia32_exec_domain.pers_high = PER_LINUX32;
ia32_exec_domain.signal_map = default_exec_domain.signal_map;
ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
register_exec_domain(&ia32_exec_domain);
#if PAGE_SHIFT > IA32_PAGE_SHIFT #if PAGE_SHIFT > IA32_PAGE_SHIFT
{ {
extern struct kmem_cache *ia64_partial_page_cachep; extern struct kmem_cache *ia64_partial_page_cachep;
......
...@@ -117,7 +117,10 @@ acpi_get_sysname(void) ...@@ -117,7 +117,10 @@ acpi_get_sysname(void)
if (!strcmp(hdr->oem_id, "HP")) { if (!strcmp(hdr->oem_id, "HP")) {
return "hpzx1"; return "hpzx1";
} else if (!strcmp(hdr->oem_id, "SGI")) { } else if (!strcmp(hdr->oem_id, "SGI")) {
return "sn2"; if (!strcmp(hdr->oem_table_id + 4, "UV"))
return "uv";
else
return "sn2";
} }
return "dig"; return "dig";
...@@ -130,6 +133,8 @@ acpi_get_sysname(void) ...@@ -130,6 +133,8 @@ acpi_get_sysname(void)
return "hpzx1_swiotlb"; return "hpzx1_swiotlb";
# elif defined (CONFIG_IA64_SGI_SN2) # elif defined (CONFIG_IA64_SGI_SN2)
return "sn2"; return "sn2";
# elif defined (CONFIG_IA64_SGI_UV)
return "uv";
# elif defined (CONFIG_IA64_DIG) # elif defined (CONFIG_IA64_DIG)
return "dig"; return "dig";
# else # else
...@@ -622,6 +627,9 @@ void acpi_unregister_gsi(u32 gsi) ...@@ -622,6 +627,9 @@ void acpi_unregister_gsi(u32 gsi)
if (acpi_irq_model == ACPI_IRQ_MODEL_PLATFORM) if (acpi_irq_model == ACPI_IRQ_MODEL_PLATFORM)
return; return;
if (has_8259 && gsi < 16)
return;
iosapic_unregister_intr(gsi); iosapic_unregister_intr(gsi);
} }
......
...@@ -1156,6 +1156,9 @@ skip_rbs_switch: ...@@ -1156,6 +1156,9 @@ skip_rbs_switch:
* r31 = current->thread_info->flags * r31 = current->thread_info->flags
* On exit: * On exit:
* p6 = TRUE if work-pending-check needs to be redone * p6 = TRUE if work-pending-check needs to be redone
*
* Interrupts are disabled on entry, reenabled depend on work, and
* disabled on exit.
*/ */
.work_pending_syscall: .work_pending_syscall:
add r2=-8,r2 add r2=-8,r2
...@@ -1164,16 +1167,16 @@ skip_rbs_switch: ...@@ -1164,16 +1167,16 @@ skip_rbs_switch:
st8 [r2]=r8 st8 [r2]=r8
st8 [r3]=r10 st8 [r3]=r10
.work_pending: .work_pending:
tbit.z p6,p0=r31,TIF_NEED_RESCHED // current_thread_info()->need_resched==0? tbit.z p6,p0=r31,TIF_NEED_RESCHED // is resched not needed?
(p6) br.cond.sptk.few .notify (p6) br.cond.sptk.few .notify
#ifdef CONFIG_PREEMPT #ifdef CONFIG_PREEMPT
(pKStk) dep r21=-1,r0,PREEMPT_ACTIVE_BIT,1 (pKStk) dep r21=-1,r0,PREEMPT_ACTIVE_BIT,1
;; ;;
(pKStk) st4 [r20]=r21 (pKStk) st4 [r20]=r21
ssm psr.i // enable interrupts
#endif #endif
ssm psr.i // enable interrupts
br.call.spnt.many rp=schedule br.call.spnt.many rp=schedule
.ret9: cmp.eq p6,p0=r0,r0 // p6 <- 1 .ret9: cmp.eq p6,p0=r0,r0 // p6 <- 1 (re-check)
rsm psr.i // disable interrupts rsm psr.i // disable interrupts
;; ;;
#ifdef CONFIG_PREEMPT #ifdef CONFIG_PREEMPT
...@@ -1182,13 +1185,13 @@ skip_rbs_switch: ...@@ -1182,13 +1185,13 @@ skip_rbs_switch:
(pKStk) st4 [r20]=r0 // preempt_count() <- 0 (pKStk) st4 [r20]=r0 // preempt_count() <- 0
#endif #endif
(pLvSys)br.cond.sptk.few .work_pending_syscall_end (pLvSys)br.cond.sptk.few .work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel // re-check br.cond.sptk.many .work_processed_kernel
.notify: .notify:
(pUStk) br.call.spnt.many rp=notify_resume_user (pUStk) br.call.spnt.many rp=notify_resume_user
.ret10: cmp.ne p6,p0=r0,r0 // p6 <- 0 .ret10: cmp.ne p6,p0=r0,r0 // p6 <- 0 (don't re-check)
(pLvSys)br.cond.sptk.few .work_pending_syscall_end (pLvSys)br.cond.sptk.few .work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel // don't re-check br.cond.sptk.many .work_processed_kernel
.work_pending_syscall_end: .work_pending_syscall_end:
adds r2=PT(R8)+16,r12 adds r2=PT(R8)+16,r12
...@@ -1196,7 +1199,7 @@ skip_rbs_switch: ...@@ -1196,7 +1199,7 @@ skip_rbs_switch:
;; ;;
ld8 r8=[r2] ld8 r8=[r2]
ld8 r10=[r3] ld8 r10=[r3]
br.cond.sptk.many .work_processed_syscall // re-check br.cond.sptk.many .work_processed_syscall
END(ia64_leave_kernel) END(ia64_leave_kernel)
...@@ -1234,9 +1237,12 @@ GLOBAL_ENTRY(ia64_invoke_schedule_tail) ...@@ -1234,9 +1237,12 @@ GLOBAL_ENTRY(ia64_invoke_schedule_tail)
END(ia64_invoke_schedule_tail) END(ia64_invoke_schedule_tail)
/* /*
* Setup stack and call do_notify_resume_user(). Note that pSys and pNonSys need to * Setup stack and call do_notify_resume_user(), keeping interrupts
* be set up by the caller. We declare 8 input registers so the system call * disabled.
* args get preserved, in case we need to restart a system call. *
* Note that pSys and pNonSys need to be set up by the caller.
* We declare 8 input registers so the system call args get preserved,
* in case we need to restart a system call.
*/ */
ENTRY(notify_resume_user) ENTRY(notify_resume_user)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
......
...@@ -900,12 +900,6 @@ static void ...@@ -900,12 +900,6 @@ static void
palinfo_smp_call(void *info) palinfo_smp_call(void *info)
{ {
palinfo_smp_data_t *data = (palinfo_smp_data_t *)info; palinfo_smp_data_t *data = (palinfo_smp_data_t *)info;
if (data == NULL) {
printk(KERN_ERR "palinfo: data pointer is NULL\n");
data->ret = 0; /* no output */
return;
}
/* does this actual call */
data->ret = (*data->func)(data->page); data->ret = (*data->func)(data->page);
} }
......
...@@ -5013,12 +5013,13 @@ pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs) ...@@ -5013,12 +5013,13 @@ pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
} }
static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds); static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
/* /*
* pfm_handle_work() can be called with interrupts enabled * pfm_handle_work() can be called with interrupts enabled
* (TIF_NEED_RESCHED) or disabled. The down_interruptible * (TIF_NEED_RESCHED) or disabled. The down_interruptible
* call may sleep, therefore we must re-enable interrupts * call may sleep, therefore we must re-enable interrupts
* to avoid deadlocks. It is safe to do so because this function * to avoid deadlocks. It is safe to do so because this function
* is called ONLY when returning to user level (PUStk=1), in which case * is called ONLY when returning to user level (pUStk=1), in which case
* there is no risk of kernel stack overflow due to deep * there is no risk of kernel stack overflow due to deep
* interrupt nesting. * interrupt nesting.
*/ */
...@@ -5034,7 +5035,8 @@ pfm_handle_work(void) ...@@ -5034,7 +5035,8 @@ pfm_handle_work(void)
ctx = PFM_GET_CTX(current); ctx = PFM_GET_CTX(current);
if (ctx == NULL) { if (ctx == NULL) {
printk(KERN_ERR "perfmon: [%d] has no PFM context\n", task_pid_nr(current)); printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
task_pid_nr(current));
return; return;
} }
...@@ -5058,11 +5060,12 @@ pfm_handle_work(void) ...@@ -5058,11 +5060,12 @@ pfm_handle_work(void)
/* /*
* must be done before we check for simple-reset mode * must be done before we check for simple-reset mode
*/ */
if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie; if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
goto do_zombie;
//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking; //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking; if (reason == PFM_TRAP_REASON_RESET)
goto skip_blocking;
/* /*
* restore interrupt mask to what it was on entry. * restore interrupt mask to what it was on entry.
...@@ -5110,7 +5113,8 @@ pfm_handle_work(void) ...@@ -5110,7 +5113,8 @@ pfm_handle_work(void)
/* /*
* in case of interruption of down() we don't restart anything * in case of interruption of down() we don't restart anything
*/ */
if (ret < 0) goto nothing_to_do; if (ret < 0)
goto nothing_to_do;
skip_blocking: skip_blocking:
pfm_resume_after_ovfl(ctx, ovfl_regs, regs); pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
......
...@@ -167,11 +167,18 @@ void tsk_clear_notify_resume(struct task_struct *tsk) ...@@ -167,11 +167,18 @@ void tsk_clear_notify_resume(struct task_struct *tsk)
clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME); clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
} }
/*
* do_notify_resume_user():
* Called from notify_resume_user at entry.S, with interrupts disabled.
*/
void void
do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall) do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
{ {
if (fsys_mode(current, &scr->pt)) { if (fsys_mode(current, &scr->pt)) {
/* defer signal-handling etc. until we return to privilege-level 0. */ /*
* defer signal-handling etc. until we return to
* privilege-level 0.
*/
if (!ia64_psr(&scr->pt)->lp) if (!ia64_psr(&scr->pt)->lp)
ia64_psr(&scr->pt)->lp = 1; ia64_psr(&scr->pt)->lp = 1;
return; return;
...@@ -179,16 +186,26 @@ do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall ...@@ -179,16 +186,26 @@ do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall
#ifdef CONFIG_PERFMON #ifdef CONFIG_PERFMON
if (current->thread.pfm_needs_checking) if (current->thread.pfm_needs_checking)
/*
* Note: pfm_handle_work() allow us to call it with interrupts
* disabled, and may enable interrupts within the function.
*/
pfm_handle_work(); pfm_handle_work();
#endif #endif
/* deal with pending signal delivery */ /* deal with pending signal delivery */
if (test_thread_flag(TIF_SIGPENDING)) if (test_thread_flag(TIF_SIGPENDING)) {
local_irq_enable(); /* force interrupt enable */
ia64_do_signal(scr, in_syscall); ia64_do_signal(scr, in_syscall);
}
/* copy user rbs to kernel rbs */ /* copy user rbs to kernel rbs */
if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
local_irq_enable(); /* force interrupt enable */
ia64_sync_krbs(); ia64_sync_krbs();
}
local_irq_disable(); /* force interrupt disable */
} }
static int pal_halt = 1; static int pal_halt = 1;
......
...@@ -229,6 +229,14 @@ static void __init sal_desc_ap_wakeup(void *p) { } ...@@ -229,6 +229,14 @@ static void __init sal_desc_ap_wakeup(void *p) { }
*/ */
static int sal_cache_flush_drops_interrupts; static int sal_cache_flush_drops_interrupts;
static int __init
force_pal_cache_flush(char *str)
{
sal_cache_flush_drops_interrupts = 1;
return 0;
}
early_param("force_pal_cache_flush", force_pal_cache_flush);
void __init void __init
check_sal_cache_flush (void) check_sal_cache_flush (void)
{ {
...@@ -237,6 +245,9 @@ check_sal_cache_flush (void) ...@@ -237,6 +245,9 @@ check_sal_cache_flush (void)
u64 vector, cache_type = 3; u64 vector, cache_type = 3;
struct ia64_sal_retval isrv; struct ia64_sal_retval isrv;
if (sal_cache_flush_drops_interrupts)
return;
cpu = get_cpu(); cpu = get_cpu();
local_irq_save(flags); local_irq_save(flags);
......
...@@ -239,6 +239,25 @@ __initcall(register_memory); ...@@ -239,6 +239,25 @@ __initcall(register_memory);
#ifdef CONFIG_KEXEC #ifdef CONFIG_KEXEC
/*
* This function checks if the reserved crashkernel is allowed on the specific
* IA64 machine flavour. Machines without an IO TLB use swiotlb and require
* some memory below 4 GB (i.e. in 32 bit area), see the implementation of
* lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
* in kdump case. See the comment in sba_init() in sba_iommu.c.
*
* So, the only machvec that really supports loading the kdump kernel
* over 4 GB is "sn2".
*/
static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
{
if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
return 1;
else
return pbase < (1UL << 32);
}
static void __init setup_crashkernel(unsigned long total, int *n) static void __init setup_crashkernel(unsigned long total, int *n)
{ {
unsigned long long base = 0, size = 0; unsigned long long base = 0, size = 0;
...@@ -252,6 +271,16 @@ static void __init setup_crashkernel(unsigned long total, int *n) ...@@ -252,6 +271,16 @@ static void __init setup_crashkernel(unsigned long total, int *n)
base = kdump_find_rsvd_region(size, base = kdump_find_rsvd_region(size,
rsvd_region, *n); rsvd_region, *n);
} }
if (!check_crashkernel_memory(base, size)) {
pr_warning("crashkernel: There would be kdump memory "
"at %ld GB but this is unusable because it "
"must\nbe below 4 GB. Change the memory "
"configuration of the machine.\n",
(unsigned long)(base >> 30));
return;
}
if (base != ~0UL) { if (base != ~0UL) {
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n", "for crashkernel (System RAM: %ldMB)\n",
......
...@@ -719,3 +719,28 @@ int remove_memory(u64 start, u64 size) ...@@ -719,3 +719,28 @@ int remove_memory(u64 start, u64 size)
EXPORT_SYMBOL_GPL(remove_memory); EXPORT_SYMBOL_GPL(remove_memory);
#endif /* CONFIG_MEMORY_HOTREMOVE */ #endif /* CONFIG_MEMORY_HOTREMOVE */
#endif #endif
/*
* Even when CONFIG_IA32_SUPPORT is not enabled it is
* useful to have the Linux/x86 domain registered to
* avoid an attempted module load when emulators call
* personality(PER_LINUX32). This saves several milliseconds
* on each such call.
*/
static struct exec_domain ia32_exec_domain;
static int __init
per_linux32_init(void)
{
ia32_exec_domain.name = "Linux/x86";
ia32_exec_domain.handler = NULL;
ia32_exec_domain.pers_low = PER_LINUX32;
ia32_exec_domain.pers_high = PER_LINUX32;
ia32_exec_domain.signal_map = default_exec_domain.signal_map;
ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
register_exec_domain(&ia32_exec_domain);
return 0;
