- 13 Dec, 2014 40 commits
-
-
Mel Gorman authored
A random seek IO benchmark appeared to regress because of a change to readahead but the real problem was the benchmark. To ensure the IO request accesssed disk, it used fadvise(FADV_DONTNEED) on a block boundary (512K) but the hint is ignored by the kernel. This is correct but not necessarily obvious behaviour. As much as I dislike comment patches, the explanation for this behaviour predates current git history. Clarify why it behaves like this in case someone "fixes" fadvise or readahead for the wrong reasons. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Dmitry Vyukov authored
Read memory barriers must follow the read operations. Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
After the previous patch we can remove the PT_TRACE_EXIT check in oom_scan_process_thread(), it was added to handle the case when the coredumping was "frozen" by ptrace, but it doesn't really work. If nothing else, we would need to check all threads which could share the same ->mm to make it more or less correct. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
oom_kill.c assumes that PF_EXITING task should exit and free the memory soon. This is wrong in many ways and one important case is the coredump. A task can sleep in exit_mm() "forever" while the coredumping sub-thread can need more memory. Change the PF_EXITING checks to take SIGNAL_GROUP_COREDUMP into account, we add the new trivial helper for that. Note: this is only the first step, this patch doesn't try to solve other problems. The SIGNAL_GROUP_COREDUMP check is obviously racy, a task can participate in coredump after it was already observed in PF_EXITING state, so TIF_MEMDIE (which also blocks oom-killer) still can be wrongly set. fatal_signal_pending() can be true because of SIGNAL_GROUP_COREDUMP so out_of_memory() and mem_cgroup_out_of_memory() shouldn't blindly trust it. And even the name/usage of the new helper is confusing, an exiting thread can only free its ->mm if it is the only/last task in thread group. [akpm@linux-foundation.org: add comment] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Zhong Hongbo authored
Since 01cefaef ("mm: provide more accurate estimation of pages occupied by memmap") allocate the pages from lowmem for the highmem zones' memmap. So It is not need to reserver the memmap's for the highmem. A 2G DDR3 for the arm platform: On node 0 totalpages: 524288 free_area_init_node: node 0, pgdat 80ccd380, node_mem_map 80d38000 DMA zone: 3568 pages used for memmap DMA zone: 0 pages reserved DMA zone: 456704 pages, LIFO batch:31 HighMem zone: 528 pages used for memmap HighMem zone: 67584 pages, LIFO batch:15 On node 0 totalpages: 524288 free_area_init_node: node 0, pgdat 80cd6f40, node_mem_map 80d42000 DMA zone: 3568 pages used for memmap DMA zone: 0 pages reserved DMA zone: 456704 pages, LIFO batch:31 HighMem zone: 67584 pages, LIFO batch:15 Signed-off-by: Hongbo Zhong <hongbo.zhong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
Since commit 058504ed ("fs/seq_file: fallback to vmalloc allocation"), seq_buf_alloc() falls back to vmalloc() when the kmalloc() for contiguous memory fails. This was done to address order-4 slab allocations for reading /proc/stat on large machines and noticed because PAGE_ALLOC_COSTLY_ORDER < 4, so there is no infinite loop in the page allocator when allocating new slab for such high-order allocations. Contiguous memory isn't necessary for caller of seq_buf_alloc(), however. Other GFP_KERNEL high-order allocations that are <= PAGE_ALLOC_COSTLY_ORDER will simply loop forever in the page allocator and oom kill processes as a result. We don't want to kill processes so that we can allocate contiguous memory in situations when contiguous memory isn't necessary. This patch does the kmalloc() allocation with __GFP_NORETRY for high-order allocations. This still utilizes memory compaction and direct reclaim in the allocation path, the only difference is that it will fail immediately instead of oom kill processes when out of memory. [akpm@linux-foundation.org: add comment] Signed-off-by: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The slab shrinkers are currently invoked from the zonelist walkers in kswapd, direct reclaim, and zone reclaim, all of which roughly gauge the eligible LRU pages and assemble a nodemask to pass to NUMA-aware shrinkers, which then again have to walk over the nodemask. This is redundant code, extra runtime work, and fairly inaccurate when it comes to the estimation of actually scannable LRU pages. The code duplication will only get worse when making the shrinkers cgroup-aware and requiring them to have out-of-band cgroup hierarchy walks as well. Instead, invoke the shrinkers from shrink_zone(), which is where all reclaimers end up, to avoid this duplication. Take the count for eligible LRU pages out of get_scan_count(), which considers many more factors than just the availability of swap space, like zone_reclaimable_pages() currently does. Accumulate the number over all visited lruvecs to get the per-zone value. Some nodes have multiple zones due to memory addressing restrictions. To avoid putting too much pressure on the shrinkers, only invoke them once for each such node, using the class zone of the allocation as the pivot zone. For now, this integrates the slab shrinking better into the reclaim logic and gets rid of duplicative invocations from kswapd, direct reclaim, and zone reclaim. It also prepares for cgroup-awareness, allowing memcg-capable shrinkers to be added at the lruvec level without much duplication of both code and runtime work. This changes kswapd behavior, which used to invoke the shrinkers for each zone, but with scan ratios gathered from the entire node, resulting in meaningless pressure quantities on multi-zone nodes. Zone reclaim behavior also changes. It used to shrink slabs until the same amount of pages were shrunk as were reclaimed from the LRUs. Now it merely invokes the shrinkers once with the zone's scan ratio, which makes the shrinkers go easier on caches that implement aging and would prefer feeding back pressure from recently used slab objects to unused LRU pages. [vdavydov@parallels.com: assure class zone is populated] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Davidlohr Bueso authored
These flushes deal with sequence number overflows, such as for long lived threads. These are rare, but interesting from a debugging PoV. As such, display the number of flushes when vmacache debugging is enabled. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
page owner is for the tracking about who allocated each page. This document explains what is the page owner feature and what is the merit of it. And, simple HOW-TO is also explained. See the document for detailed information. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
Extended memory to store page owner information is initialized some time later than that page allocator starts. Until initialization, many pages can be allocated and they have no owner information. This make debugging using page owner harder, so some fixup will be helpful. This patch fixes up this situation by setting fake owner information immediately after page extension is initialized. Information doesn't tell the right owner, but, at least, it can tell whether page is allocated or not, more correctly. On my testing, this patch catches 13343 early allocated pages, although they are mostly allocated from page extension feature. Anyway, after then, there is no page left that it is allocated and has no page owner flag. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
Current stacktrace only have the function for console output. page_owner that will be introduced in following patch needs to print the output of stacktrace into the buffer for our own output format so so new function, snprint_stack_trace(), is needed. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
do_mmap_private() in nommu.c try to allocate physically contiguous pages with arbitrary size in some cases and we now have good abstract function to do exactly same thing, alloc_pages_exact(). So, change to use it. There is no functional change. This is the preparation step for support page owner feature accurately. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
Now, we have prepared to avoid using debug-pagealloc in boottime. So introduce new kernel-parameter to disable debug-pagealloc in boottime, and makes related functions to be disabled in this case. Only non-intuitive part is change of guard page functions. Because guard page is effective only if debug-pagealloc is enabled, turning off according to debug-pagealloc is reasonable thing to do. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
Until now, debug-pagealloc needs extra flags in struct page, so we need to recompile whole source code when we decide to use it. This is really painful, because it takes some time to recompile and sometimes rebuild is not possible due to third party module depending on struct page. So, we can't use this good feature in many cases. Now, we have the page extension feature that allows us to insert extra flags to outside of struct page. This gets rid of third party module issue mentioned above. And, this allows us to determine if we need extra memory for this page extension in boottime. With these property, we can avoid using debug-pagealloc in boottime with low computational overhead in the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our development process greatly. This patch is the preparation step to achive above goal. debug-pagealloc originally uses extra field of struct page, but, after this patch, it will use field of struct page_ext. Because memory for page_ext is allocated later than initialization of page allocator in CONFIG_SPARSEMEM, we should disable debug-pagealloc feature temporarily until initialization of page_ext. This patch implements this. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
