Commit a8ebf98f authored by Inaky Perez-Gonzalez's avatar Inaky Perez-Gonzalez Committed by Greg Kroah-Hartman

i2400m/USB: TX and RX path backends

Implements the backend so that the generic driver can TX/RX to/from
the USB device.

TX is implemented with a kthread sitting in a never-ending loop that
when kicked by the generic driver's TX code will pull data from the TX
FIFO and send it to the device until it drains it. Then it goes back
sleep, waiting for another kick.

RX is implemented in a similar fashion, but reads are kicked in by the
device notifying in the interrupt endpoint that data is ready. Device
reset notifications are also sent via the notification endpoint.

We need a thread contexts to run USB autopm functions (blocking) and
to process the received data (can get to be heavy in processing
time).
Signed-off-by: default avatarInaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 79503810
/*
* Intel Wireless WiMAX Connection 2400m over USB
* Notification handling
*
*
* Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Intel Corporation <linux-wimax@intel.com>
* Yanir Lubetkin <yanirx.lubetkin@intel.com>
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
* - Initial implementation
*
*
* The notification endpoint is active when the device is not in boot
* mode; in here we just read and get notifications; based on those,
* we act to either reinitialize the device after a reboot or to
* submit a RX request.
*
* ROADMAP
*
* i2400mu_usb_notification_setup()
*
* i2400mu_usb_notification_release()
*
* i2400mu_usb_notification_cb() Called when a URB is ready
* i2400mu_notif_grok()
* i2400m_dev_reset_handle()
* i2400mu_rx_kick()
*/
#include <linux/usb.h>
#include "i2400m-usb.h"
#define D_SUBMODULE notif
#include "usb-debug-levels.h"
static const
__le32 i2400m_ZERO_BARKER[4] = { 0, 0, 0, 0 };
/*
* Process a received notification
*
* In normal operation mode, we can only receive two types of payloads
* on the notification endpoint:
*
* - a reboot barker, we do a bootstrap (the device has reseted).
*
* - a block of zeroes: there is pending data in the IN endpoint
*/
static
int i2400mu_notification_grok(struct i2400mu *i2400mu, const void *buf,
size_t buf_len)
{
int ret;
struct device *dev = &i2400mu->usb_iface->dev;
struct i2400m *i2400m = &i2400mu->i2400m;
d_fnstart(4, dev, "(i2400m %p buf %p buf_len %zu)\n",
i2400mu, buf, buf_len);
ret = -EIO;
if (buf_len < sizeof(i2400m_NBOOT_BARKER))
/* Not a bug, just ignore */
goto error_bad_size;
if (!memcmp(i2400m_NBOOT_BARKER, buf, sizeof(i2400m_NBOOT_BARKER))
|| !memcmp(i2400m_SBOOT_BARKER, buf, sizeof(i2400m_SBOOT_BARKER)))
ret = i2400m_dev_reset_handle(i2400m);
else if (!memcmp(i2400m_ZERO_BARKER, buf, sizeof(i2400m_ZERO_BARKER))) {
i2400mu_rx_kick(i2400mu);
ret = 0;
} else { /* Unknown or unexpected data in the notif message */
char prefix[64];
ret = -EIO;
dev_err(dev, "HW BUG? Unknown/unexpected data in notification "
"message (%zu bytes)\n", buf_len);
snprintf(prefix, sizeof(prefix), "%s %s: ",
dev_driver_string(dev) , dev->bus_id);
if (buf_len > 64) {
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
8, 4, buf, 64, 0);
printk(KERN_ERR "%s... (only first 64 bytes "
"dumped)\n", prefix);
} else
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
8, 4, buf, buf_len, 0);
}
error_bad_size:
d_fnend(4, dev, "(i2400m %p buf %p buf_len %zu) = %d\n",
i2400mu, buf, buf_len, ret);
return ret;
}
/*
* URB callback for the notification endpoint
*
* @urb: the urb received from the notification endpoint
*
* This function will just process the USB side of the transaction,
* checking everything is fine, pass the processing to
* i2400m_notification_grok() and resubmit the URB.
*/
static
void i2400mu_notification_cb(struct urb *urb)
{
int ret;
struct i2400mu *i2400mu = urb->context;
struct device *dev = &i2400mu->usb_iface->dev;
d_fnstart(4, dev, "(urb %p status %d actual_length %d)\n",
urb, urb->status, urb->actual_length);
ret = urb->status;
switch (ret) {
case 0:
ret = i2400mu_notification_grok(i2400mu, urb->transfer_buffer,
urb->actual_length);
if (ret == -EIO && edc_inc(&i2400mu->urb_edc, EDC_MAX_ERRORS,
EDC_ERROR_TIMEFRAME))
goto error_exceeded;
if (ret == -ENOMEM) /* uff...power cycle? shutdown? */
goto error_exceeded;
break;
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* ditto */
case -ESHUTDOWN: /* URB killed */
case -ECONNRESET: /* disconnection */
goto out; /* Notify around */
default: /* Some error? */
if (edc_inc(&i2400mu->urb_edc,
EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME))
goto error_exceeded;
dev_err(dev, "notification: URB error %d, retrying\n",
urb->status);
}
usb_mark_last_busy(i2400mu->usb_dev);
ret = usb_submit_urb(i2400mu->notif_urb, GFP_ATOMIC);
switch (ret) {
case 0:
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* ditto */
case -ESHUTDOWN: /* URB killed */
case -ECONNRESET: /* disconnection */
break; /* just ignore */
default: /* Some error? */
dev_err(dev, "notification: cannot submit URB: %d\n", ret);
goto error_submit;
}
d_fnend(4, dev, "(urb %p status %d actual_length %d) = void\n",
urb, urb->status, urb->actual_length);
return;
error_exceeded:
dev_err(dev, "maximum errors in notification URB exceeded; "
"resetting device\n");
error_submit:
usb_queue_reset_device(i2400mu->usb_iface);
out:
d_fnend(4, dev, "(urb %p status %d actual_length %d) = void\n",
urb, urb->status, urb->actual_length);
return;
}
/*
* setup the notification endpoint
*
* @i2400m: device descriptor
*
* This procedure prepares the notification urb and handler for receiving
* unsolicited barkers from the device.
*/
int i2400mu_notification_setup(struct i2400mu *i2400mu)
{
struct device *dev = &i2400mu->usb_iface->dev;
int usb_pipe, ret = 0;
struct usb_endpoint_descriptor *epd;
char *buf;
d_fnstart(4, dev, "(i2400m %p)\n", i2400mu);
buf = kmalloc(I2400MU_MAX_NOTIFICATION_LEN, GFP_KERNEL | GFP_DMA);
if (buf == NULL) {
dev_err(dev, "notification: buffer allocation failed\n");
ret = -ENOMEM;
goto error_buf_alloc;
}
i2400mu->notif_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!i2400mu->notif_urb) {
ret = -ENOMEM;
dev_err(dev, "notification: cannot allocate URB\n");
goto error_alloc_urb;
}
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_NOTIFICATION);
usb_pipe = usb_rcvintpipe(i2400mu->usb_dev, epd->bEndpointAddress);
usb_fill_int_urb(i2400mu->notif_urb, i2400mu->usb_dev, usb_pipe,
buf, I2400MU_MAX_NOTIFICATION_LEN,
i2400mu_notification_cb, i2400mu, epd->bInterval);
ret = usb_submit_urb(i2400mu->notif_urb, GFP_KERNEL);
if (ret != 0) {
dev_err(dev, "notification: cannot submit URB: %d\n", ret);
goto error_submit;
}
d_fnend(4, dev, "(i2400m %p) = %d\n", i2400mu, ret);
return ret;
error_submit:
usb_free_urb(i2400mu->notif_urb);
error_alloc_urb:
kfree(buf);
error_buf_alloc:
d_fnend(4, dev, "(i2400m %p) = %d\n", i2400mu, ret);
return ret;
}
/*
* Tear down of the notification mechanism
*
* @i2400m: device descriptor
*
* Kill the interrupt endpoint urb, free any allocated resources.
*
* We need to check if we have done it before as for example,
* _suspend() call this; if after a suspend() we get a _disconnect()
* (as the case is when hibernating), nothing bad happens.
*/
void i2400mu_notification_release(struct i2400mu *i2400mu)
{
struct device *dev = &i2400mu->usb_iface->dev;
d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
if (i2400mu->notif_urb != NULL) {
usb_kill_urb(i2400mu->notif_urb);
kfree(i2400mu->notif_urb->transfer_buffer);
usb_free_urb(i2400mu->notif_urb);
i2400mu->notif_urb = NULL;
}
d_fnend(4, dev, "(i2400mu %p)\n", i2400mu);
}
This diff is collapsed.
/*
* Intel Wireless WiMAX Connection 2400m
* USB specific TX handling
*
*
* Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Intel Corporation <linux-wimax@intel.com>
* Yanir Lubetkin <yanirx.lubetkin@intel.com>
* - Initial implementation
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
* - Split transport/device specific
*
*
* Takes the TX messages in the i2400m's driver TX FIFO and sends them
* to the device until there are no more.
*
* If we fail sending the message, we just drop it. There isn't much
* we can do at this point. We could also retry, but the USB stack has
* already retried and still failed, so there is not much of a
* point. As well, most of the traffic is network, which has recovery
* methods for dropped packets.
*
* For sending we just obtain a FIFO buffer to send, send it to the
* USB bulk out, tell the TX FIFO code we have sent it; query for
* another one, etc... until done.
*
* We use a thread so we can call usb_autopm_enable() and
* usb_autopm_disable() for each transaction; this way when the device
* goes idle, it will suspend. It also has less overhead than a
* dedicated workqueue, as it is being used for a single task.
*
* ROADMAP
*
* i2400mu_tx_setup()
* i2400mu_tx_release()
*
* i2400mu_bus_tx_kick() - Called by the tx.c code when there
* is new data in the FIFO.
* i2400mu_txd()
* i2400m_tx_msg_get()
* i2400m_tx_msg_sent()
*/
#include "i2400m-usb.h"
#define D_SUBMODULE tx
#include "usb-debug-levels.h"
/*
* Get the next TX message in the TX FIFO and send it to the device
*
* Note that any iteration consumes a message to be sent, no matter if
* it succeeds or fails (we have no real way to retry or complain).
*
* Return: 0 if ok, < 0 errno code on hard error.
*/
static
int i2400mu_tx(struct i2400mu *i2400mu, struct i2400m_msg_hdr *tx_msg,
size_t tx_msg_size)
{
int result = 0;
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = &i2400mu->usb_iface->dev;
int usb_pipe, sent_size, do_autopm;
struct usb_endpoint_descriptor *epd;
d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
do_autopm = atomic_read(&i2400mu->do_autopm);
result = do_autopm ?
usb_autopm_get_interface(i2400mu->usb_iface) : 0;
if (result < 0) {
dev_err(dev, "TX: can't get autopm: %d\n", result);
do_autopm = 0;
}
epd = usb_get_epd(i2400mu->usb_iface, I2400MU_EP_BULK_OUT);
usb_pipe = usb_sndbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
retry:
result = usb_bulk_msg(i2400mu->usb_dev, usb_pipe,
tx_msg, tx_msg_size, &sent_size, HZ);
usb_mark_last_busy(i2400mu->usb_dev);
switch (result) {
case 0:
if (sent_size != tx_msg_size) { /* Too short? drop it */
dev_err(dev, "TX: short write (%d B vs %zu "
"expected)\n", sent_size, tx_msg_size);
result = -EIO;
}
break;
case -EINVAL: /* while removing driver */
case -ENODEV: /* dev disconnect ... */
case -ENOENT: /* just ignore it */
case -ESHUTDOWN: /* and exit */
case -ECONNRESET:
result = -ESHUTDOWN;
break;
default: /* Some error? */
if (edc_inc(&i2400mu->urb_edc,
EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
dev_err(dev, "TX: maximum errors in URB "
"exceeded; resetting device\n");
usb_queue_reset_device(i2400mu->usb_iface);
} else {
dev_err(dev, "TX: cannot send URB; retrying. "
"tx_msg @%zu %zu B [%d sent]: %d\n",
(void *) tx_msg - i2400m->tx_buf,
tx_msg_size, sent_size, result);
goto retry;
}
}
if (do_autopm)
usb_autopm_put_interface(i2400mu->usb_iface);
d_fnend(4, dev, "(i2400mu %p) = result\n", i2400mu);
return result;
}
/*
* Get the next TX message in the TX FIFO and send it to the device
*
* Note we exit the loop if i2400mu_tx() fails; that funtion only
* fails on hard error (failing to tx a buffer not being one of them,
* see its doc).
*
* Return: 0
*/
static
int i2400mu_txd(void *_i2400mu)
{
int result = 0;
struct i2400mu *i2400mu = _i2400mu;
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = &i2400mu->usb_iface->dev;
struct i2400m_msg_hdr *tx_msg;
size_t tx_msg_size;
d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
while (1) {
d_printf(2, dev, "TX: waiting for messages\n");
tx_msg = NULL;
wait_event_interruptible(
i2400mu->tx_wq,
(kthread_should_stop() /* check this first! */
|| (tx_msg = i2400m_tx_msg_get(i2400m, &tx_msg_size)))
);
if (kthread_should_stop())
break;
WARN_ON(tx_msg == NULL); /* should not happen...*/
d_printf(2, dev, "TX: submitting %zu bytes\n", tx_msg_size);
d_dump(5, dev, tx_msg, tx_msg_size);
/* Yeah, we ignore errors ... not much we can do */
i2400mu_tx(i2400mu, tx_msg, tx_msg_size);
i2400m_tx_msg_sent(i2400m); /* ack it, advance the FIFO */
if (result < 0)
break;
}
d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
return result;
}
/*
* i2400m TX engine notifies us that there is data in the FIFO ready
* for TX
*
* If there is a URB in flight, don't do anything; when it finishes,
* it will see there is data in the FIFO and send it. Else, just
* submit a write.
*/
void i2400mu_bus_tx_kick(struct i2400m *i2400m)
{
struct i2400mu *i2400mu = container_of(i2400m, struct i2400mu, i2400m);
struct device *dev = &i2400mu->usb_iface->dev;
d_fnstart(3, dev, "(i2400m %p) = void\n", i2400m);
wake_up_all(&i2400mu->tx_wq);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
int i2400mu_tx_setup(struct i2400mu *i2400mu)
{
int result = 0;
struct i2400m *i2400m = &i2400mu->i2400m;
struct device *dev = &i2400mu->usb_iface->dev;
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
i2400mu->tx_kthread = kthread_run(i2400mu_txd, i2400mu, "%s-tx",
wimax_dev->name);
if (IS_ERR(i2400mu->tx_kthread)) {
result = PTR_ERR(i2400mu->tx_kthread);
dev_err(dev, "TX: cannot start thread: %d\n", result);
}
return result;
}
void i2400mu_tx_release(struct i2400mu *i2400mu)
{
kthread_stop(i2400mu->tx_kthread);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment