- 08 Sep, 2015 40 commits
-
-
Mark Salter authored
The early_ioremap library now has a generic copy_from_early_mem() function. Use the generic copy function for x86 relocate_initrd(). [akpm@linux-foundation.org: remove MAX_MAP_CHUNK define, per Yinghai Lu] Signed-off-by: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mark Salter authored
The use of mem= could leave part or all of the initrd outside of the kernel linear map. This will lead to an error when unpacking the initrd and a probable failure to boot. This patch catches that situation and relocates the initrd to be fully within the linear map. Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mark Salter authored
When booting an arm64 kernel w/initrd using UEFI/grub, use of mem= will likely cut off part or all of the initrd. This leaves it outside the kernel linear map which leads to failure when unpacking. The x86 code has a similar need to relocate an initrd outside of mapped memory in some cases. The current x86 code uses early_memremap() to copy the original initrd from unmapped to mapped RAM. This patchset creates a generic copy_from_early_mem() utility based on that x86 code and has arm64 and x86 share it in their respective initrd relocation code. This patch (of 3): In some early boot circumstances, it may be necessary to copy from RAM outside the kernel linear mapping to mapped RAM. The need to relocate an initrd is one example in the x86 code. This patch creates a helper function based on current x86 code. Signed-off-by: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
The URL for libhugetlbfs has changed. Also, put a stronger emphasis on using libgugetlbfs for hugetlb regression testing. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joern Engel <joern@logfs.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
The hugetlb selftests provide minimal coverage. Have run script point people at libhugetlbfs for better regression testing. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joern Engel <joern@logfs.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
This manually reverts 7e50533d ("selftests: add hugetlbfstest"). The hugetlbfstest test depends on hugetlb pages being counted in a task's rss. This functionality is not in the kernel, so the test will always fail. Remove test to avoid confusion. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joern Engel <joern@logfs.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
The compaction free scanner is looking for PageBuddy() pages and skipping all others. For large compound pages such as THP or hugetlbfs, we can save a lot of iterations if we skip them at once using their compound_order(). This is generally unsafe and we can read a bogus value of order due to a race, but if we are careful, the only danger is skipping too much. When tested with stress-highalloc from mmtests on 4GB system with 1GB hugetlbfs pages, the vmstat compact_free_scanned count decreased by at least 15%. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
The compaction migrate scanner tries to skip THP pages by their order, to reduce number of iterations for pages it cannot isolate. The check is only done if PageLRU() is true, which means it applies to THP pages, but not e.g. hugetlbfs pages or any other non-LRU compound pages, which we have to iterate by base pages. This limitation comes from the assumption that it's only safe to read compound_order() when we have the zone's lru_lock and THP cannot be split under us. But the only danger (after filtering out order values that are not below MAX_ORDER, to prevent overflows) is that we skip too much or too little after reading a bogus compound_order() due to a rare race. This is the same reasoning as patch 99c0fd5e ("mm, compaction: skip buddy pages by their order in the migrate scanner") introduced for unsafely reading PageBuddy() order. After this patch, all pages are tested for PageCompound() and we skip them by compound_order(). The test is done after the test for balloon_page_movable() as we don't want to assume if balloon pages (or other pages with own isolation and migration implementation if a generic API gets implemented) are compound or not. When tested with stress-highalloc from mmtests on 4GB system with 1GB hugetlbfs pages, the vmstat compact_migrate_scanned count decreased by 15%. [kirill.shutemov@linux.intel.com: change PageTransHuge checks to PageCompound for different series was squashed here] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Reseting the cached compaction scanner positions is now open-coded in __reset_isolation_suitable() and compact_finished(). Encapsulate the functionality in a new function reset_cached_positions(). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Handling the position where compaction free scanner should restart (stored in cc->free_pfn) got more complex with commit e14c720e ("mm, compaction: remember position within pageblock in free pages scanner"). Currently the position is updated in each loop iteration of isolate_freepages(), although it should be enough to update it only when breaking from the loop. There's also an extra check outside the loop updates the position in case we have met the migration scanner. This can be simplified if we move the test for having isolated enough from the for-loop header next to the test for contention, and determining the restart position only in these cases. We can reuse the isolate_start_pfn variable for this instead of setting cc->free_pfn directly. Outside the loop, we can simply set cc->free_pfn to current value of isolate_start_pfn without any extra check. Also add a VM_BUG_ON to catch possible mistake in the future, in case we later add a new condition that terminates isolate_freepages_block() prematurely without also considering the condition in isolate_freepages(). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Assorted compaction cleanups and optimizations. The interesting patches are 4 and 5. In 4, skipping of compound pages in single iteration is improved for migration scanner, so it works also for !PageLRU compound pages such as hugetlbfs, slab etc. Patch 5 introduces this kind of skipping in the free scanner. The trick is that we can read compound_order() without any protection, if we are careful to filter out values larger than MAX_ORDER. The only danger is that we skip too much. The same trick was already used for reading the freepage order in the migrate scanner. To demonstrate improvements of Patches 4 and 5 I've run stress-highalloc from mmtests, set to simulate THP allocations (including __GFP_COMP) on a 4GB system where 1GB was occupied by hugetlbfs pages. I'll include just the relevant stats: Patch 3 Patch 4 Patch 5 Compaction stalls 7523 7529 7515 Compaction success 323 304 322 Compaction failures 7200 7224 7192 Page migrate success 247778 264395 240737 Page migrate failure 15358 33184 21621 Compaction pages isolated 906928 980192 909983 Compaction migrate scanned 2005277 1692805 1498800 Compaction free scanned 13255284 11539986 9011276 Compaction cost 288 305 277 With 5 iterations per patch, the results are still noisy, but we can see that Patch 4 does reduce migrate_scanned by 15% thanks to skipping the hugetlbfs pages at once. Interestingly, free_scanned is also reduced and I have no idea why. Patch 5 further reduces free_scanned as expected, by 15%. Other stats are unaffected modulo noise. [1] https://lkml.org/lkml/2015/1/19/158 This patch (of 5): Compaction should finish when the migration and free scanner meet, i.e. they reach the same pageblock. Currently however, the test in compact_finished() simply just compares the exact pfns, which may yield a false negative when the free scanner position is in the middle of a pageblock and the migration scanner reaches the begining of the same pageblock. This hasn't been a problem until commit e14c720e ("mm, compaction: remember position within pageblock in free pages scanner") allowed the free scanner position to be in the middle of a pageblock between invocations. The hot-fix 1d5bfe1f ("mm, compaction: prevent infinite loop in compact_zone") prevented the issue by adding a special check in the migration scanner to satisfy the current detection of scanners meeting. However, the proper fix is to make the detection more robust. This patch introduces the compact_scanners_met() function that returns true when the free scanner position is in the same or lower pageblock than the migration scanner. The special case in isolate_migratepages() introduced by 1d5bfe1f is removed. Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sean O. Stalley authored
add [pci|dma]_pool_zalloc coccinelle check. replaces instances of [pci|dma]_pool_alloc() followed by memset(0) with [pci|dma]_pool_zalloc(). Signed-off-by: Sean O. Stalley <sean.stalley@intel.com> Acked-by: Julia Lawall <julia.lawall@lip6.fr> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Gilles Muller <Gilles.Muller@lip6.fr> Cc: Nicolas Palix <nicolas.palix@imag.fr> Cc: Michal Marek <mmarek@suse.cz> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sean O. Stalley authored
Add a wrapper function for pci_pool_alloc() to get zeroed memory. Signed-off-by: Sean O. Stalley <sean.stalley@intel.com> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Gilles Muller <Gilles.Muller@lip6.fr> Cc: Nicolas Palix <nicolas.palix@imag.fr> Cc: Michal Marek <mmarek@suse.cz> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sean O. Stalley authored
Add a wrapper function for dma_pool_alloc() to get zeroed memory. Signed-off-by: Sean O. Stalley <sean.stalley@intel.com> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Gilles Muller <Gilles.Muller@lip6.fr> Cc: Nicolas Palix <nicolas.palix@imag.fr> Cc: Michal Marek <mmarek@suse.cz> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sean O. Stalley authored
Currently a call to dma_pool_alloc() with a ___GFP_ZERO flag returns a non-zeroed memory region. This patchset adds support for the __GFP_ZERO flag to dma_pool_alloc(), adds 2 wrapper functions for allocing zeroed memory from a pool, and provides a coccinelle script for finding & replacing instances of dma_pool_alloc() followed by memset(0) with a single dma_pool_zalloc() call. There was some concern that this always calls memset() to zero, instead of passing __GFP_ZERO into the page allocator. [https://lkml.org/lkml/2015/7/15/881] I ran a test on my system to get an idea of how often dma_pool_alloc() calls into pool_alloc_page(). After Boot: [ 30.119863] alloc_calls:541, page_allocs:7 After an hour: [ 3600.951031] alloc_calls:9566, page_allocs:12 After copying 1GB file onto a USB drive: [ 4260.657148] alloc_calls:17225, page_allocs:12 It doesn't look like dma_pool_alloc() calls down to the page allocator very often (at least on my system). This patch (of 4): Currently the __GFP_ZERO flag is ignored by dma_pool_alloc(). Make dma_pool_alloc() zero the memory if this flag is set. Signed-off-by: Sean O. Stalley <sean.stalley@intel.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Gilles Muller <Gilles.Muller@lip6.fr> Cc: Nicolas Palix <nicolas.palix@imag.fr> Cc: Michal Marek <mmarek@suse.cz> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jaewon Kim authored
reclaim_clean_pages_from_list() assumes that shrink_page_list() returns number of pages removed from the candidate list. But shrink_page_list() puts back mlocked pages without passing it to caller and without counting as nr_reclaimed. This increases nr_isolated. To fix this, this patch changes shrink_page_list() to pass unevictable pages back to caller. Caller will take care those pages. Minchan said: It fixes two issues. 1. With unevictable page, cma_alloc will be successful. Exactly speaking, cma_alloc of current kernel will fail due to unevictable pages. 2. fix leaking of NR_ISOLATED counter of vmstat With it, too_many_isolated works. Otherwise, it could make hang until the process get SIGKILL. Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
If transparent huge pages are enabled, we can isolate many more pages than we actually need to scan, because we count both single and huge pages equally in isolate_lru_pages(). Since commit 5bc7b8ac ("mm: thp: add split tail pages to shrink page list in page reclaim"), we scan all the tail pages immediately after a huge page split (see shrink_page_list()). As a result, we can reclaim up to SWAP_CLUSTER_MAX * HPAGE_PMD_NR (512 MB) in one run! This is easy to catch on memcg reclaim with zswap enabled. The latter makes swapout instant so that if we happen to scan an unreferenced huge page we will evict both its head and tail pages immediately, which is likely to result in excessive reclaim. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Kirill A. Shutemov authored
__nocast does no good for vm_flags_t. It only produces useless sparse warnings. Let's drop it. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chris Metcalf authored
Bootmem isn't popular any more, but some architectures still use it, and freeing to bootmem after calling free_all_bootmem_core() can end up scribbling over random memory. Instead, make sure the kernel generates a warning in this case by ensuring the node_bootmem_map field is non-NULL when are freeing or marking bootmem. An instance of this bug was just fixed in the tile architecture ("tile: use free_bootmem_late() for initrd") and catching this case more widely seems like a good thing. Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Paul McQuade <paulmcquad@gmail.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Nowaday, set/unset_migratetype_isolate() is defined and used only in mm/page_isolation, so let's limit the scope within the file. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Aristeu Rozanski authored
This check was introduced as part of 6f4576e3 ("mempolicy: apply page table walker on queue_pages_range()") which got duplicated by 48684a65 ("mm: pagewalk: fix misbehavior of walk_page_range for vma(VM_PFNMAP)") by reintroducing it earlier on queue_page_test_walk() Signed-off-by: Aristeu Rozanski <aris@redhat.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tang Chen authored
When parsing SRAT, all memory ranges are added into numa_meminfo. In numa_init(), before entering numa_cleanup_meminfo(), all possible memory ranges are in numa_meminfo. And numa_cleanup_meminfo() removes all ranges over max_pfn or empty. But, this only works if the nodes are continuous. Let's have a look at the following example: We have an SRAT like this: SRAT: Node 0 PXM 0 [mem 0x00000000-0x5fffffff] SRAT: Node 0 PXM 0 [mem 0x100000000-0x1ffffffffff] SRAT: Node 1 PXM 1 [mem 0x20000000000-0x3ffffffffff] SRAT: Node 4 PXM 2 [mem 0x40000000000-0x5ffffffffff] hotplug SRAT: Node 5 PXM 3 [mem 0x60000000000-0x7ffffffffff] hotplug SRAT: Node 2 PXM 4 [mem 0x80000000000-0x9ffffffffff] hotplug SRAT: Node 3 PXM 5 [mem 0xa0000000000-0xbffffffffff] hotplug SRAT: Node 6 PXM 6 [mem 0xc0000000000-0xdffffffffff] hotplug SRAT: Node 7 PXM 7 [mem 0xe0000000000-0xfffffffffff] hotplug On boot, only node 0,1,2,3 exist. And the numa_meminfo will look like this: numa_meminfo.nr_blks = 9 1. on node 0: [0, 60000000] 2. on node 0: [100000000, 20000000000] 3. on node 1: [20000000000, 40000000000] 4. on node 4: [40000000000, 60000000000] 5. on node 5: [60000000000, 80000000000] 6. on node 2: [80000000000, a0000000000] 7. on node 3: [a0000000000, a0800000000] 8. on node 6: [c0000000000, a0800000000] 9. on node 7: [e0000000000, a0800000000] And numa_cleanup_meminfo() will merge 1 and 2, and remove 8,9 because the end address is over max_pfn, which is a0800000000. But 4 and 5 are not removed because their end addresses are less then max_pfn. But in fact, node 4 and 5 don't exist. In a word, numa_cleanup_meminfo() is not able to handle holes between nodes. Since memory ranges in node 4 and 5 are in numa_meminfo, in numa_register_memblks(), node 4 and 5 will be mistakenly set to online. If you run lscpu, it will show: NUMA node0 CPU(s): 0-14,128-142 NUMA node1 CPU(s): 15-29,143-157 NUMA node2 CPU(s): NUMA node3 CPU(s): NUMA node4 CPU(s): 62-76,190-204 NUMA node5 CPU(s): 78-92,206-220 In this patch, we use memblock_overlaps_region() to check if ranges in numa_meminfo overlap with ranges in memory_block. Since memory_block contains all available memory at boot time, if they overlap, it means the ranges exist. If not, then remove them from numa_meminfo. After this patch, lscpu will show: NUMA node0 CPU(s): 0-14,128-142 NUMA node1 CPU(s): 15-29,143-157 NUMA node4 CPU(s): 62-76,190-204 NUMA node5 CPU(s): 78-92,206-220 Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tang Chen authored
memblock_overlaps_region() checks if the given memblock region intersects a region in memblock. If so, it returns the index of the intersected region. But its only caller is memblock_is_region_reserved(), and it returns 0 if false, non-zero if true. Both of these should return bool. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
Now that we have hole punching support for hugetlbfs, we can also support the MADV_REMOVE interface to it. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
This is based on the shmem version, but it has diverged quite a bit. We have no swap to worry about, nor the new file sealing. Add synchronication via the fault mutex table to coordinate page faults, fallocate allocation and fallocate hole punch. What this allows us to do is move physical memory in and out of a hugetlbfs file without having it mapped. This also gives us the ability to support MADV_REMOVE since it is currently implemented using fallocate(). MADV_REMOVE lets madvise() remove pages from the middle of a hugetlbfs file, which wasn't possible before. hugetlbfs fallocate only operates on whole huge pages. Based on code by Dave Hansen. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
Currently, there is only a single place where hugetlbfs pages are added to the page cache. The new fallocate code be adding a second one, so break the functionality out into its own helper. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
Areas hole punched by fallocate will not have entries in the region/reserve map. However, shared mappings with min_size subpool reservations may still have reserved pages. alloc_huge_page needs to handle this special case and do the proper accounting. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
In vma_has_reserves(), the current assumption is that reserves are always present for shared mappings. However, this will not be the case with fallocate hole punch. When punching a hole, the present page will be deleted as well as the region/reserve map entry (and hence any reservation). vma_has_reserves is passed "chg" which indicates whether or not a region/reserve map is present. Use this to determine if reserves are actually present or were removed via hole punch. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
Modify truncate_hugepages() to take a range of pages (start, end) instead of simply start. If an end value of LLONG_MAX is passed, the current "truncate" functionality is maintained. Existing callers are modified to pass LLONG_MAX as end of range. By keying off end == LLONG_MAX, the routine behaves differently for truncate and hole punch. Page removal is now synchronized with page allocation via faults by using the fault mutex table. The hole punch case can experience the rare region_del error and must handle accordingly. Add the routine hugetlb_fix_reserve_counts to fix up reserve counts in the case where region_del returns an error. Since the routine handles more than just the truncate case, it is renamed to remove_inode_hugepages(). To be consistent, the routine truncate_huge_page() is renamed remove_huge_page(). Downstream of remove_inode_hugepages(), the routine hugetlb_unreserve_pages() is also modified to take a range of pages. hugetlb_unreserve_pages is modified to detect an error from region_del and pass it back to the caller. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
fallocate hole punch will want to unmap a specific range of pages. Modify the existing hugetlb_vmtruncate_list() routine to take a start/end range. If end is 0, this indicates all pages after start should be unmapped. This is the same as the existing truncate functionality. Modify existing callers to add 0 as end of range. Since the routine will be used in hole punch as well as truncate operations, it is more appropriately renamed to hugetlb_vmdelete_list(). Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
hugetlb page faults are currently synchronized by the table of mutexes (htlb_fault_mutex_table). fallocate code will need to synchronize with the page fault code when it allocates or deletes pages. Expose interfaces so that fallocate operations can be synchronized with page faults. Minor name changes to be more consistent with other global hugetlb symbols. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
fallocate hole punch will want to remove a specific range of pages. The existing region_truncate() routine deletes all region/reserve map entries after a specified offset. region_del() will provide this same functionality if the end of region is specified as LONG_MAX. Hence, region_del() can replace region_truncate(). Unlike region_truncate(), region_del() can return an error in the rare case where it can not allocate memory for a region descriptor. This ONLY happens in the case where an existing region must be split. Current callers passing LONG_MAX as end of range will never experience this error and do not need to deal with error handling. Future callers of region_del() (such as fallocate hole punch) will need to handle this error. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
hugetlbfs is used today by applications that want a high degree of control over huge page usage. Often, large hugetlbfs files are used to map a large number huge pages into the application processes. The applications know when page ranges within these large files will no longer be used, and ideally would like to release them back to the subpool or global pools for other uses. The fallocate() system call provides an interface for preallocation and hole punching within files. This patch set adds fallocate functionality to hugetlbfs. fallocate hole punch will want to remove a specific range of pages. When pages are removed, their associated entries in the region/reserve map will also be removed. This will break an assumption in the region_chg/region_add calling sequence. If a new region descriptor must be allocated, it is done as part of the region_chg processing. In this way, region_add can not fail because it does not need to attempt an allocation. To prepare for fallocate hole punch, create a "cache" of descriptors that can be used by region_add if necessary. region_chg will ensure there are sufficient entries in the cache. It will be necessary to track the number of in progress add operations to know a sufficient number of descriptors reside in the cache. A new routine region_abort is added to adjust this in progress count when add operations are aborted. vma_abort_reservation is also added for callers creating reservations with vma_needs_reservation/vma_commit_reservation. [akpm@linux-foundation.org: fix typo in comment, use more cols] Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
The pair of get/set_freepage_migratetype() functions are used to cache pageblock migratetype for a page put on a pcplist, so that it does not have to be retrieved again when the page is put on a free list (e.g. when pcplists become full). Historically it was also assumed that the value is accurate for pages on freelists (as the functions' names unfortunately suggest), but that cannot be guaranteed without affecting various allocator fast paths. It is in fact not needed and all such uses have been removed. The last remaining (but pointless) usage related to pages of freelists is in move_freepages(), which this patch removes. To prevent further confusion, rename the functions to get/set_pcppage_migratetype() and expand their description. Since all the users are now in mm/page_alloc.c, move the functions there from the shared header. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Seungho Park <seungho1.park@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
The __test_page_isolated_in_pageblock() is used to verify whether all pages in pageblock were either successfully isolated, or are hwpoisoned. Two of the possible state of pages, that are tested, are however bogus and misleading. Both tests rely on get_freepage_migratetype(page), which however has no guarantees about pages on freelists. Specifically, it doesn't guarantee that the migratetype returned by the function actually matches the migratetype of the freelist that the page is on. Such guarantee is not its purpose and would have negative impact on allocator performance. The first test checks whether the freepage_migratetype equals MIGRATE_ISOLATE, supposedly to catch races between page isolation and allocator activity. These races should be fixed nowadays with 51bb1a40 ("mm/page_alloc: add freepage on isolate pageblock to correct buddy list") and related patches. As explained above, the check wouldn't be able to catch them reliably anyway. For the same reason false positives can happen, although they are harmless, as the move_freepages() call would just move the page to the same freelist it's already on. So removing the test is not a bug fix, just cleanup. After this patch, we assume that all PageBuddy pages are on the correct freelist and that the races were really fixed. A truly reliable verification in the form of e.g. VM_BUG_ON() would be complicated and is arguably not needed. The second test (page_count(page) == 0 && get_freepage_migratetype(page) == MIGRATE_ISOLATE) is probably supposed (the code comes from a big memory isolation patch from 2007) to catch pages on MIGRATE_ISOLATE pcplists. However, pcplists don't contain MIGRATE_ISOLATE freepages nowadays, those are freed directly to free lists, so the check is obsolete. Remove it as well. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Seungho Park <seungho1.park@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vishnu Pratap Singh authored
CMA reserved memory is not part of total reserved memory. Currently when we print the total reserve memory it considers cma as part of reserve memory and do minus of totalcma_pages from reserved, which is wrong. In cases where total reserved is less than cma reserved we will get negative values & while printing we print as unsigned and we will get a very large value. Below is the show mem output on X86 ubuntu based system where CMA reserved is 100MB (25600 pages) & total reserved is ~40MB(10316 pages). And reserve memory shows a large value because of this bug. Before: [ 127.066430] 898908 pages RAM [ 127.066432] 671682 pages HighMem/MovableOnly [ 127.066434] 4294952012 pages reserved [ 127.066436] 25600 pages cma reserved After: [ 44.663129] 898908 pages RAM [ 44.663130] 671682 pages HighMem/MovableOnly [ 44.663130] 10316 pages reserved [ 44.663131] 25600 pages cma reserved Signed-off-by: Vishnu Pratap Singh <vishnu.ps@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Danesh Petigara <dpetigara@broadcom.com> Cc: Laura Abbott <lauraa@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
The only user is sock_update_memcg which is living in memcontrol.c so it doesn't make much sense to pollute sock.h by this inline helper. Move it to memcontrol.c and open code it into its only caller. Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
sk_prot->proto_cgroup is allowed to return NULL but sock_update_memcg doesn't check for NULL. The function relies on the mem_cgroup_is_root check because we shouldn't get NULL otherwise because mem_cgroup_from_task will always return !NULL. All other callers are checking for NULL and we can safely replace mem_cgroup_is_root() check by cg_proto != NULL which will be more straightforward (proto_cgroup returns NULL for the root memcg already). Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tejun Heo authored
Restructure it to lower nesting level and help the planned threadgroup leader iteration changes. This is pure reorganization. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
Most of the exported functions in this header are not marked extern so change the rest to follow the same style. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-