When we debug something, we'd like to insert some information to every page. For this purpose, we sometimes modify struct page itself. But, this has drawbacks. First, it requires re-compile. This makes us hesitate to use the powerful debug feature so development process is slowed down. And, second, sometimes it is impossible to rebuild the kernel due to third party module dependency. At third, system behaviour would be largely different after re-compile, because it changes size of struct page greatly and this structure is accessed by every part of kernel. Keeping this as it is would be better to reproduce errornous situation. This feature is intended to overcome above mentioned problems. This feature allocates memory for extended data per page in certain place rather than the struct page itself. This memory can be accessed by the accessor functions provided by this code. During the boot process, it checks whether allocation of huge chunk of memory is needed or not. If not, it avoids allocating memory at all. With this advantage, we can include this feature into the kernel in default and can avoid rebuild and solve related problems. Until now, memcg uses this technique. But, now, memcg decides to embed their variable to struct page itself and it's code to extend struct page has been removed. I'd like to use this code to develop debug feature, so this patch resurrect it. To help these things to work well, this patch introduces two callbacks for clients. One is the need callback which is mandatory if user wants to avoid useless memory allocation at boot-time. The other is optional, init callback, which is used to do proper initialization after memory is allocated. Detailed explanation about purpose of these functions is in code comment. Please refer it. Others are completely same with previous extension code in memcg. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jianyu Zhan authored
GFP_USER, GFP_HIGHUSER and GFP_HIGHUSER_MOVABLE are escalatedly confined defined, also implied by their names: GFP_USER = GFP_USER GFP_USER + __GFP_HIGHMEM = GFP_HIGHUSER GFP_USER + __GFP_HIGHMEM + __GFP_MOVABLE = GFP_HIGHUSER_MOVABLE So just make GFP_HIGHUSER and GFP_HIGHUSER_MOVABLE escalatedly defined to reflect this fact. It also makes the definition clear and texturally warn on any furture break-up of this escalated relastionship. Signed-off-by: Jianyu Zhan <jianyu.zhan@emc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
include/linux/kmemleak.h: In function 'kmemleak_alloc_recursive': include/linux/kmemleak.h:43: error: 'SLAB_NOLEAKTRACE' undeclared (first use in this function) Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Zhang Zhen authored
The gfp was passed in but never used in this function. Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
swp_entry_t being defined in include/linux/swap.h instead of include/linux/mm_types.h causes cyclic include dependency later when include/linux/page_cgroup.h is included from writeback path. Move the definition to include/linux/mm_types.h. While at it, reformat the comment above it. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Zhang Zhen authored
This is just a small optimization. The start_pfn can be obtained directly by phys_index << PFN_SECTION_SHIFT. So the call of page_to_pfn() is redundant and remove it. Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com> Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave@sr71.net> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesse Barnes authored
This could be useful for debug in the future if we want to track major/minor faults more closely, and also avoids the put_page trick we used with gup. In order to do this, we also track the task struct in the PASID state structure. This lets us update the appropriate task stats after the fault has been handled, and may aid with debug in the future as well. Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Tested-by: Oded Gabbay <oded.gabbay@amd.com> Cc: Joerg Roedel <jroedel@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesse Barnes authored
This lets drivers like the AMD IOMMUv2 driver handle faults a bit more simply, rather than doing tricks with page refs and get_user_pages(). Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Oded Gabbay <oded.gabbay@amd.com> Cc: Joerg Roedel <jroedel@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Luiz Capitulino authored
This function is only called during initialization. Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Luiz Capitulino authored
No reason to duplicate the code of an existing macro. Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Luiz Capitulino authored
The hugepages= entry in kernel-parameters.txt states that 1GB pages can only be allocated at boot time and not freed afterwards. This is not true since commit 944d9fec ("hugetlb: add support for gigantic page allocation at runtime"), at least for x86_64. Instead of adding arch-specifc observations to the hugepages= entry, this commit just drops the out of date information. Further information about arch-specific support and available features can be obtained in the hugetlb documentation. Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
It isn't supposed to stack, so turn it into a bit-field to save 4 bytes on the task_struct. Also, remove the memcg_stop/resume_kmem_account helpers - it is clearer to set/clear the flag inline. Regarding the overwhelming comment to the helpers, which is removed by this patch too, we already have a compact yet accurate explanation in memcg_schedule_cache_create, no need in yet another one. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
__memcg_kmem_get_cache can recurse if it calls kmalloc (which it does if the cgroup's kmem cache doesn't exist), because kmalloc may call __memcg_kmem_get_cache internally again. To avoid the recursion, we use the task_struct->memcg_kmem_skip_account flag. However, there's no need checking the flag in memcg_kmem_newpage_charge, because there's no way how this function could result in recursion, if called from memcg_kmem_get_cache. So let's remove the redundant code. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
The only such flag is KMEM_ACCOUNTED_ACTIVE, but it's set iff mem_cgroup->kmemcg_id is initialized, so we can check kmemcg_id instead of having a separate flags field. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Weijie Yang authored
When the encountered pte is a swap entry, the current code handles two cases: migration and normal swapentry, but we have a third case: hwpoison page. This patch adds hwpoison page handle, consider hwpoison page incore as same as migration. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Davidlohr Bueso authored
Call page_to_pgoff() to get the page offset once we are sure we actually need it, and any very obvious initial function checks have passed. Trivial micro-optimization, and potentially save some cycles. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
Page guard is used by debug-pagealloc feature. Currently, it is open-coded, but, I think that more abstraction of it makes core page allocator code more readable. There is no functional difference. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Gioh Kim <gioh.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tony Luck authored
There is a lot of duplication in the rubric around actually setting or clearing a mem region flag. Create a new helper function to do this and reduce each of memblock_mark_hotplug() and memblock_clear_hotplug() to a single line. This will be useful if someone were to add a new mem region flag - which I hope to be doing some day soon. But it looks like a plausible cleanup even without that - so I'd like to get it out of the way now. Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Philipp Hachtmann <phacht@linux.vnet.ibm.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Emil Medve <Emilian.Medve@freescale.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
task_struct->memcg_kmem_skip_account was initially introduced to avoid recursion during kmem cache creation: memcg_kmem_get_cache, which is called by kmem_cache_alloc to determine the per-memcg cache to account allocation to, may issue lazy cache creation if the needed cache doesn't exist, which means issuing yet another kmem_cache_alloc. We can't just pass a flag to the nested kmem_cache_alloc disabling kmem accounting, because there are hidden allocations, e.g. in INIT_WORK. So we introduced a flag on the task_struct, memcg_kmem_skip_account, making memcg_kmem_get_cache return immediately. By its nature, the flag may also be used to disable accounting for allocations shared among different cgroups, and currently it is used this way in memcg_activate_kmem. Using it like this looks like abusing it to me. If we want to disable accounting for some allocations (which we will definitely want one day), we should either add GFP_NO_MEMCG or GFP_MEMCG flag in order to blacklist/whitelist some allocations. For now, let's simply remove memcg_stop/resume_kmem_account from memcg_activate_kmem. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
We already assured the current task has mm in memcg_kmem_should_charge, no need to double check. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
cpuset code stopped using cgroup_lock in favor of cpuset_mutex long ago. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Gregory Fong authored
The alignment in cma_alloc() was done w.r.t. the bitmap. This is a problem when, for example: - a device requires 16M (order 12) alignment - the CMA region is not 16 M aligned In such a case, can result with the CMA region starting at, say, 0x2f800000 but any allocation you make from there will be aligned from there. Requesting an allocation of 32 M with 16 M alignment will result in an allocation from 0x2f800000 to 0x31800000, which doesn't work very well if your strange device requires 16M alignment. Change to use bitmap_find_next_zero_area_off() to account for the difference in alignment at reserve-time and alloc-time. Signed-off-by: Gregory Fong <gregory.0xf0@gmail.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kukjin Kim <kgene.kim@samsung.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Laura Abbott <lauraa@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Nazarewicz authored
Add a bitmap_find_next_zero_area_off() function which works like bitmap_find_next_zero_area() function except it allows an offset to be specified when alignment is checked. This lets caller request a bit such that its number plus the offset is aligned according to the mask. [gregory.0xf0@gmail.com: Retrieved from https://patchwork.linuxtv.org/patch/6254/ and updated documentation] Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Gregory Fong <gregory.0xf0@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kukjin Kim <kgene.kim@samsung.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Laura Abbott <lauraa@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Davidlohr Bueso authored
The unmap_mapping_range family of functions do the unmapping of user pages (ultimately via zap_page_range_single) without touching the actual interval tree, thus share the lock. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-