Commit 9584c55a authored by Jayachandran C's avatar Jayachandran C Committed by Ralf Baechle

MIPS: Netlogic: Split reset code out of smpboot.S

The reset and core initialization code should be available for
uniprocessor as well. This changes is just to take out the code
into a different file, without any change to the logic.

The change for  uniprocessor initialization code is in a later patch.
Signed-off-by: default avatarJayachandran C <jchandra@broadcom.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5423/Signed-off-by: default avatarRalf Baechle <ralf@linux-mips.org>
parent aceee09d
...@@ -71,6 +71,7 @@ nlm_set_nmi_handler(void *handler) ...@@ -71,6 +71,7 @@ nlm_set_nmi_handler(void *handler)
/* /*
* Misc. * Misc.
*/ */
void nlm_init_boot_cpu(void);
unsigned int nlm_get_cpu_frequency(void); unsigned int nlm_get_cpu_frequency(void);
void nlm_node_init(int node); void nlm_node_init(int node);
extern struct plat_smp_ops nlm_smp_ops; extern struct plat_smp_ops nlm_smp_ops;
......
obj-y += irq.o time.o obj-y += irq.o time.o
obj-y += nlm-dma.o obj-y += nlm-dma.o
obj-$(CONFIG_SMP) += smp.o smpboot.o obj-$(CONFIG_SMP) += smp.o smpboot.o reset.o
obj-$(CONFIG_EARLY_PRINTK) += earlycons.o obj-$(CONFIG_EARLY_PRINTK) += earlycons.o
/*
* Copyright 2003-2013 Broadcom Corporation.
* All Rights Reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the Broadcom
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/init.h>
#include <asm/asm.h>
#include <asm/asm-offsets.h>
#include <asm/regdef.h>
#include <asm/mipsregs.h>
#include <asm/stackframe.h>
#include <asm/asmmacro.h>
#include <asm/addrspace.h>
#include <asm/netlogic/common.h>
#include <asm/netlogic/xlp-hal/iomap.h>
#include <asm/netlogic/xlp-hal/xlp.h>
#include <asm/netlogic/xlp-hal/sys.h>
#include <asm/netlogic/xlp-hal/cpucontrol.h>
#define CP0_EBASE $15
#define SYS_CPU_COHERENT_BASE(node) CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
XLP_IO_SYS_OFFSET(node) + XLP_IO_PCI_HDRSZ + \
SYS_CPU_NONCOHERENT_MODE * 4
#define XLP_AX_WORKAROUND /* enable Ax silicon workarounds */
/* Enable XLP features and workarounds in the LSU */
.macro xlp_config_lsu
li t0, LSU_DEFEATURE
mfcr t1, t0
lui t2, 0xc080 /* SUE, Enable Unaligned Access, L2HPE */
or t1, t1, t2
#ifdef XLP_AX_WORKAROUND
li t2, ~0xe /* S1RCM */
and t1, t1, t2
#endif
mtcr t1, t0
li t0, ICU_DEFEATURE
mfcr t1, t0
ori t1, 0x1000 /* Enable Icache partitioning */
mtcr t1, t0
#ifdef XLP_AX_WORKAROUND
li t0, SCHED_DEFEATURE
lui t1, 0x0100 /* Disable BRU accepting ALU ops */
mtcr t1, t0
#endif
.endm
/*
* Low level flush for L1D cache on XLP, the normal cache ops does
* not do the complete and correct cache flush.
*/
.macro xlp_flush_l1_dcache
li t0, LSU_DEBUG_DATA0
li t1, LSU_DEBUG_ADDR
li t2, 0 /* index */
li t3, 0x1000 /* loop count */
1:
sll v0, t2, 5
mtcr zero, t0
ori v1, v0, 0x3 /* way0 | write_enable | write_active */
mtcr v1, t1
2:
mfcr v1, t1
andi v1, 0x1 /* wait for write_active == 0 */
bnez v1, 2b
nop
mtcr zero, t0
ori v1, v0, 0x7 /* way1 | write_enable | write_active */
mtcr v1, t1
3:
mfcr v1, t1
andi v1, 0x1 /* wait for write_active == 0 */
bnez v1, 3b
nop
addi t2, 1
bne t3, t2, 1b
nop
.endm
/*
* nlm_reset_entry will be copied to the reset entry point for
* XLR and XLP. The XLP cores start here when they are woken up. This
* is also the NMI entry point.
*
* We use scratch reg 6/7 to save k0/k1 and check for NMI first.
*
* The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
* location, this will have the thread mask (used when core is woken up)
* and the current NMI handler in case we reached here for an NMI.
*
* When a core or thread is newly woken up, it marks itself ready and
* loops in a 'wait'. When the CPU really needs waking up, we send an NMI
* IPI to it, with the NMI handler set to prom_boot_secondary_cpus
*/
.set noreorder
.set noat
.set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
FEXPORT(nlm_reset_entry)
dmtc0 k0, $22, 6
dmtc0 k1, $22, 7
mfc0 k0, CP0_STATUS
li k1, 0x80000
and k1, k0, k1
beqz k1, 1f /* go to real reset entry */
nop
li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
ld k0, BOOT_NMI_HANDLER(k1)
jr k0
nop
1: /* Entry point on core wakeup */
mfc0 t0, CP0_EBASE, 1
mfc0 t1, CP0_EBASE, 1
srl t1, 5
andi t1, 0x3 /* t1 <- node */
li t2, 0x40000
mul t3, t2, t1 /* t3 = node * 0x40000 */
srl t0, t0, 2
and t0, t0, 0x7 /* t0 <- core */
li t1, 0x1
sll t0, t1, t0
nor t0, t0, zero /* t0 <- ~(1 << core) */
li t2, SYS_CPU_COHERENT_BASE(0)
add t2, t2, t3 /* t2 <- SYS offset for node */
lw t1, 0(t2)
and t1, t1, t0
sw t1, 0(t2)
/* read back to ensure complete */
lw t1, 0(t2)
sync
/* Configure LSU on Non-0 Cores. */
xlp_config_lsu
/* FALL THROUGH */
/*
* Wake up sibling threads from the initial thread in
* a core.
*/
EXPORT(nlm_boot_siblings)
/* core L1D flush before enable threads */
xlp_flush_l1_dcache
/* Enable hw threads by writing to MAP_THREADMODE of the core */
li t0, CKSEG1ADDR(RESET_DATA_PHYS)
lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
mfcr t2, t0
or t2, t2, t1
mtcr t2, t0
/*
* The new hardware thread starts at the next instruction
* For all the cases other than core 0 thread 0, we will
* jump to the secondary wait function.
*/
mfc0 v0, CP0_EBASE, 1
andi v0, 0x3ff /* v0 <- node/core */
/* Init MMU in the first thread after changing THREAD_MODE
* register (Ax Errata?)
*/
andi v1, v0, 0x3 /* v1 <- thread id */
bnez v1, 2f
nop
li t0, MMU_SETUP
li t1, 0
mtcr t1, t0
_ehb
2: beqz v0, 4f /* boot cpu (cpuid == 0)? */
nop
/* setup status reg */
move t1, zero
#ifdef CONFIG_64BIT
ori t1, ST0_KX
#endif
mtc0 t1, CP0_STATUS
/* mark CPU ready */
PTR_LA t1, nlm_cpu_ready
sll v1, v0, 2
PTR_ADDU t1, v1
li t2, 1
sw t2, 0(t1)
/* Wait until NMI hits */
3: wait
j 3b
nop
/*
* For the boot CPU, we have to restore registers and
* return
*/
4: dmfc0 t0, $4, 2 /* restore SP from UserLocal */
li t1, 0xfadebeef
dmtc0 t1, $4, 2 /* restore SP from UserLocal */
PTR_SUBU sp, t0, PT_SIZE
RESTORE_ALL
jr ra
nop
EXPORT(nlm_reset_entry_end)
LEAF(nlm_init_boot_cpu)
#ifdef CONFIG_CPU_XLP
xlp_config_lsu
#endif
jr ra
nop
END(nlm_init_boot_cpu)
...@@ -50,197 +50,12 @@ ...@@ -50,197 +50,12 @@
#include <asm/netlogic/xlp-hal/cpucontrol.h> #include <asm/netlogic/xlp-hal/cpucontrol.h>
#define CP0_EBASE $15 #define CP0_EBASE $15
#define SYS_CPU_COHERENT_BASE(node) CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
XLP_IO_SYS_OFFSET(node) + XLP_IO_PCI_HDRSZ + \
SYS_CPU_NONCOHERENT_MODE * 4
#define XLP_AX_WORKAROUND /* enable Ax silicon workarounds */
/* Enable XLP features and workarounds in the LSU */
.macro xlp_config_lsu
li t0, LSU_DEFEATURE
mfcr t1, t0
lui t2, 0xc080 /* SUE, Enable Unaligned Access, L2HPE */
or t1, t1, t2
#ifdef XLP_AX_WORKAROUND
li t2, ~0xe /* S1RCM */
and t1, t1, t2
#endif
mtcr t1, t0
li t0, ICU_DEFEATURE
mfcr t1, t0
ori t1, 0x1000 /* Enable Icache partitioning */
mtcr t1, t0
#ifdef XLP_AX_WORKAROUND
li t0, SCHED_DEFEATURE
lui t1, 0x0100 /* Disable BRU accepting ALU ops */
mtcr t1, t0
#endif
.endm
/*
* This is the code that will be copied to the reset entry point for
* XLR and XLP. The XLP cores start here when they are woken up. This
* is also the NMI entry point.
*/
.macro xlp_flush_l1_dcache
li t0, LSU_DEBUG_DATA0
li t1, LSU_DEBUG_ADDR
li t2, 0 /* index */
li t3, 0x1000 /* loop count */
1:
sll v0, t2, 5
mtcr zero, t0
ori v1, v0, 0x3 /* way0 | write_enable | write_active */
mtcr v1, t1
2:
mfcr v1, t1
andi v1, 0x1 /* wait for write_active == 0 */
bnez v1, 2b
nop
mtcr zero, t0
ori v1, v0, 0x7 /* way1 | write_enable | write_active */
mtcr v1, t1
3:
mfcr v1, t1
andi v1, 0x1 /* wait for write_active == 0 */
bnez v1, 3b
nop
addi t2, 1
bne t3, t2, 1b
nop
.endm
/*
* The cores can come start when they are woken up. This is also the NMI
* entry, so check that first.
*
* The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
* location, this will have the thread mask (used when core is woken up)
* and the current NMI handler in case we reached here for an NMI.
*
* When a core or thread is newly woken up, it loops in a 'wait'. When
* the CPU really needs waking up, we send an NMI to it, with the NMI
* handler set to prom_boot_secondary_cpus
*/
.set noreorder .set noreorder
.set noat .set noat
.set arch=xlr /* for mfcr/mtcr, XLR is sufficient */ .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
FEXPORT(nlm_reset_entry)
dmtc0 k0, $22, 6
dmtc0 k1, $22, 7
mfc0 k0, CP0_STATUS
li k1, 0x80000
and k1, k0, k1
beqz k1, 1f /* go to real reset entry */
nop
li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
ld k0, BOOT_NMI_HANDLER(k1)
jr k0
nop
1: /* Entry point on core wakeup */
mfc0 t0, CP0_EBASE, 1
mfc0 t1, CP0_EBASE, 1
srl t1, 5
andi t1, 0x3 /* t1 <- node */
li t2, 0x40000
mul t3, t2, t1 /* t3 = node * 0x40000 */
srl t0, t0, 2
and t0, t0, 0x7 /* t0 <- core */
li t1, 0x1
sll t0, t1, t0
nor t0, t0, zero /* t0 <- ~(1 << core) */
li t2, SYS_CPU_COHERENT_BASE(0)
add t2, t2, t3 /* t2 <- SYS offset for node */
lw t1, 0(t2)
and t1, t1, t0
sw t1, 0(t2)
/* read back to ensure complete */
lw t1, 0(t2)
sync
/* Configure LSU on Non-0 Cores. */
xlp_config_lsu
/* FALL THROUGH */
/*
* Wake up sibling threads from the initial thread in
* a core.
*/
EXPORT(nlm_boot_siblings)
/* core L1D flush before enable threads */
xlp_flush_l1_dcache
/* Enable hw threads by writing to MAP_THREADMODE of the core */
li t0, CKSEG1ADDR(RESET_DATA_PHYS)
lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
mfcr t2, t0
or t2, t2, t1
mtcr t2, t0
/*
* The new hardware thread starts at the next instruction
* For all the cases other than core 0 thread 0, we will
* jump to the secondary wait function.
*/
mfc0 v0, CP0_EBASE, 1
andi v0, 0x3ff /* v0 <- node/core */
/* Init MMU in the first thread after changing THREAD_MODE
* register (Ax Errata?)
*/
andi v1, v0, 0x3 /* v1 <- thread id */
bnez v1, 2f
nop
li t0, MMU_SETUP
li t1, 0
mtcr t1, t0
_ehb
2: beqz v0, 4f /* boot cpu (cpuid == 0)? */
nop
/* setup status reg */
move t1, zero
#ifdef CONFIG_64BIT
ori t1, ST0_KX
#endif
mtc0 t1, CP0_STATUS
/* mark CPU ready */
PTR_LA t1, nlm_cpu_ready
sll v1, v0, 2
PTR_ADDU t1, v1
li t2, 1
sw t2, 0(t1)
/* Wait until NMI hits */
3: wait
j 3b
nop
/*
* For the boot CPU, we have to restore registers and
* return
*/
4: dmfc0 t0, $4, 2 /* restore SP from UserLocal */
li t1, 0xfadebeef
dmtc0 t1, $4, 2 /* restore SP from UserLocal */
PTR_SUBU sp, t0, PT_SIZE
RESTORE_ALL
jr ra
nop
EXPORT(nlm_reset_entry_end)
FEXPORT(xlp_boot_core0_siblings) /* "Master" cpu starts from here */ FEXPORT(xlp_boot_core0_siblings) /* "Master" cpu starts from here */
xlp_config_lsu
dmtc0 sp, $4, 2 /* SP saved in UserLocal */ dmtc0 sp, $4, 2 /* SP saved in UserLocal */
SAVE_ALL SAVE_ALL
sync sync
......
...@@ -137,6 +137,7 @@ void xlp_wakeup_secondary_cpus() ...@@ -137,6 +137,7 @@ void xlp_wakeup_secondary_cpus()
* In case of u-boot, the secondaries are in reset * In case of u-boot, the secondaries are in reset
* first wakeup core 0 threads * first wakeup core 0 threads
*/ */
nlm_init_boot_cpu();
xlp_boot_core0_siblings(); xlp_boot_core0_siblings();
/* now get other cores out of reset */ /* now get other cores out of reset */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment