- 15 Feb, 2016 28 commits
-
-
Peter Hurley authored
[ Upstream commit 5c17c861 ] ioctl(TIOCGETD) retrieves the line discipline id directly from the ldisc because the line discipline id (c_line) in termios is untrustworthy; userspace may have set termios via ioctl(TCSETS*) without actually changing the line discipline via ioctl(TIOCSETD). However, directly accessing the current ldisc via tty->ldisc is unsafe; the ldisc ptr dereferenced may be stale if the line discipline is changing via ioctl(TIOCSETD) or hangup. Wait for the line discipline reference (just like read() or write()) to retrieve the "current" line discipline id. Cc: <stable@vger.kernel.org> Signed-off-by: Peter Hurley <peter@hurleysoftware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Alan Stern authored
[ Upstream commit 13b43891 ] Runtime suspend during driver probe and removal can cause problems. The driver's runtime_suspend or runtime_resume callbacks may invoked before the driver has finished binding to the device or after the driver has unbound from the device. This problem shows up with the sd and sr drivers, and can cause disk or CD/DVD drives to become unusable as a result. The fix is simple. The drivers store a pointer to the scsi_disk or scsi_cd structure as their private device data when probing is finished, so we simply have to be sure to clear the private data during removal and test it during runtime suspend/resume. This fixes <https://bugs.debian.org/801925>. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reported-by: Paul Menzel <paul.menzel@giantmonkey.de> Reported-by: Erich Schubert <erich@debian.org> Reported-by: Alexandre Rossi <alexandre.rossi@gmail.com> Tested-by: Paul Menzel <paul.menzel@giantmonkey.de> Tested-by: Erich Schubert <erich@debian.org> CC: <stable@vger.kernel.org> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Gavin Shan authored
[ Upstream commit 7e56f627 ] In eeh_pe_loc_get(), the PE location code is retrieved from the "ibm,loc-code" property of the device node for the bridge of the PE's primary bus. It's not correct because the property indicates the parent PE's location code. This reads the correct PE location code from "ibm,io-base-loc-code" or "ibm,slot-location-code" property of PE parent bus's device node. Cc: stable@vger.kernel.org # v3.16+ Fixes: 357b2f3d ("powerpc/eeh: Dump PE location code") Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Tested-by: Russell Currey <ruscur@russell.cc> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jan Beulich authored
[ Upstream commit 3625c2c2 ] For PAE kernels "unsigned long" is not suitable to hold page protection flags, since _PAGE_NX doesn't fit there. This is the reason for quite a few W+X pages getting reported as insecure during boot (observed namely for the entire initrd range). Fixes: 281d4078 ("x86: Make page cache mode a real type") Signed-off-by: Jan Beulich <jbeulich@suse.com> Reviewed-by: Juergen Gross <JGross@suse.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/56A7635602000078000CAFF1@prv-mh.provo.novell.comSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Mika Penttilä authored
[ Upstream commit 57adec86 ] Calling apply_to_page_range with an empty range results in a BUG_ON from the core code. This can be triggered by trying to load the st_drv module with CONFIG_DEBUG_SET_MODULE_RONX enabled: kernel BUG at mm/memory.c:1874! Internal error: Oops - BUG: 0 [#1] PREEMPT SMP Modules linked in: CPU: 3 PID: 1764 Comm: insmod Not tainted 4.5.0-rc1+ #2 Hardware name: ARM Juno development board (r0) (DT) task: ffffffc9763b8000 ti: ffffffc975af8000 task.ti: ffffffc975af8000 PC is at apply_to_page_range+0x2cc/0x2d0 LR is at change_memory_common+0x80/0x108 This patch fixes the issue by making change_memory_common (called by the set_memory_* functions) a NOP when numpages == 0, therefore avoiding the erroneous call to apply_to_page_range and bringing us into line with x86 and s390. Cc: <stable@vger.kernel.org> Reviewed-by: Laura Abbott <labbott@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Mika Penttilä <mika.penttila@nextfour.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lucas Tanure authored
[ Upstream commit 07905298 ] The return type "unsigned int" was used by the get_formation_index function despite of the aspect that it will eventually return a negative error code. So, change to signed int and get index by reference in the parameters. Done with the help of Coccinelle. [Fix the missing braces suggested by Julia Lawall -- tiwai] Signed-off-by: Lucas Tanure <tanure@linux.com> Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Tested-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Michael S. Tsirkin authored
[ Upstream commit 2989be09 ] KASan detected a use-after-free error in virtio-pci remove code. In virtio_pci_remove(), vp_dev is still used after being freed in unregister_virtio_device() (in virtio_pci_release_dev() more precisely). To fix, keep a reference until cleanup is done. Fixes: 63bd62a0 ("virtio_pci: defer kfree until release callback") Reported-by: Jerome Marchand <jmarchan@redhat.com> Cc: stable@vger.kernel.org Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Tested-by: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Guillaume Fougnies authored
[ Upstream commit 5a4ff9ec ] TEAC UD-501/UD-503/NT-503 fail to switch properly between different rate/format. Similar to 'Playback Design', this patch corrects the invalid clock source error for TEAC products and avoids complete freeze of the usb interface of 503 series. Signed-off-by: Guillaume Fougnies <guillaume@eulerian.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Takashi Iwai authored
[ Upstream commit 462b3f16 ] Some architectures like PowerPC can handle the maximum struct size in an ioctl only up to 13 bits, and struct snd_compr_codec_caps used by SNDRV_COMPRESS_GET_CODEC_CAPS ioctl overflows this limit. This problem was revealed recently by a powerpc change, as it's now treated as a fatal build error. This patch is a stop-gap for that: for architectures with less than 14 bit ioctl struct size, get rid of the handling of the relevant ioctl. We should provide an alternative equivalent ioctl code later, but for now just paper over it. Luckily, the compress API hasn't been used on such architectures, so the impact must be effectively zero. Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
John Ernberg authored
[ Upstream commit 4152b387 ] In certain kernel configurations where the cdc_ether and option drivers are compiled as modules there can occur a race condition in enumeration. This causes the option driver to enumerate the ethernet(wwan) interface as usb-serial interfaces. usb-devices output for the modem: T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 5 Spd=480 MxCh= 0 D: Ver= 2.00 Cls=ef(misc ) Sub=02 Prot=01 MxPS=64 #Cfgs= 1 P: Vendor=1e2d ProdID=0055 Rev=00.00 S: Manufacturer=Cinterion S: Product=AHx C: #Ifs= 6 Cfg#= 1 Atr=e0 MxPwr=10mA I: If#= 0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 1 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 2 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 4 Alt= 0 #EPs= 1 Cls=02(commc) Sub=06 Prot=00 Driver=cdc_ether I: If#= 5 Alt= 1 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=cdc_ether Signed-off-by: John Ernberg <john.ernberg@actia.se> Fixes: 1941138e ("USB: added support for Cinterion's products...") Cc: stable <stable@vger.kernel.org> # v3.9: 8ff10bdbSigned-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lorenzo Pieralisi authored
[ Upstream commit f436b2ac ] The Performance Monitors extension is an optional feature of the AArch64 architecture, therefore, in order to access Performance Monitors registers safely, the kernel should detect the architected PMU unit presence through the ID_AA64DFR0_EL1 register PMUVer field before accessing them. This patch implements a guard by reading the ID_AA64DFR0_EL1 register PMUVer field to detect the architected PMU presence and prevent accessing PMU system registers if the Performance Monitors extension is not implemented in the core. Cc: Peter Maydell <peter.maydell@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> Fixes: 60792ad3 ("arm64: kernel: enforce pmuserenr_el0 initialization and restore") Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reported-by: Guenter Roeck <linux@roeck-us.net> Tested-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Greg Kroah-Hartman authored
[ Upstream commit e03cdf22 ] Harald Linden reports that the ftdi_sio driver works properly for the Yaesu SCU-18 cable if the device ids are added to the driver. So let's add them. Reported-by: Harald Linden <harald.linden@7183.org> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Takashi Iwai authored
[ Upstream commit da10816e ] ALSA OSS sequencer spews a kernel error message ("ALSA: seq_oss: too many applications") when user-space tries to open more than the limit. This means that it can easily fill the log buffer. Since it's merely a normal error, it's safe to suppress it via pr_debug() instead. Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Takashi Iwai authored
[ Upstream commit 59915133 ] ALSA sequencer OSS emulation code has a sanity check for currently opened devices, but there is a thinko there, eventually it spews warnings and skips the operation wrongly like: WARNING: CPU: 1 PID: 7573 at sound/core/seq/oss/seq_oss_synth.c:311 Fix this off-by-one error. Reported-by: Dmitry Vyukov <dvyukov@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Daniele Palmas authored
[ Upstream commit ff4e2494 ] This patch adds support for two PIDs of LE922. Signed-off-by: Daniele Palmas <dnlplm@gmail.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Vladis Dronov authored
[ Upstream commit cb323213 ] The visor driver crashes in clie_5_attach() when a specially crafted USB device without bulk-out endpoint is detected. This fix adds a check that the device has proper configuration expected by the driver. Reported-by: Ralf Spenneberg <ralf@spenneberg.net> Signed-off-by: Vladis Dronov <vdronov@redhat.com> Fixes: cfb8da8f ("USB: visor: fix initialisation of UX50/TH55 devices") Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Johan Hovold authored
[ Upstream commit cac9b50b ] Fix null-pointer dereference at probe should a (malicious) Treo device lack the expected endpoints. Specifically, the Treo port-setup hack was dereferencing the bulk-in and interrupt-in urbs without first making sure they had been allocated by core. Fixes: 1da177e4 ("Linux-2.6.12-rc2") Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Peter Dedecker authored
[ Upstream commit f487c54d ] Added the USB serial console device ID for IAI Corp. RCB-CV-USB USB to RS485 adaptor. Signed-off-by: Peter Dedecker <peter.dedecker@hotmail.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Du, Changbin authored
[ Upstream commit d8f00cd6 ] In function usb_reset_and_verify_device, the old BOS descriptor may still be used before allocating a new one. (usb_unlocked_disable_lpm function uses it under the situation that it fails to disable lpm.) So we cannot set the udev->bos to NULL before that, just keep what it was. It will be overwrite when allocating a new one. Crash log: BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 IP: [<ffffffff8171f98d>] usb_enable_link_state+0x2d/0x2f0 Call Trace: [<ffffffff8171ed5b>] ? usb_set_lpm_timeout+0x12b/0x140 [<ffffffff8171fcd1>] usb_enable_lpm+0x81/0xa0 [<ffffffff8171fdd8>] usb_disable_lpm+0xa8/0xc0 [<ffffffff8171fe1c>] usb_unlocked_disable_lpm+0x2c/0x50 [<ffffffff81723933>] usb_reset_and_verify_device+0xc3/0x710 [<ffffffff8172c4ed>] ? usb_sg_wait+0x13d/0x190 [<ffffffff81724743>] usb_reset_device+0x133/0x280 [<ffffffff8179ccd1>] usb_stor_port_reset+0x61/0x70 [<ffffffff8179cd68>] usb_stor_invoke_transport+0x88/0x520 Signed-off-by: Du, Changbin <changbin.du@intel.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Oliver Neukum authored
[ Upstream commit e912e685 ] This phone needs to be handled by a specialised firmware tool and is reported to crash irrevocably if cdc-acm takes it. Signed-off-by: Oliver Neukum <oneukum@suse.com> CC: stable@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lu Baolu authored
[ Upstream commit ffdb1e36 ] For Intel 7260 modem, it is needed for host side to send zero packet if the BULK OUT size is equal to USB endpoint max packet length. Otherwise, modem side may still wait for more data and cannot give response to host side. Signed-off-by: Konrad Leszczynski <konrad.leszczynski@intel.com> Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lu Baolu authored
[ Upstream commit 19454462 ] In current acm driver, the bulk-in callback function ignores the URBs unlinked in usb core. This causes unexpected data loss in some cases. For example, runtime suspend entry will unlinked all urbs and set urb->status to -ENOENT even those urbs might have data not processed yet. Hence, data loss occurs. This patch lets bulk-in callback function handle unlinked urbs to avoid data loss. Signed-off-by: Tang Jian Qiang <jianqiang.tang@intel.com> Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Cc: stable@vger.kernel.org Acked-by: Oliver Neukum <oneukum@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Josh Boyer authored
[ Upstream commit 6b31de3e ] Like the Yoga 900 models the Lenovo Yoga 700 does not have a hw rfkill switch, and trying to read the hw rfkill switch through the ideapad module causes it to always reported blocking breaking wifi. This commit adds the Lenovo Yoga 700 to the no_hw_rfkill dmi list, fixing the wifi breakage. BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1295272 Tested-by: <dinyar.rabady+spam@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Hans de Goede authored
[ Upstream commit f71c882d ] Like some of the other Yoga models the Lenovo Yoga 900 does not have a hw rfkill switch, and trying to read the hw rfkill switch through the ideapad module causes it to always reported blocking breaking wifi. This commit adds the Lenovo Yoga 900 to the no_hw_rfkill dmi list, fixing the wifi breakage. BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1275490 Cc: stable@vger.kernel.org Reported-and-tested-by: Kevin Fenzi <kevin@scrye.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Trond Myklebust authored
[ Upstream commit 082fa37d ] We must not skip encoding the statistics, or the server will see an XDR encoding error. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Cc: stable@vger.kernel.org # 4.0+ Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Tariq Saeed authored
[ Upstream commit b1b1e15e ] NFS on a 2 node ocfs2 cluster each node exporting dir. The lock causing the hang is the global bit map inode lock. Node 1 is master, has the lock granted in PR mode; Node 2 is in the converting list (PR -> EX). There are no holders of the lock on the master node so it should downconvert to NL and grant EX to node 2 but that does not happen. BLOCKED + QUEUED in lock res are set and it is on osb blocked list. Threads are waiting in __ocfs2_cluster_lock on BLOCKED. One thread wants EX, rest want PR. So it is as though the downconvert thread needs to be kicked to complete the conv. The hang is caused by an EX req coming into __ocfs2_cluster_lock on the heels of a PR req after it sets BUSY (drops l_lock, releasing EX thread), forcing the incoming EX to wait on BUSY without doing anything. PR has called ocfs2_dlm_lock, which sets the node 1 lock from NL -> PR, queues ast. At this time, upconvert (PR ->EX) arrives from node 2, finds conflict with node 1 lock in PR, so the lock res is put on dlm thread's dirty listt. After ret from ocf2_dlm_lock, PR thread now waits behind EX on BUSY till awoken by ast. Now it is dlm_thread that serially runs dlm_shuffle_lists, ast, bast, in that order. dlm_shuffle_lists ques a bast on behalf of node 2 (which will be run by dlm_thread right after the ast). ast does its part, sets UPCONVERT_FINISHING, clears BUSY and wakes its waiters. Next, dlm_thread runs bast. It sets BLOCKED and kicks dc thread. dc thread runs ocfs2_unblock_lock, but since UPCONVERT_FINISHING set, skips doing anything and reques. Inside of __ocfs2_cluster_lock, since EX has been waiting on BUSY ahead of PR, it wakes up first, finds BLOCKED set and skips doing anything but clearing UPCONVERT_FINISHING (which was actually "meant" for the PR thread), and this time waits on BLOCKED. Next, the PR thread comes out of wait but since UPCONVERT_FINISHING is not set, it skips updating the l_ro_holders and goes straight to wait on BLOCKED. So there, we have a hang! Threads in __ocfs2_cluster_lock wait on BLOCKED, lock res in osb blocked list. Only when dc thread is awoken, it will run ocfs2_unblock_lock and things will unhang. One way to fix this is to wake the dc thread on the flag after clearing UPCONVERT_FINISHING Orabug: 20933419 Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com> Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Eric Ren <zren@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kirill A. Shutemov authored
[ Upstream commit 7162a1e8 ] Tetsuo Handa reported underflow of NR_MLOCK on munlock. Testcase: #include <stdio.h> #include <stdlib.h> #include <sys/mman.h> #define BASE ((void *)0x400000000000) #define SIZE (1UL << 21) int main(int argc, char *argv[]) { void *addr; system("grep Mlocked /proc/meminfo"); addr = mmap(BASE, SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_LOCKED | MAP_FIXED, -1, 0); if (addr == MAP_FAILED) printf("mmap() failed\n"), exit(1); munmap(addr, SIZE); system("grep Mlocked /proc/meminfo"); return 0; } It happens on munlock_vma_page() due to unfortunate choice of nr_pages data type: __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); For unsigned int nr_pages, implicitly casted to long in __mod_zone_page_state(), it becomes something around UINT_MAX. munlock_vma_page() usually called for THP as small pages go though pagevec. Let's make nr_pages signed int. Similar fixes in 6cdb18ad ("mm/vmstat: fix overflow in mod_zone_page_state()") used `long' type, but `int' here is OK for a count of the number of sub-pages in a huge page. Fixes: ff6a6da6 ("mm: accelerate munlock() treatment of THP pages") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Michel Lespinasse <walken@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Ilya Dryomov authored
[ Upstream commit 67645d76 ] There are a number of problems with revoking a "was sending" message: (1) We never make any attempt to revoke data - only kvecs contibute to con->out_skip. However, once the header (envelope) is written to the socket, our peer learns data_len and sets itself to expect at least data_len bytes to follow front or front+middle. If ceph_msg_revoke() is called while the messenger is sending message's data portion, anything we send after that call is counted by the OSD towards the now revoked message's data portion. The effects vary, the most common one is the eventual hang - higher layers get stuck waiting for the reply to the message that was sent out after ceph_msg_revoke() returned and treated by the OSD as a bunch of data bytes. This is what Matt ran into. (2) Flat out zeroing con->out_kvec_bytes worth of bytes to handle kvecs is wrong. If ceph_msg_revoke() is called before the tag is sent out or while the messenger is sending the header, we will get a connection reset, either due to a bad tag (0 is not a valid tag) or a bad header CRC, which kind of defeats the purpose of revoke. Currently the kernel client refuses to work with header CRCs disabled, but that will likely change in the future, making this even worse. (3) con->out_skip is not reset on connection reset, leading to one or more spurious connection resets if we happen to get a real one between con->out_skip is set in ceph_msg_revoke() and before it's cleared in write_partial_skip(). Fixing (1) and (3) is trivial. The idea behind fixing (2) is to never zero the tag or the header, i.e. send out tag+header regardless of when ceph_msg_revoke() is called. That way the header is always correct, no unnecessary resets are induced and revoke stands ready for disabled CRCs. Since ceph_msg_revoke() rips out con->out_msg, introduce a new "message out temp" and copy the header into it before sending. Cc: stable@vger.kernel.org # 4.0+ Reported-by: Matt Conner <matt.conner@keepertech.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Tested-by: Matt Conner <matt.conner@keepertech.com> Reviewed-by: Sage Weil <sage@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
- 03 Feb, 2016 12 commits
-
-
Mateusz Guzik authored
[ Upstream commit ddf1d398 ] An unprivileged user can trigger an oops on a kernel with CONFIG_CHECKPOINT_RESTORE. proc_pid_cmdline_read takes mmap_sem for reading and obtains args + env start/end values. These get sanity checked as follows: BUG_ON(arg_start > arg_end); BUG_ON(env_start > env_end); These can be changed by prctl_set_mm. Turns out also takes the semaphore for reading, effectively rendering it useless. This results in: kernel BUG at fs/proc/base.c:240! invalid opcode: 0000 [#1] SMP Modules linked in: virtio_net CPU: 0 PID: 925 Comm: a.out Not tainted 4.4.0-rc8-next-20160105dupa+ #71 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880077a68000 ti: ffff8800784d0000 task.ti: ffff8800784d0000 RIP: proc_pid_cmdline_read+0x520/0x530 RSP: 0018:ffff8800784d3db8 EFLAGS: 00010206 RAX: ffff880077c5b6b0 RBX: ffff8800784d3f18 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 00007f78e8857000 RDI: 0000000000000246 RBP: ffff8800784d3e40 R08: 0000000000000008 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000050 R13: 00007f78e8857800 R14: ffff88006fcef000 R15: ffff880077c5b600 FS: 00007f78e884a740(0000) GS:ffff88007b200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f78e8361770 CR3: 00000000790a5000 CR4: 00000000000006f0 Call Trace: __vfs_read+0x37/0x100 vfs_read+0x82/0x130 SyS_read+0x58/0xd0 entry_SYSCALL_64_fastpath+0x12/0x76 Code: 4c 8b 7d a8 eb e9 48 8b 9d 78 ff ff ff 4c 8b 7d 90 48 8b 03 48 39 45 a8 0f 87 f0 fe ff ff e9 d1 fe ff ff 4c 8b 7d 90 eb c6 0f 0b <0f> 0b 0f 0b 66 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 RIP proc_pid_cmdline_read+0x520/0x530 ---[ end trace 97882617ae9c6818 ]--- Turns out there are instances where the code just reads aformentioned values without locking whatsoever - namely environ_read and get_cmdline. Interestingly these functions look quite resilient against bogus values, but I don't believe this should be relied upon. The first patch gets rid of the oops bug by grabbing mmap_sem for writing. The second patch is optional and puts locking around aformentioned consumers for safety. Consumers of other fields don't seem to benefit from similar treatment and are left untouched. This patch (of 2): The code was taking the semaphore for reading, which does not protect against readers nor concurrent modifications. The problem could cause a sanity checks to fail in procfs's cmdline reader, resulting in an OOPS. Note that some functions perform an unlocked read of various mm fields, but they seem to be fine despite possible modificaton. Signed-off-by: Mateusz Guzik <mguzik@redhat.com> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Jarod Wilson <jarod@redhat.com> Cc: Jan Stancek <jstancek@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Anshuman Khandual <anshuman.linux@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
James Bottomley authored
[ Upstream commit 564b026f ] It was noticed that we lose precision in the final calculation for some inputs. The most egregious example is size=3000 blk_size=1900 in units of 10 should yield 5.70 MB but in fact yields 3.00 MB (oops). This is because the current algorithm doesn't correctly account for all the remainders in the logarithms. Fix this by doing a correct calculation in the remainders based on napier's algorithm. Additionally, now we have the correct result, we have to account for arithmetic rounding because we're printing 3 digits of precision. This means that if the fourth digit is five or greater, we have to round up, so add a section to ensure correct rounding. Finally account for all possible inputs correctly, including zero for block size. Fixes: b9f28d86Signed-off-by: James Bottomley <JBottomley@Odin.com> Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: <stable@vger.kernel.org> [delay until after 4.4 release] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Vitaly Kuznetsov authored
[ Upstream commit 62bef58a ] Some string_get_size() calls (e.g.: string_get_size(1, 512, STRING_UNITS_10, ..., ...) string_get_size(15, 64, STRING_UNITS_10, ..., ...) ) result in an infinite loop. The problem is that if size is equal to divisor[units]/blk_size and is smaller than divisor[units] we'll end up with size == 0 when we start doing sf_cap calculations: For string_get_size(1, 512, STRING_UNITS_10, ..., ...) case: ... remainder = do_div(size, divisor[units]); -> size is 0, remainder is 1 remainder *= blk_size; -> remainder is 512 ... size *= blk_size; -> size is still 0 size += remainder / divisor[units]; -> size is still 0 The caller causing the issue is sd_read_capacity(), the problem was noticed on Hyper-V, such weird size was reported by host when scanning collides with device removal. This is probably a separate issue worth fixing, this patch is intended to prevent the library routine from infinite looping. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Acked-by: James Bottomley <JBottomley@Odin.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Junil Lee authored
[ Upstream commit c102f07c ] record_obj() in migrate_zspage() does not preserve handle's HANDLE_PIN_BIT, set by find_aloced_obj()->trypin_tag(), and implicitly (accidentally) un-pins the handle, while migrate_zspage() still performs an explicit unpin_tag() on the that handle. This additional explicit unpin_tag() introduces a race condition with zs_free(), which can pin that handle by this time, so the handle becomes un-pinned. Schematically, it goes like this: CPU0 CPU1 migrate_zspage find_alloced_obj trypin_tag set HANDLE_PIN_BIT zs_free() pin_tag() obj_malloc() -- new object, no tag record_obj() -- remove HANDLE_PIN_BIT set HANDLE_PIN_BIT unpin_tag() -- remove zs_free's HANDLE_PIN_BIT The race condition may result in a NULL pointer dereference: Unable to handle kernel NULL pointer dereference at virtual address 00000000 CPU: 0 PID: 19001 Comm: CookieMonsterCl Tainted: PC is at get_zspage_mapping+0x0/0x24 LR is at obj_free.isra.22+0x64/0x128 Call trace: get_zspage_mapping+0x0/0x24 zs_free+0x88/0x114 zram_free_page+0x64/0xcc zram_slot_free_notify+0x90/0x108 swap_entry_free+0x278/0x294 free_swap_and_cache+0x38/0x11c unmap_single_vma+0x480/0x5c8 unmap_vmas+0x44/0x60 exit_mmap+0x50/0x110 mmput+0x58/0xe0 do_exit+0x320/0x8dc do_group_exit+0x44/0xa8 get_signal+0x538/0x580 do_signal+0x98/0x4b8 do_notify_resume+0x14/0x5c This patch keeps the lock bit in migration path and update value atomically. Signed-off-by: Junil Lee <junil0814.lee@lge.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: <stable@vger.kernel.org> [4.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Herbert Xu authored
[ Upstream commit 202736d9 ] We mark the end of the SG list in sendmsg and sendpage and unmark it on the next send call. Unfortunately the unmarking in sendmsg is off-by-one, leading to an SG list that is too short. Fixes: 0f477b65 ("crypto: algif - Mark sgl end at the end of data") Cc: stable@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nicholas Bellinger authored
[ Upstream commit 26a99c19 ] This patch is a iscsi-target specific bug-fix for a dead-lock that can occur during explicit struct se_node_acl->acl_group se_session deletion via configfs rmdir(2), when iscsi-target time2retain timer is still active. It changes iscsi-target to obtain se_portal_group->session_lock internally using spin_in_locked() to check for the specific se_node_acl configfs shutdown rmdir(2) case. Note this patch is intended for stable, and the subsequent v4.5-rc patch converts target_core_tpg.c to use proper se_sess->sess_kref reference counting for both se_node_acl deletion + se_node_acl->queue_depth se_session restart. Reported-by: : Sagi Grimberg <sagig@mellanox.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Andy Grover <agrover@redhat.com> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: stable@vger.kernel.org # 3.10+ Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Filipe Manana authored
[ Upstream commit c2d6cb16 ] While running a stress test I ran into a deadlock when running the delayed iputs at transaction time, which produced the following report and trace: [ 886.399989] ============================================= [ 886.400871] [ INFO: possible recursive locking detected ] [ 886.401663] 4.4.0-rc6-btrfs-next-18+ #1 Not tainted [ 886.402384] --------------------------------------------- [ 886.403182] fio/8277 is trying to acquire lock: [ 886.403568] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] but task is already holding lock: [ 886.403568] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] other info that might help us debug this: [ 886.403568] Possible unsafe locking scenario: [ 886.403568] [ 886.403568] CPU0 [ 886.403568] ---- [ 886.403568] lock(&fs_info->delayed_iput_sem); [ 886.403568] lock(&fs_info->delayed_iput_sem); [ 886.403568] [ 886.403568] *** DEADLOCK *** [ 886.403568] [ 886.403568] May be due to missing lock nesting notation [ 886.403568] [ 886.403568] 3 locks held by fio/8277: [ 886.403568] #0: (sb_writers#11){.+.+.+}, at: [<ffffffff81174c4c>] __sb_start_write+0x5f/0xb0 [ 886.403568] #1: (&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffffa054620d>] btrfs_file_write_iter+0x73/0x408 [btrfs] [ 886.403568] #2: (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] stack backtrace: [ 886.403568] CPU: 6 PID: 8277 Comm: fio Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 886.403568] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 886.403568] 0000000000000000 ffff88009f80f770 ffffffff8125d4fd ffffffff82af1fc0 [ 886.403568] ffff88009f80f830 ffffffff8108e5f9 0000000200000000 ffff88009fd92290 [ 886.403568] 0000000000000000 ffffffff82af1fc0 ffffffff829cfb01 00042b216d008804 [ 886.403568] Call Trace: [ 886.403568] [<ffffffff8125d4fd>] dump_stack+0x4e/0x79 [ 886.403568] [<ffffffff8108e5f9>] __lock_acquire+0xd42/0xf0b [ 886.403568] [<ffffffff810c22db>] ? __module_address+0xdf/0x108 [ 886.403568] [<ffffffff8108eb77>] lock_acquire+0x10d/0x194 [ 886.403568] [<ffffffff8108eb77>] ? lock_acquire+0x10d/0x194 [ 886.403568] [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffff8148556b>] down_read+0x3e/0x4d [ 886.489542] [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs] [ 886.489542] [<ffffffffa0521d7a>] flush_space+0x435/0x44a [btrfs] [ 886.489542] [<ffffffffa052218b>] ? reserve_metadata_bytes+0x26a/0x384 [btrfs] [ 886.489542] [<ffffffffa05221ae>] reserve_metadata_bytes+0x28d/0x384 [btrfs] [ 886.489542] [<ffffffffa052256c>] ? btrfs_block_rsv_refill+0x58/0x96 [btrfs] [ 886.489542] [<ffffffffa0522584>] btrfs_block_rsv_refill+0x70/0x96 [btrfs] [ 886.489542] [<ffffffffa053d747>] btrfs_evict_inode+0x394/0x55a [btrfs] [ 886.489542] [<ffffffff81188e31>] evict+0xa7/0x15c [ 886.489542] [<ffffffff81189878>] iput+0x1d3/0x266 [ 886.489542] [<ffffffffa053887c>] btrfs_run_delayed_iputs+0x8f/0xbf [btrfs] [ 886.489542] [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs] [ 886.489542] [<ffffffff81085096>] ? signal_pending_state+0x31/0x31 [ 886.489542] [<ffffffffa0521191>] btrfs_alloc_data_chunk_ondemand+0x1d7/0x288 [btrfs] [ 886.489542] [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs] [ 886.489542] [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs] [ 886.489542] [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs] [ 886.489542] [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128 [ 886.489542] [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs] [ 886.489542] [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50 [ 886.489542] [<ffffffff8117279e>] __vfs_write+0x7c/0xa5 [ 886.489542] [<ffffffff81172cda>] vfs_write+0xa0/0xe4 [ 886.489542] [<ffffffff811734cc>] SyS_write+0x50/0x7e [ 886.489542] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [ 1081.852335] INFO: task fio:8244 blocked for more than 120 seconds. [ 1081.854348] Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 1081.857560] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1081.863227] fio D ffff880213f9bb28 0 8244 8240 0x00000000 [ 1081.868719] ffff880213f9bb28 00ffffff810fc6b0 ffffffff0000000a ffff88023ed55240 [ 1081.872499] ffff880206b5d400 ffff880213f9c000 ffff88020a4d5318 ffff880206b5d400 [ 1081.876834] ffffffff00000001 ffff880206b5d400 ffff880213f9bb40 ffffffff81482ba4 [ 1081.880782] Call Trace: [ 1081.881793] [<ffffffff81482ba4>] schedule+0x7f/0x97 [ 1081.883340] [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325 [ 1081.895525] [<ffffffff8108d48d>] ? trace_hardirqs_on_caller+0x16/0x1ab [ 1081.897419] [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20 [ 1081.899251] [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20 [ 1081.901063] [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21 [ 1081.902365] [<ffffffff814855bd>] down_write+0x43/0x57 [ 1081.903846] [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1081.906078] [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1081.908846] [<ffffffff8108d461>] ? mark_held_locks+0x56/0x6c [ 1081.910409] [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs] [ 1081.912482] [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs] [ 1081.914597] [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs] [ 1081.919037] [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128 [ 1081.920754] [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs] [ 1081.922496] [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50 [ 1081.923922] [<ffffffff8117279e>] __vfs_write+0x7c/0xa5 [ 1081.925275] [<ffffffff81172cda>] vfs_write+0xa0/0xe4 [ 1081.926584] [<ffffffff811734cc>] SyS_write+0x50/0x7e [ 1081.927968] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [ 1081.985293] INFO: lockdep is turned off. [ 1081.986132] INFO: task fio:8249 blocked for more than 120 seconds. [ 1081.987434] Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 1081.988534] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1081.990147] fio D ffff880218febbb8 0 8249 8240 0x00000000 [ 1081.991626] ffff880218febbb8 00ffffff81486b8e ffff88020000000b ffff88023ed75240 [ 1081.993258] ffff8802120a9a00 ffff880218fec000 ffff88020a4d5318 ffff8802120a9a00 [ 1081.994850] ffffffff00000001 ffff8802120a9a00 ffff880218febbd0 ffffffff81482ba4 [ 1081.996485] Call Trace: [ 1081.997037] [<ffffffff81482ba4>] schedule+0x7f/0x97 [ 1081.998017] [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325 [ 1081.999241] [<ffffffff810852a5>] ? finish_wait+0x6d/0x76 [ 1082.000306] [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20 [ 1082.001533] [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20 [ 1082.002776] [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21 [ 1082.003995] [<ffffffff814855bd>] down_write+0x43/0x57 [ 1082.005000] [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1082.007403] [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1082.008988] [<ffffffffa0545064>] btrfs_fallocate+0x7c1/0xc2f [btrfs] [ 1082.010193] [<ffffffff8108a1ba>] ? percpu_down_read+0x4e/0x77 [ 1082.011280] [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0 [ 1082.012265] [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0 [ 1082.013021] [<ffffffff811712e4>] vfs_fallocate+0x170/0x1ff [ 1082.013738] [<ffffffff81181ebb>] ioctl_preallocate+0x89/0x9b [ 1082.014778] [<ffffffff811822d7>] do_vfs_ioctl+0x40a/0x4ea [ 1082.015778] [<ffffffff81176ea7>] ? SYSC_newfstat+0x25/0x2e [ 1082.016806] [<ffffffff8118b4de>] ? __fget_light+0x4d/0x71 [ 1082.017789] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [ 1082.018706] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f This happens because we can recursively acquire the semaphore fs_info->delayed_iput_sem when attempting to allocate space to satisfy a file write request as shown in the first trace above - when committing a transaction we acquire (down_read) the semaphore before running the delayed iputs, and when running a delayed iput() we can end up calling an inode's eviction handler, which in turn commits another transaction and attempts to acquire (down_read) again the semaphore to run more delayed iput operations. This results in a deadlock because if a task acquires multiple times a semaphore it should invoke down_read_nested() with a different lockdep class for each level of recursion. Fix this by simplifying the implementation and use a mutex instead that is acquired by the cleaner kthread before it runs the delayed iputs instead of always acquiring a semaphore before delayed references are run from anywhere. Fixes: d7c15171 (btrfs: Fix NO_SPACE bug caused by delayed-iput) Cc: stable@vger.kernel.org # 4.1+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Sterba authored
[ Upstream commit 8089fe62 ] Inodes for delayed iput allocate a trivial helper structure, let's place the list hook directly into the inode and save a kmalloc (killing a __GFP_NOFAIL as a bonus) at the cost of increasing size of btrfs_inode. The inode can be put into the delayed_iputs list more than once and we have to keep the count. This means we can't use the list_splice to process a bunch of inodes because we'd lost track of the count if the inode is put into the delayed iputs again while it's processed. Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Josh Boyer authored
[ Upstream commit edde316a ] One of the newest ideapad models also lacks a physical hw rfkill switch, and trying to read the hw rfkill switch through the ideapad module causes it to always reported blocking breaking wifi. Fix it by adding this model to the DMI list. BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1286293 Cc: stable@vger.kernel.org Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Vinit Agnihotri authored
[ Upstream commit fbbeb863 ] The current code is problematic when the QP creation and ipoib is used to support NFS and NFS desires to do IO for paging purposes. In that case, the GFP_KERNEL allocation in qib_qp.c causes a deadlock in tight memory situations. This fix adds support to create queue pair with GFP_NOIO flag for connected mode only to cleanly fail the create queue pair in those situations. Cc: <stable@vger.kernel.org> # 3.16+ Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Vinit Agnihotri <vinit.abhay.agnihotri@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Mike Marciniszyn authored
[ Upstream commit 09dc9cd6 ] The code produces the following trace: [1750924.419007] general protection fault: 0000 [#3] SMP [1750924.420364] Modules linked in: nfnetlink autofs4 rpcsec_gss_krb5 nfsv4 dcdbas rfcomm bnep bluetooth nfsd auth_rpcgss nfs_acl dm_multipath nfs lockd scsi_dh sunrpc fscache radeon ttm drm_kms_helper drm serio_raw parport_pc ppdev i2c_algo_bit lpc_ich ipmi_si ib_mthca ib_qib dca lp parport ib_ipoib mac_hid ib_cm i3000_edac ib_sa ib_uverbs edac_core ib_umad ib_mad ib_core ib_addr tg3 ptp dm_mirror dm_region_hash dm_log psmouse pps_core [1750924.420364] CPU: 1 PID: 8401 Comm: python Tainted: G D 3.13.0-39-generic #66-Ubuntu [1750924.420364] Hardware name: Dell Computer Corporation PowerEdge 860/0XM089, BIOS A04 07/24/2007 [1750924.420364] task: ffff8800366a9800 ti: ffff88007af1c000 task.ti: ffff88007af1c000 [1750924.420364] RIP: 0010:[<ffffffffa0131d51>] [<ffffffffa0131d51>] qib_mcast_qp_free+0x11/0x50 [ib_qib] [1750924.420364] RSP: 0018:ffff88007af1dd70 EFLAGS: 00010246 [1750924.420364] RAX: 0000000000000001 RBX: ffff88007b822688 RCX: 000000000000000f [1750924.420364] RDX: ffff88007b822688 RSI: ffff8800366c15a0 RDI: 6764697200000000 [1750924.420364] RBP: ffff88007af1dd78 R08: 0000000000000001 R09: 0000000000000000 [1750924.420364] R10: 0000000000000011 R11: 0000000000000246 R12: ffff88007baa1d98 [1750924.420364] R13: ffff88003ecab000 R14: ffff88007b822660 R15: 0000000000000000 [1750924.420364] FS: 00007ffff7fd8740(0000) GS:ffff88007fc80000(0000) knlGS:0000000000000000 [1750924.420364] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1750924.420364] CR2: 00007ffff597c750 CR3: 000000006860b000 CR4: 00000000000007e0 [1750924.420364] Stack: [1750924.420364] ffff88007b822688 ffff88007af1ddf0 ffffffffa0132429 000000007af1de20 [1750924.420364] ffff88007baa1dc8 ffff88007baa0000 ffff88007af1de70 ffffffffa00cb313 [1750924.420364] 00007fffffffde88 0000000000000000 0000000000000008 ffff88003ecab000 [1750924.420364] Call Trace: [1750924.420364] [<ffffffffa0132429>] qib_multicast_detach+0x1e9/0x350 [ib_qib] [1750924.568035] [<ffffffffa00cb313>] ? ib_uverbs_modify_qp+0x323/0x3d0 [ib_uverbs] [1750924.568035] [<ffffffffa0092d61>] ib_detach_mcast+0x31/0x50 [ib_core] [1750924.568035] [<ffffffffa00cc213>] ib_uverbs_detach_mcast+0x93/0x170 [ib_uverbs] [1750924.568035] [<ffffffffa00c61f6>] ib_uverbs_write+0xc6/0x2c0 [ib_uverbs] [1750924.568035] [<ffffffff81312e68>] ? apparmor_file_permission+0x18/0x20 [1750924.568035] [<ffffffff812d4cd3>] ? security_file_permission+0x23/0xa0 [1750924.568035] [<ffffffff811bd214>] vfs_write+0xb4/0x1f0 [1750924.568035] [<ffffffff811bdc49>] SyS_write+0x49/0xa0 [1750924.568035] [<ffffffff8172f7ed>] system_call_fastpath+0x1a/0x1f [1750924.568035] Code: 66 2e 0f 1f 84 00 00 00 00 00 31 c0 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb 48 8b 7f 10 <f0> ff 8f 40 01 00 00 74 0e 48 89 df e8 8e f8 06 e1 5b 5d c3 0f [1750924.568035] RIP [<ffffffffa0131d51>] qib_mcast_qp_free+0x11/0x50 [ib_qib] [1750924.568035] RSP <ffff88007af1dd70> [1750924.650439] ---[ end trace 73d5d4b3f8ad4851 ] The fix is to note the qib_mcast_qp that was found. If none is found, then return EINVAL indicating the error. Cc: <stable@vger.kernel.org> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jean Delvare authored
[ Upstream commit fd7f6727 ] I don't think it makes sense for a module to have a soft dependency on itself. This seems quite cyclic by nature and I can't see what purpose it could serve. OTOH libcrc32c calls crypto_alloc_shash("crc32c", 0, 0) so it pretty much assumes that some incarnation of the "crc32c" hash algorithm has been loaded. Therefore it makes sense to have the soft dependency there (as crc-t10dif does.) Cc: stable@vger.kernel.org Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Jean Delvare <jdelvare@suse.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-