}
__initcall(per_linux32_init);
# arch/ia64/uv/Makefile
#
# This file is subject to the terms and conditions of the GNU General Public
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
# Copyright (C) 2008 Silicon Graphics, Inc. All Rights Reserved.
#
# Makefile for the sn uv subplatform
#
obj-y += kernel/
# arch/ia64/uv/kernel/Makefile
#
# This file is subject to the terms and conditions of the GNU General Public
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
# Copyright (C) 2008 Silicon Graphics, Inc. All Rights Reserved.
#
EXTRA_CFLAGS += -Iarch/ia64/sn/include
obj-y += setup.o
obj-$(CONFIG_IA64_GENERIC) += machvec.o
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
*/
#define MACHVEC_PLATFORM_NAME uv
#define MACHVEC_PLATFORM_HEADER <asm/machvec_uv.h>
#include <asm/machvec_init.h>
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV Core Functions
*
* Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/percpu.h>
#include <asm/sn/simulator.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
struct redir_addr {
unsigned long redirect;
unsigned long alias;
};
#define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
static __initdata struct redir_addr redir_addrs[] = {
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
};
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{
union uvh_si_alias0_overlay_config_u alias;
union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
int i;
for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
alias.v = uv_read_local_mmr(redir_addrs[i].alias);
if (alias.s.base == 0) {
*size = (1UL << alias.s.m_alias);
redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
return;
}
}
BUG();
}
void __init uv_setup(char **cmdline_p)
{
union uvh_si_addr_map_config_u m_n_config;
union uvh_node_id_u node_id;
unsigned long gnode_upper;
int nid, cpu, m_val, n_val;
unsigned long mmr_base, lowmem_redir_base, lowmem_redir_size;
if (IS_MEDUSA()) {
lowmem_redir_base = 0;
lowmem_redir_size = 0;
node_id.v = 0;
m_n_config.s.m_skt = 37;
m_n_config.s.n_skt = 0;
mmr_base = 0;
} else {
get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
node_id.v = uv_read_local_mmr(UVH_NODE_ID);
m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
~UV_MMR_ENABLE;
}
m_val = m_n_config.s.m_skt;
n_val = m_n_config.s.n_skt;
printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
gnode_upper = (((unsigned long)node_id.s.node_id) &
~((1 << n_val) - 1)) << m_val;
for_each_present_cpu(cpu) {
nid = cpu_to_node(cpu);
uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
uv_cpu_hub_info(cpu)->lowmem_remap_top =
lowmem_redir_base + lowmem_redir_size;
uv_cpu_hub_info(cpu)->m_val = m_val;
uv_cpu_hub_info(cpu)->n_val = m_val;
uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) -1;
uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
uv_cpu_hub_info(cpu)->coherency_domain_number = 0;/* ZZZ */
printk(KERN_DEBUG "UV cpu %d, nid %d\n", cpu, nid);
}
}
...@@ -126,6 +126,8 @@ extern void machvec_tlb_migrate_finish (struct mm_struct *); ...@@ -126,6 +126,8 @@ extern void machvec_tlb_migrate_finish (struct mm_struct *);
# include <asm/machvec_hpzx1_swiotlb.h> # include <asm/machvec_hpzx1_swiotlb.h>
# elif defined (CONFIG_IA64_SGI_SN2) # elif defined (CONFIG_IA64_SGI_SN2)
# include <asm/machvec_sn2.h> # include <asm/machvec_sn2.h>
# elif defined (CONFIG_IA64_SGI_UV)
# include <asm/machvec_uv.h>
# elif defined (CONFIG_IA64_GENERIC) # elif defined (CONFIG_IA64_GENERIC)
# ifdef MACHVEC_PLATFORM_HEADER # ifdef MACHVEC_PLATFORM_HEADER
......
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV Core Functions
*
* Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_MACHVEC_UV_H
#define _ASM_IA64_MACHVEC_UV_H
extern ia64_mv_setup_t uv_setup;
/*
* This stuff has dual use!
*
* For a generic kernel, the macros are used to initialize the
* platform's machvec structure. When compiling a non-generic kernel,
* the macros are used directly.
*/
#define platform_name "uv"
#define platform_setup uv_setup
#endif /* _ASM_IA64_MACHVEC_UV_H */
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV architectural definitions
*
* Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef __ASM_IA64_UV_HUB_H__
#define __ASM_IA64_UV_HUB_H__
#include <linux/numa.h>
#include <linux/percpu.h>
#include <asm/types.h>
#include <asm/percpu.h>
/*
* Addressing Terminology
*
* M - The low M bits of a physical address represent the offset
* into the blade local memory. RAM memory on a blade is physically
* contiguous (although various IO spaces may punch holes in
* it)..
*
* N - Number of bits in the node portion of a socket physical
* address.
*
* NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
* routers always have low bit of 1, C/MBricks have low bit
* equal to 0. Most addressing macros that target UV hub chips
* right shift the NASID by 1 to exclude the always-zero bit.
* NASIDs contain up to 15 bits.
*
* GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
* of nasids.
*
* PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
* of the nasid for socket usage.
*
*
* NumaLink Global Physical Address Format:
* +--------------------------------+---------------------+
* |00..000| GNODE | NodeOffset |
* +--------------------------------+---------------------+
* |<-------53 - M bits --->|<--------M bits ----->
*
* M - number of node offset bits (35 .. 40)
*
*
* Memory/UV-HUB Processor Socket Address Format:
* +----------------+---------------+---------------------+
* |00..000000000000| PNODE | NodeOffset |
* +----------------+---------------+---------------------+
* <--- N bits --->|<--------M bits ----->
*
* M - number of node offset bits (35 .. 40)
* N - number of PNODE bits (0 .. 10)
*
* Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
* The actual values are configuration dependent and are set at
* boot time. M & N values are set by the hardware/BIOS at boot.
*/
/*
* Maximum number of bricks in all partitions and in all coherency domains.
* This is the total number of bricks accessible in the numalink fabric. It
* includes all C & M bricks. Routers are NOT included.
*
* This value is also the value of the maximum number of non-router NASIDs
* in the numalink fabric.
*
* NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
*/
#define UV_MAX_NUMALINK_BLADES 16384
/*
* Maximum number of C/Mbricks within a software SSI (hardware may support
* more).
*/
#define UV_MAX_SSI_BLADES 1
/*
* The largest possible NASID of a C or M brick (+ 2)
*/
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
/*
* The following defines attributes of the HUB chip. These attributes are
* frequently referenced and are kept in the per-cpu data areas of each cpu.
* They are kept together in a struct to minimize cache misses.
*/
struct uv_hub_info_s {
unsigned long global_mmr_base;
unsigned long gpa_mask;
unsigned long gnode_upper;
unsigned long lowmem_remap_top;
unsigned long lowmem_remap_base;
unsigned short pnode;
unsigned short pnode_mask;
unsigned short coherency_domain_number;
unsigned short numa_blade_id;
unsigned char blade_processor_id;
unsigned char m_val;
unsigned char n_val;
};
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
/*
* Local & Global MMR space macros.
* Note: macros are intended to be used ONLY by inline functions
* in this file - not by other kernel code.
* n - NASID (full 15-bit global nasid)
* g - GNODE (full 15-bit global nasid, right shifted 1)
* p - PNODE (local part of nsids, right shifted 1)
*/
#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
#define UV_LOCAL_MMR_BASE 0xf4000000UL
#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
/*
* Macros for converting between kernel virtual addresses, socket local physical
* addresses, and UV global physical addresses.
* Note: use the standard __pa() & __va() macros for converting
* between socket virtual and socket physical addresses.
*/
/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
if (paddr < uv_hub_info->lowmem_remap_top)
paddr += uv_hub_info->lowmem_remap_base;
return paddr | uv_hub_info->gnode_upper;
}
/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
return __pa(v) | uv_hub_info->gnode_upper;
}
/* socket virtual --> UV global physical address */
static inline void *uv_vgpa(void *v)
{
return (void *)uv_gpa(v);
}
/* UV global physical address --> socket virtual */
static inline void *uv_va(unsigned long gpa)
{
return __va(gpa & uv_hub_info->gpa_mask);
}
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
/*
* Access global MMRs using the low memory MMR32 space. This region supports
* faster MMR access but not all MMRs are accessible in this space.
*/
static inline unsigned long *uv_global_mmr32_address(int pnode,
unsigned long offset)
{
return __va(UV_GLOBAL_MMR32_BASE |
UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
}
static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
unsigned long val)
{
*uv_global_mmr32_address(pnode, offset) = val;
}
static inline unsigned long uv_read_global_mmr32(int pnode,
unsigned long offset)
{
return *uv_global_mmr32_address(pnode, offset);
}
/*
* Access Global MMR space using the MMR space located at the top of physical
* memory.
*/
static inline unsigned long *uv_global_mmr64_address(int pnode,
unsigned long offset)
{
return __va(UV_GLOBAL_MMR64_BASE |
UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
}
static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
unsigned long val)
{
*uv_global_mmr64_address(pnode, offset) = val;
}
static inline unsigned long uv_read_global_mmr64(int pnode,
unsigned long offset)
{
return *uv_global_mmr64_address(pnode, offset);
}
/*
* Access hub local MMRs. Faster than using global space but only local MMRs
* are accessible.
*/
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
return __va(UV_LOCAL_MMR_BASE | offset);
}
static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
return *uv_local_mmr_address(offset);
}
static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
*uv_local_mmr_address(offset) = val;
}
/*
* Structures and definitions for converting between cpu, node, pnode, and blade
* numbers.
*/
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
return smp_processor_id();
}
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
return 0;
}
/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
return 0;
}
/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
return 0;
}
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
{
return 0;
}
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
return num_possible_cpus();
}
/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
return num_online_cpus();
}
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
{
return 0;
}
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
{
return 0;
}
/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
return 1;
}
#endif /* __ASM_IA64_UV_HUB__ */
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment