Commit c535cc92 authored by Paul E. McKenney's avatar Paul E. McKenney

documentation: Distinguish between local and global transitivity

The introduction of smp_load_acquire() and smp_store_release() had
the side effect of introducing a weaker notion of transitivity:
The transitivity of full smp_mb() barriers is global, but that
of smp_store_release()/smp_load_acquire() chains is local.  This
commit therefore introduces the notion of local transitivity and
gives an example.
Reported-by: default avatarPeter Zijlstra <peterz@infradead.org>
Reported-by: default avatarWill Deacon <will.deacon@arm.com>
Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
parent 92a84dd2
...@@ -1318,8 +1318,82 @@ or a level of cache, CPU 2 might have early access to CPU 1's writes. ...@@ -1318,8 +1318,82 @@ or a level of cache, CPU 2 might have early access to CPU 1's writes.
General barriers are therefore required to ensure that all CPUs agree General barriers are therefore required to ensure that all CPUs agree
on the combined order of CPU 1's and CPU 2's accesses. on the combined order of CPU 1's and CPU 2's accesses.
To reiterate, if your code requires transitivity, use general barriers General barriers provide "global transitivity", so that all CPUs will
throughout. agree on the order of operations. In contrast, a chain of release-acquire
pairs provides only "local transitivity", so that only those CPUs on
the chain are guaranteed to agree on the combined order of the accesses.
For example, switching to C code in deference to Herman Hollerith:
int u, v, x, y, z;
void cpu0(void)
{
r0 = smp_load_acquire(&x);
WRITE_ONCE(u, 1);
smp_store_release(&y, 1);
}
void cpu1(void)
{
r1 = smp_load_acquire(&y);
r4 = READ_ONCE(v);
r5 = READ_ONCE(u);
smp_store_release(&z, 1);
}
void cpu2(void)
{
r2 = smp_load_acquire(&z);
smp_store_release(&x, 1);
}
void cpu3(void)
{
WRITE_ONCE(v, 1);
smp_mb();
r3 = READ_ONCE(u);
}
Because cpu0(), cpu1(), and cpu2() participate in a local transitive
chain of smp_store_release()/smp_load_acquire() pairs, the following
outcome is prohibited:
r0 == 1 && r1 == 1 && r2 == 1
Furthermore, because of the release-acquire relationship between cpu0()
and cpu1(), cpu1() must see cpu0()'s writes, so that the following
outcome is prohibited:
r1 == 1 && r5 == 0
However, the transitivity of release-acquire is local to the participating
CPUs and does not apply to cpu3(). Therefore, the following outcome
is possible:
r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0
Although cpu0(), cpu1(), and cpu2() will see their respective reads and
writes in order, CPUs not involved in the release-acquire chain might
well disagree on the order. This disagreement stems from the fact that
the weak memory-barrier instructions used to implement smp_load_acquire()
and smp_store_release() are not required to order prior stores against
subsequent loads in all cases. This means that cpu3() can see cpu0()'s
store to u as happening -after- cpu1()'s load from v, even though
both cpu0() and cpu1() agree that these two operations occurred in the
intended order.
However, please keep in mind that smp_load_acquire() is not magic.
In particular, it simply reads from its argument with ordering. It does
-not- ensure that any particular value will be read. Therefore, the
following outcome is possible:
r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0
Note that this outcome can happen even on a mythical sequentially
consistent system where nothing is ever reordered.
To reiterate, if your code requires global transitivity, use general
barriers throughout.
======================== ========================
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment