Commit d552a2b9 authored by Bob Peterson's avatar Bob Peterson

GFS2: Non-recursive delete

Implement truncate/delete as a non-recursive algorithm. The older
algorithm was implemented with recursion to strip off each layer
at a time (going by height, starting with the maximum height.
This version tries to do the same thing but without recursion,
and without needing to allocate new structures or lists in memory.

For example, say you want to truncate a very large file to 1 byte,
and its end-of-file metapath is: 0.505.463.428. The starting
metapath would be 0.0.0.0. Since it's a truncate to non-zero, it
needs to preserve that byte, and all metadata pointing to it.
So it would start at 0.0.0.0, look up all its metadata buffers,
then free all data blocks pointed to at the highest level.
After that buffer is "swept", it moves on to 0.0.0.1, then
0.0.0.2, etc., reading in buffers and sweeping them clean.
When it gets to the end of the 0.0.0 metadata buffer (for 4K
blocks the last valid one is 0.0.0.508), it backs up to the
previous height and starts working on 0.0.1.0, then 0.0.1.1,
and so forth. After it reaches the end and sweeps 0.0.1.508,
it continues with 0.0.2.0, and so on. When that height is
exhausted, and it reaches 0.0.508.508 it backs up another level,
to 0.1.0.0, then 0.1.0.1, through 0.1.0.508. So it has to keep
marching backwards and forwards through the metadata until it's
all swept clean. Once it has all the data blocks freed, it
lowers the strip height, and begins the process all over again,
but with one less height. This time it sweeps 0.0.0 through
0.505.463. When that's clean, it lowers the strip height again
and works to free 0.505. Eventually it strips the lowest height, 0.
For a delete or truncate to 0, all metadata for all heights of
0.0.0.0 would be freed. For a truncate to 1 byte, 0.0.0.0 would
be preserved.

This isn't much different from normal integer incrementing,
where an integer gets incremented from 0000 (0.0.0.0) to 3021
(3.0.2.1). So 0000 gets increments to 0001, 0002, up to 0009,
then on to 0010, 0011 up to 0099, then 0100 and so forth. It's
just that each "digit" goes from 0 to 508 (for a total of 509
pointers) rather than from 0 to 9.

Note that the dinode will only have 483 pointers due to the
dinode structure itself.

Also note: this is just an example. These numbers (509 and 483)
are based on a standard 4K block size. Smaller block sizes will
yield smaller numbers of indirect pointers accordingly.

The truncation process is accomplished with the help of two
major functions and a few helper functions.

Functions do_strip and recursive_scan are obsolete, so removed.

New function sweep_bh_for_rgrps cleans a buffer_head pointed to
by the given metapath and height. By cleaning, I mean it frees
all blocks starting at the offset passed in metapath. It starts
at the first block in the buffer pointed to by the metapath and
identifies its resource group (rgrp). From there it frees all
subsequent block pointers that lie within that rgrp. If it's
already inside a transaction, it stays within it as long as it
can. In other words, it doesn't close a transaction until it knows
it's freed what it can from the resource group. In this way,
multiple buffers may be cleaned in a single transaction, as long
as those blocks in the buffer all lie within the same rgrp.

If it's not in a transaction, it starts one. If the buffer_head
has references to blocks within multiple rgrps, it frees all the
blocks inside the first rgrp it finds, then closes the
transaction. Then it repeats the cycle: identifies the next
unfreed block, uses it to find its rgrp, then starts a new
transaction for that set. It repeats this process repeatedly
until the buffer_head contains no more references to any blocks
past the given metapath.

Function trunc_dealloc has been reworked into a finite state
automaton. It has basically 3 active states:
DEALLOC_MP_FULL, DEALLOC_MP_LOWER, and DEALLOC_FILL_MP:

The DEALLOC_MP_FULL state implies the metapath has a full set
of buffers out to the "shrink height", and therefore, it can
call function sweep_bh_for_rgrps to free the blocks within the
highest height of the metapath. If it's just swept the lowest
level (or an error has occurred) the state machine is ended.
Otherwise it proceeds to the DEALLOC_MP_LOWER state.

The DEALLOC_MP_LOWER state implies we are finished with a given
buffer_head, which may now be released, and therefore we are
then missing some buffer information from the metapath. So we
need to find more buffers to read in. In most cases, this is
just a matter of releasing the buffer_head and moving to the
next pointer from the previous height, so it may be read in and
swept as well. If it can't find another non-null pointer to
process, it checks whether it's reached the end of a height
and needs to lower the strip height, or whether it still needs
move forward through the previous height's metadata. In this
state, all zero-pointers are skipped. From this state, it can
only loop around (once more backing up another height) or,
once a valid metapath is found (one that has non-zero
pointers), proceed to state DEALLOC_FILL_MP.

The DEALLOC_FILL_MP state implies that we have a metapath
but not all its buffers are read in. So we must proceed to read
in buffer_heads until the metapath has a valid buffer for every
height. If the previous state backed us up 3 heights, we may
need to read in a buffer, increment the height, then repeat the
process until buffers have been read in for all required heights.
If it's successful reading a buffer, and it's at the highest
height we need, it proceeds back to the DEALLOC_MP_FULL state.
If it's unable to fill in a buffer, (encounters a hole, etc.)
it tries to find another non-zero block pointer. If they're all
zero, it lowers the height and returns to the DEALLOC_MP_LOWER
state. If it finds a good non-null pointer, it loops around and
reads it in, while keeping the metapath in lock-step with the
pointers it examines.

The state machine runs until the truncation request is
satisfied. Then any transactions are ended, the quota and
statfs data are updated, and the function is complete.

Helper function metaptr1 was introduced to be an easy way to
determine the start of a buffer_head's indirect pointers.

Helper function lookup_mp_height was introduced to find a
metapath index and read in the buffer that corresponds to it.
In this way, function lookup_metapath becomes a simple loop to
call it for every height.

Helper function fillup_metapath is similar to lookup_metapath
except it can do partial lookups. If the state machine
backed up multiple levels (like 2999 wrapping to 3000) it
needs to find out the next starting point and start issuing
metadata reads at that point.

Helper function hptrs is a shortcut to determine how many
pointers should be expected in a buffer. Height 0 is the dinode
which has fewer pointers than the others.
Signed-off-by: default avatarBob Peterson <rpeterso@redhat.com>
parent d4d7fc12
This diff is collapsed.
......@@ -483,13 +483,6 @@ void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
}
}
static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
{
u64 first = rgd->rd_data0;
u64 last = first + rgd->rd_data;
return first <= block && block < last;
}
/**
* gfs2_blk2rgrpd - Find resource group for a given data/meta block number
* @sdp: The GFS2 superblock
......
......@@ -83,5 +83,12 @@ static inline bool gfs2_rs_active(const struct gfs2_blkreserv *rs)
return rs && !RB_EMPTY_NODE(&rs->rs_node);
}
static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
{
u64 first = rgd->rd_data0;
u64 last = first + rgd->rd_data;
return first <= block && block < last;
}
extern void check_and_update_goal(struct gfs2_inode *ip);
#endif /* __RGRP_DOT_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment