1. 17 Jun, 2009 7 commits
    • Al Viro's avatar
      Cleanup of adfs headers · 608ba50b
      Al Viro authored
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      608ba50b
    • Al Viro's avatar
      9P doesn't need BKL in ->umount_begin() · ee450f79
      Al Viro authored
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      ee450f79
    • Al Viro's avatar
      fuse doesn't need BKL in ->umount_begin() · 66c6af2e
      Al Viro authored
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      66c6af2e
    • Al Viro's avatar
      No instance of ->bmap() needs BKL · fe36adf4
      Al Viro authored
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      fe36adf4
    • J. R. Okajima's avatar
      remove unlock_kernel() left accidentally · b0895513
      J. R. Okajima authored
      commit 337eb00a
      Push BKL down into ->remount_fs()
      and
      commit 4aa98cf7
      Push BKL down into do_remount_sb()
      
      were uncorrectly merged.
      The former removes one pair of lock/unlock_kernel(), but the latter adds
      several unlock_kernel(). Finally a few unlock_kernel() calls left.
      Signed-off-by: default avatarJ. R. Okajima <hooanon05@yahoo.co.jp>
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      b0895513
    • Theodore Ts'o's avatar
      ext4: avoid unnecessary spinlock in critical POSIX ACL path · 210ad6ae
      Theodore Ts'o authored
      If a filesystem supports POSIX ACL's, the VFS layer expects the filesystem
      to do POSIX ACL checks on any files not owned by the caller, and it does
      this for every single pathname component that it looks up.
      
      That obviously can be pretty expensive if the filesystem isn't careful
      about it, especially with locking. That's doubly sad, since the common
      case tends to be that there are no ACL's associated with the files in
      question.
      
      ext4 already caches the ACL data so that it doesn't have to look it up
      over and over again, but it does so by taking the inode->i_lock spinlock
      on every lookup. Which is a noticeable overhead even if it's a private
      lock, especially on CPU's where the serialization is expensive (eg Intel
      Netburst aka 'P4').
      
      For the special case of not actually having any ACL's, all that locking is
      unnecessary. Even if somebody else were to be changing the ACL's on
      another CPU, we simply don't care - if we've seen a NULL ACL, we might as
      well use it.
      
      So just load the ACL speculatively without any locking, and if it was
      NULL, just use it. If it's non-NULL (either because we had a cached
      entry, or because the cache hasn't been filled in at all), it means that
      we'll need to get the lock and re-load it properly.
      
      (This commit was ported from a patch originally authored by Linus for
      ext3.)
      Signed-off-by: default avatar"Theodore Ts'o" <tytso@mit.edu>
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      210ad6ae
    • Linus Torvalds's avatar
      ext3: avoid unnecessary spinlock in critical POSIX ACL path · 9c64daff
      Linus Torvalds authored
      If a filesystem supports POSIX ACL's, the VFS layer expects the filesystem
      to do POSIX ACL checks on any files not owned by the caller, and it does
      this for every single pathname component that it looks up.
      
      That obviously can be pretty expensive if the filesystem isn't careful
      about it, especially with locking. That's doubly sad, since the common
      case tends to be that there are no ACL's associated with the files in
      question.
      
      ext3 already caches the ACL data so that it doesn't have to look it up
      over and over again, but it does so by taking the inode->i_lock spinlock
      on every lookup. Which is a noticeable overhead even if it's a private
      lock, especially on CPU's where the serialization is expensive (eg Intel
      Netburst aka 'P4').
      
      For the special case of not actually having any ACL's, all that locking is
      unnecessary. Even if somebody else were to be changing the ACL's on
      another CPU, we simply don't care - if we've seen a NULL ACL, we might as
      well use it.
      
      So just load the ACL speculatively without any locking, and if it was
      NULL, just use it. If it's non-NULL (either because we had a cached
      entry, or because the cache hasn't been filled in at all), it means that
      we'll need to get the lock and re-load it properly.
      
      This is noticeable even on Nehalem, which does locking quite well (much
      better than P4). From lmbench:
      
      	Processor, Processes - times in microseconds - smaller is better
      	--------------------------------------------------------------------
      	Host                 OS  Mhz null null      open slct fork exec sh
      	                             call  I/O stat clos TCP  proc proc proc
      	--------- ------------- ---- ---- ---- ---- ---- ---- ---- ---- ----
       - before:
      	nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.95 1.45 2.18 69.1 273. 1141
      	nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.95 1.48 2.28 69.9 253. 1140
      	nehalem.l Linux 2.6.30- 3193 0.04 0.10 0.95 1.42 2.19 68.6 284. 1141
       - after:
      	nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.92 1.44 2.12 68.3 282. 1094
      	nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.92 1.39 2.20 67.0 308. 1123
      	nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.92 1.39 2.36 67.4 293. 1148
      
      where you can see what appears to be a roughly 3% improvement in stat
      and open/close latencies from just the removal of the locking overhead.
      
      Of course, this only matters for files you don't own (the owner never
      needs to do the ACL checks), but that's the common case for libraries,
      header files, and executables. As well as for the base components of any
      absolute pathname, even if you are the owner of the final file.
      
      [ At some point we probably want to move this ACL caching logic entirely
        into the VFS layer (and only call down to the filesystem when
        uncached), but in the meantime this improves ext3 a bit.
      
        A similar fix to btrfs makes a much bigger difference (15x improvement
        in lmbench) due to broken caching. ]
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: default avatar"Theodore Ts'o" <tytso@mit.edu>
      Acked-by: default avatarJan Kara <jack@suse.cz>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: default avatarAl Viro <viro@zeniv.linux.org.uk>
      9c64daff
  2. 15 Jun, 2009 25 commits
  3. 14 Jun, 2009 8 commits