- 03 Oct, 2019 4 commits
-
-
Sean Christopherson authored
Current versions of Intel's SDM incorrectly state that "bits 31:15 of the VM-Entry exception error-code field" must be zero. In reality, bits 31:16 must be zero, i.e. error codes are 16-bit values. The bogus error code check manifests as an unexpected VM-Entry failure due to an invalid code field (error number 7) in L1, e.g. when injecting a #GP with error_code=0x9f00. Nadav previously reported the bug[*], both to KVM and Intel, and fixed the associated kvm-unit-test. [*] https://patchwork.kernel.org/patch/11124749/Reported-by: Nadav Amit <namit@vmware.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Merge tag 'kvmarm-fixes-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.4, take #1 - Remove the now obsolete hyp_alternate_select construct - Fix the TRACE_INCLUDE_PATH macro in the vgic code
-
Paolo Bonzini authored
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18 contiguous MSR indices reserved by Intel for event selectors. Since some machines actually have MSRs past the reserved range, these may survive the filtering of msrs_to_save array and would be rejected by KVM_GET/SET_MSR. To avoid this, cut the list to whatever CPUID reports for the host's architectural PMU. Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Jim Mattson <jmattson@google.com> Fixes: e2ada66e ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21) Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Shuah Khan authored
Fix the following build error from "make TARGETS=kvm kselftest": libkvm.a(assert.o): relocation R_X86_64_32 against `.rodata.str1.1' can not be used when making a PIE object; recompile with -fPIC This error is seen when build is done from the main Makefile using kselftest target. In this case KBUILD_CPPFLAGS and CC_OPTION_CFLAGS are defined. When build is invoked using: "make -C tools/testing/selftests/kvm" KBUILD_CPPFLAGS and CC_OPTION_CFLAGS aren't defined. There is no need to pass in KBUILD_CPPFLAGS and CC_OPTION_CFLAGS for the check to determine if --no-pie is necessary, which is the case when these two aren't defined when "make -C tools/testing/selftests/kvm" runs. Fix it by simplifying the no-pie-option logic. With this change, both build variations work. "make TARGETS=kvm kselftest" "make -C tools/testing/selftests/kvm" Signed-off-by: Shuah Khan <skhan@linuxfoundation.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 01 Oct, 2019 1 commit
-
-
Jim Mattson authored
KVM can only virtualize as many PMCs as the host supports. Limit the number of generic counters and fixed counters to the number of corresponding counters supported on the host, rather than to INTEL_PMC_MAX_GENERIC and INTEL_PMC_MAX_FIXED, respectively. Note that INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18 contiguous MSR indices reserved by Intel for event selectors. Since the existing code relies on a contiguous range of MSR indices for event selectors, it can't possibly work for more than 18 general purpose counters. Fixes: f5132b01 ("KVM: Expose a version 2 architectural PMU to a guests") Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 30 Sep, 2019 1 commit
-
-
Paolo Bonzini authored
The largepages debugfs entry is incremented/decremented as shadow pages are created or destroyed. Clearing it will result in an underflow, which is harmless to KVM but ugly (and could be misinterpreted by tools that use debugfs information), so make this particular statistic read-only. Cc: kvm-ppc@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 27 Sep, 2019 5 commits
-
-
Vitaly Kuznetsov authored
When KVM_GET_MSRS fail the report looks like ==== Test Assertion Failure ==== lib/x86_64/processor.c:1089: r == nmsrs pid=28775 tid=28775 - Argument list too long 1 0x000000000040a55f: vcpu_save_state at processor.c:1088 (discriminator 3) 2 0x00000000004010e3: main at state_test.c:171 (discriminator 4) 3 0x00007fb8e69223d4: ?? ??:0 4 0x0000000000401287: _start at ??:? Unexpected result from KVM_GET_MSRS, r: 36 (failed at 194) and it's not obvious that '194' here is the failed MSR index and that it's printed in hex. Change that. Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Waiman Long authored
The l1tf_vmx_mitigation is only set to VMENTER_L1D_FLUSH_NOT_REQUIRED when the ARCH_CAPABILITIES MSR indicates that L1D flush is not required. However, if the CPU is not affected by L1TF, l1tf_vmx_mitigation will still be set to VMENTER_L1D_FLUSH_AUTO. This is certainly not the best option for a !X86_BUG_L1TF CPU. So force l1tf_vmx_mitigation to VMENTER_L1D_FLUSH_NOT_REQUIRED to make it more explicit in case users are checking the vmentry_l1d_flush parameter. Signed-off-by: Waiman Long <longman@redhat.com> [Patch rewritten accoring to Borislav Petkov's suggestion. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Check that accesses by nested guests are logged according to the L1 physical addresses rather than L2. Most of the patch is really adding EPT support to the testing framework. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Shadow paging is fundamentally incompatible with the page-modification log, because the GPAs in the log come from the wrong memory map. In particular, for the EPT page-modification log, the GPAs in the log come from L2 rather than L1. (If there was a non-EPT page-modification log, we couldn't use it for shadow paging because it would log GVAs rather than GPAs). Therefore, we need to rely on write protection to record dirty pages. This has the side effect of bypassing PML, since writes now result in an EPT violation vmexit. This is relatively easy to add to KVM, because pretty much the only place that needs changing is spte_clear_dirty. The first access to the page already goes through the page fault path and records the correct GPA; it's only subsequent accesses that are wrong. Therefore, we can equip set_spte (where the first access happens) to record that the SPTE will have to be write protected, and then spte_clear_dirty will use this information to do the right thing. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Currently, we are overloading SPTE_SPECIAL_MASK to mean both "A/D bits unavailable" and MMIO, where the difference between the two is determined by mio_mask and mmio_value. However, the next patch will need two bits to distinguish availability of A/D bits from write protection. So, while at it give MMIO its own bit pattern, and move the two bits from bit 62 to bits 52..53 since Intel is allocating EPT page table bits from the top. Reviewed-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 26 Sep, 2019 7 commits
-
-
Sebastian Andrzej Siewior authored
I was surprised to see that the guest reported `fxsave_leak' while the host did not. After digging deeper I noticed that the bits are simply masked out during enumeration. The XSAVEERPTR feature is actually a bug fix on AMD which means the kernel can disable a workaround. Pass XSAVEERPTR to the guest if available on the host. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Jim Mattson authored
CLZERO is available to the guest if it is supported on the host. Therefore, enumerate support for the instruction in KVM_GET_SUPPORTED_CPUID whenever it is supported on the host. Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Jim Mattson authored
When the guest CPUID information represents an AMD vCPU, return all zeroes for queries of undefined CPUID leaves, whether or not they are in range. Signed-off-by: Jim Mattson <jmattson@google.com> Fixes: bd22f5cf ("KVM: move and fix substitue search for missing CPUID entries") Reviewed-by: Marc Orr <marcorr@google.com> Reviewed-by: Peter Shier <pshier@google.com> Reviewed-by: Jacob Xu <jacobhxu@google.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Jim Mattson authored
For these CPUID leaves, the EDX output is not dependent on the ECX input (i.e. the SIGNIFCANT_INDEX flag doesn't apply to EDX). Furthermore, the low byte of the ECX output is always identical to the low byte of the ECX input. KVM does not produce the correct ECX and EDX outputs for any undefined subleaves beyond the first. Special-case these CPUID leaves in kvm_cpuid, so that the ECX and EDX outputs are properly generated for all undefined subleaves. Fixes: 07716717 ("KVM: Enhance guest cpuid management") Fixes: a87f2d3a ("KVM: x86: Add Intel CPUID.1F cpuid emulation support") Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Marc Orr <marcorr@google.com> Reviewed-by: Peter Shier <pshier@google.com> Reviewed-by: Jacob Xu <jacobhxu@google.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Wanpeng Li authored
Reported by syzkaller: WARNING: CPU: 0 PID: 6544 at /home/kernel/data/kvm/arch/x86/kvm//vmx/vmx.c:4689 handle_desc+0x37/0x40 [kvm_intel] CPU: 0 PID: 6544 Comm: a.out Tainted: G OE 5.3.0-rc4+ #4 RIP: 0010:handle_desc+0x37/0x40 [kvm_intel] Call Trace: vmx_handle_exit+0xbe/0x6b0 [kvm_intel] vcpu_enter_guest+0x4dc/0x18d0 [kvm] kvm_arch_vcpu_ioctl_run+0x407/0x660 [kvm] kvm_vcpu_ioctl+0x3ad/0x690 [kvm] do_vfs_ioctl+0xa2/0x690 ksys_ioctl+0x6d/0x80 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x74/0x720 entry_SYSCALL_64_after_hwframe+0x49/0xbe When CR4.UMIP is set, guest should have UMIP cpuid flag. Current kvm set_sregs function doesn't have such check when userspace inputs sregs values. SECONDARY_EXEC_DESC is enabled on writes to CR4.UMIP in vmx_set_cr4 though guest doesn't have UMIP cpuid flag. The testcast triggers handle_desc warning when executing ltr instruction since guest architectural CR4 doesn't set UMIP. This patch fixes it by adding valid CR4 and CPUID combination checking in __set_sregs. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=138efb99600000 Reported-by: syzbot+0f1819555fbdce992df9@syzkaller.appspotmail.com Cc: stable@vger.kernel.org Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Jim Mattson authored
Don't return -E2BIG from __do_cpuid_func when processing function 0BH or 1FH and the last interesting subleaf occupies the last allocated entry in the result array. Cc: Paolo Bonzini <pbonzini@redhat.com> Fixes: 831bf664 ("KVM: Refactor and simplify kvm_dev_ioctl_get_supported_cpuid") Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Wanpeng Li authored
5000 guest cycles delta is easy to encounter on desktop, per-vCPU lapic_timer_advance_ns always keeps at 1000ns initial value, let's loosen the filter a bit to let adaptive tuning make progress. Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 25 Sep, 2019 9 commits
-
-
Paolo Bonzini authored
KVM was incorrectly checking vmcs12->host_ia32_efer even if the "load IA32_EFER" exit control was reset. Also, some checks were not using the new CC macro for tracing. Cleanup everything so that the vCPU's 64-bit mode is determined directly from EFER_LMA and the VMCS checks are based on that, which matches section 26.2.4 of the SDM. Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com> Fixes: 5845038cReviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Vitaly Kuznetsov authored
The following was reported on i386: arch/x86/kvm/vmx/vmx.c: In function 'hv_enable_direct_tlbflush': arch/x86/kvm/vmx/vmx.c:503:10: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] pr_debugs() in this function are more or less useless, let's just remove them. evmcs->hv_vm_id can use 'unsigned long' instead of 'u64'. Also, simplify the code a little bit. Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Remove the kvm_rebooting check from VMX/SVM instruction exception fixup now that kvm_spurious_fault() conditions its BUG() on !kvm_rebooting. Because the 'cleanup_insn' functionally is also gone, deferring to kvm_spurious_fault() means __kvm_handle_fault_on_reboot() can eliminate its .fixup code entirely and have its exception table entry branch directly to the call to kvm_spurious_fault(). Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Remove the variation of __kvm_handle_fault_on_reboot() that accepts a post-fault cleanup instruction now that its sole user (VMREAD) uses a different method for handling faults. Acked-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that VMREAD flows require a taken branch, courtesy of commit 3901336e ("x86/kvm: Don't call kvm_spurious_fault() from .fixup") bite the bullet and add full error handling to VMREAD, i.e. replace the JMP added by __ex()/____kvm_handle_fault_on_reboot() with a hinted Jcc. To minimize the code footprint, add a helper function, vmread_error(), to handle both faults and failures so that the inline flow has a single CALL. Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Rework the VMX instruction helpers using asm-goto to branch directly to error/fault "handlers" in lieu of using __ex(), i.e. the generic ____kvm_handle_fault_on_reboot(). Branching directly to fault handling code during fixup avoids the extra JMP that is inserted after every VMX instruction when using the generic "fault on reboot" (see commit 3901336e, "x86/kvm: Don't call kvm_spurious_fault() from .fixup"). Opportunistically clean up the helpers so that they all have consistent error handling and messages. Leave the usage of ____kvm_handle_fault_on_reboot() (via __ex()) in kvm_cpu_vmxoff() and nested_vmx_check_vmentry_hw() as is. The VMXOFF case is not a fast path, i.e. the cleanliness of __ex() is worth the JMP, and the extra JMP in nested_vmx_check_vmentry_hw() is unavoidable. Note, VMREAD cannot get the asm-goto treatment as output operands aren't compatible with GCC's asm-goto due to internal compiler restrictions. Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Explicitly check kvm_rebooting in kvm_spurious_fault() prior to invoking BUG(), as opposed to assuming the caller has already done so. Letting kvm_spurious_fault() be called "directly" will allow VMX to better optimize its low level assembly flows. As a happy side effect, kvm_spurious_fault() no longer needs to be marked as a dead end since it doesn't unconditionally BUG(). Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Vitaly Kuznetsov authored
After commit e8bb4755eea2("KVM: selftests: Split ucall.c into architecture specific files") selftests which use ucall on x86 started segfaulting and apparently it's gcc to blame: it "optimizes" ucall() function throwing away va_start/va_end part because it thinks the structure is not being used. Previously, it couldn't do that because the there was also MMIO version and the decision which particular implementation to use was done at runtime. With older gccs it's possible to solve the problem by adding 'volatile' to 'struct ucall' but at least with gcc-8.3 this trick doesn't work. 'memory' clobber seems to do the job. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Wanpeng Li authored
This patch reverts commit 75437bb3 (locking/pvqspinlock: Don't wait if vCPU is preempted). A large performance regression was caused by this commit. on over-subscription scenarios. The test was run on a Xeon Skylake box, 2 sockets, 40 cores, 80 threads, with three VMs of 80 vCPUs each. The score of ebizzy -M is reduced from 13000-14000 records/s to 1700-1800 records/s: Host Guest score vanilla w/o kvm optimizations upstream 1700-1800 records/s vanilla w/o kvm optimizations revert 13000-14000 records/s vanilla w/ kvm optimizations upstream 4500-5000 records/s vanilla w/ kvm optimizations revert 14000-15500 records/s Exit from aggressive wait-early mechanism can result in premature yield and extra scheduling latency. Actually, only 6% of wait_early events are caused by vcpu_is_preempted() being true. However, when one vCPU voluntarily releases its vCPU, all the subsequently waiters in the queue will do the same and the cascading effect leads to bad performance. kvm optimizations: [1] commit d73eb57b (KVM: Boost vCPUs that are delivering interrupts) [2] commit 266e85a5 (KVM: X86: Boost queue head vCPU to mitigate lock waiter preemption) Tested-by: loobinliu@tencent.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: loobinliu@tencent.com Cc: stable@vger.kernel.org Fixes: 75437bb3 (locking/pvqspinlock: Don't wait if vCPU is preempted) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 24 Sep, 2019 13 commits
-
-
Marc Orr authored
Allowing an unlimited number of MSRs to be specified via the VMX load/store MSR lists (e.g., vm-entry MSR load list) is bad for two reasons. First, a guest can specify an unreasonable number of MSRs, forcing KVM to process all of them in software. Second, the SDM bounds the number of MSRs allowed to be packed into the atomic switch MSR lists. Quoting the "Miscellaneous Data" section in the "VMX Capability Reporting Facility" appendix: "Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be included in each list. If the limit is exceeded, undefined processor behavior may result (including a machine check during the VMX transition)." Because KVM needs to protect itself and can't model "undefined processor behavior", arbitrarily force a VM-entry to fail due to MSR loading when the MSR load list is too large. Similarly, trigger an abort during a VM exit that encounters an MSR load list or MSR store list that is too large. The MSR list size is intentionally not pre-checked so as to maintain compatibility with hardware inasmuch as possible. Test these new checks with the kvm-unit-test "x86: nvmx: test max atomic switch MSRs". Suggested-by: Jim Mattson <jmattson@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Signed-off-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Jim Mattson authored
The RDPRU instruction gives the guest read access to the IA32_APERF MSR and the IA32_MPERF MSR. According to volume 3 of the APM, "When virtualization is enabled, this instruction can be intercepted by the Hypervisor. The intercept bit is at VMCB byte offset 10h, bit 14." Since we don't enumerate the instruction in KVM_SUPPORTED_CPUID, intercept it and synthesize #UD. Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Drew Schmitt <dasch@google.com> Reviewed-by: Jacob Xu <jacobhxu@google.com> Reviewed-by: Peter Shier <pshier@google.com> Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Jim Mattson authored
According to the Intel SDM, volume 2, "CPUID," the index is significant (or partially significant) for CPUID leaves 0FH, 10H, 12H, 17H, 18H, and 1FH. Add the corresponding flag to these CPUID leaves in do_host_cpuid(). Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Reviewed-by: Steve Rutherford <srutherford@google.com> Fixes: a87f2d3a ("KVM: x86: Add Intel CPUID.1F cpuid emulation support") Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Do not skip invalid shadow pages when zapping obsolete pages if the pages' root_count has reached zero, in which case the page can be immediately zapped and freed. Update the comment accordingly. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Toggle mmu_valid_gen between '0' and '1' instead of blindly incrementing the generation. Because slots_lock is held for the entire duration of zapping obsolete pages, it's impossible for there to be multiple invalid generations associated with shadow pages at any given time. Toggling between the two generations (valid vs. invalid) allows changing mmu_valid_gen from an unsigned long to a u8, which reduces the size of struct kvm_mmu_page from 160 to 152 bytes on 64-bit KVM, i.e. reduces KVM's memory footprint by 8 bytes per shadow page. Set sp->mmu_valid_gen before it is added to active_mmu_pages. Functionally this has no effect as kvm_mmu_alloc_page() has a single caller that sets sp->mmu_valid_gen soon thereafter, but visually it is jarring to see a shadow page being added to the list without its mmu_valid_gen first being set. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that the fast invalidate mechanism has been reintroduced, restore the performance tweaks for fast invalidation that existed prior to its removal. Paraphrasing the original changelog (commit 5ff05683 was itself a partial revert): Don't force reloading the remote mmu when zapping an obsolete page, as a MMU_RELOAD request has already been issued by kvm_mmu_zap_all_fast() immediately after incrementing mmu_valid_gen, i.e. after marking pages obsolete. This reverts commit 5ff05683. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that the fast invalidate mechanism has been reintroduced, restore the performance tweaks for fast invalidation that existed prior to its removal. Paraphrashing the original changelog: Introduce a per-VM list to track obsolete shadow pages, i.e. pages which have been deleted from the mmu cache but haven't yet been freed. When page reclaiming is needed, zap/free the deleted pages first. This reverts commit 52d5dedc. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that the fast invalidate mechanism has been reintroduced, restore the performance tweaks for fast invalidation that existed prior to its removal. Paraphrashing the original changelog: Reload the mmu on all vCPUs after updating the generation number so that obsolete pages are not used by any vCPUs. This allows collapsing all TLB flushes during obsolete page zapping into a single flush, as there is no need to flush when dropping mmu_lock (to reschedule). Note: a remote TLB flush is still needed before freeing the pages as other vCPUs may be doing a lockless shadow page walk. Opportunstically improve the comments restored by the revert (the code itself is a true revert). This reverts commit f34d251d. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that the fast invalidate mechanism has been reintroduced, restore the performance tweaks for fast invalidation that existed prior to its removal. Paraphrashing the original changelog: Zap at least 10 shadow pages before releasing mmu_lock to reduce the overhead associated with re-acquiring the lock. Note: "10" is an arbitrary number, speculated to be high enough so that a vCPU isn't stuck zapping obsolete pages for an extended period, but small enough so that other vCPUs aren't starved waiting for mmu_lock. This reverts commit 43d2b14b. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that the fast invalidate mechanism has been reintroduced, restore the tracepoint associated with said mechanism. Note, the name of the tracepoint deviates from the original tracepoint so as to match KVM's current nomenclature. This reverts commit 42560fb1. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Now that the fast invalidate mechanism has been reintroduced, restore tracing of the generation number in shadow page tracepoints. This reverts commit b59c4830. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Use the fast invalidate mechasim to zap MMIO sptes on a MMIO generation wrap. The fast invalidate flow was reintroduced to fix a livelock bug in kvm_mmu_zap_all() that can occur if kvm_mmu_zap_all() is invoked when the guest has live vCPUs. I.e. using kvm_mmu_zap_all() to handle the MMIO generation wrap is theoretically susceptible to the livelock bug. This effectively reverts commit 4771450c ("Revert "KVM: MMU: drop kvm_mmu_zap_mmio_sptes""), i.e. restores the behavior of commit a8eca9dc ("KVM: MMU: drop kvm_mmu_zap_mmio_sptes"). Note, this actually fixes commit 571c5af0 ("KVM: x86/mmu: Voluntarily reschedule as needed when zapping MMIO sptes"), but there is no need to incrementally revert back to using fast invalidate, e.g. doing so doesn't provide any bisection or stability benefits. Fixes: 571c5af0 ("KVM: x86/mmu: Voluntarily reschedule as needed when zapping MMIO sptes") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Treat invalid shadow pages as obsolete to fix a bug where an obsolete and invalid page with a non-zero root count could become non-obsolete due to mmu_valid_gen wrapping. The bug is largely theoretical with the current code base, as an unsigned long will effectively never wrap on 64-bit KVM, and userspace would have to deliberately stall a vCPU in order to keep an obsolete invalid page on the active list while simultaneously modifying memslots billions of times to trigger a wrap. The obvious alternative is to use a 64-bit value for mmu_valid_gen, but it's actually desirable to go in the opposite direction, i.e. using a smaller 8-bit value to reduce KVM's memory footprint by 8 bytes per shadow page, and relying on proper treatment of invalid pages instead of preventing the generation from wrapping. Note, "Fixes" points at a commit that was at one point reverted, but has since been restored. Fixes: 5304b8d3 ("KVM: MMU: fast invalidate all pages") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-