- 01 Dec, 2019 40 commits
-
-
Anders Roxell authored
When running test_vmalloc.sh smoke the following print out states that the fragment is missing. # ./test_vmalloc.sh: You must have the following enabled in your kernel: # CONFIG_TEST_VMALLOC=m Rework to add the fragment 'CONFIG_TEST_VMALLOC=m' to the config file. Link: http://lkml.kernel.org/r/20190916095217.19665-1-anders.roxell@linaro.org Fixes: a05ef00c ("selftests/vm: add script helper for CONFIG_TEST_VMALLOC_MODULE") Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Uladzislau Rezki (Sony) authored
When fit type is NE_FIT_TYPE there is a need in one extra object. Usually the "ne_fit_preload_node" per-CPU variable has it and there is no need in GFP_NOWAIT allocation, but there are exceptions. This commit just adds more explanations, as a result giving answers on questions like when it can occur, how often, under which conditions and what happens if GFP_NOWAIT gets failed. Link: http://lkml.kernel.org/r/20191016095438.12391-3-urezki@gmail.comSigned-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Daniel Wagner <dwagner@suse.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Uladzislau Rezki (Sony) authored
Allocation functions should comply with the given gfp_mask as much as possible. The preallocation code in alloc_vmap_area doesn't follow that pattern and it is using a hardcoded GFP_KERNEL. Although this doesn't really make much difference because vmalloc is not GFP_NOWAIT compliant in general (e.g. page table allocations are GFP_KERNEL) there is no reason to spread that bad habit and it is good to fix the antipattern. [mhocko@suse.com: rewrite changelog] Link: http://lkml.kernel.org/r/20191016095438.12391-2-urezki@gmail.comSigned-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Daniel Wagner <dwagner@suse.de> Cc: Hillf Danton <hdanton@sina.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Uladzislau Rezki (Sony) authored
Some background. The preemption was disabled before to guarantee that a preloaded object is available for a CPU, it was stored for. That was achieved by combining the disabling the preemption and taking the spin lock while the ne_fit_preload_node is checked. The aim was to not allocate in atomic context when spinlock is taken later, for regular vmap allocations. But that approach conflicts with CONFIG_PREEMPT_RT philosophy. It means that calling spin_lock() with disabled preemption is forbidden in the CONFIG_PREEMPT_RT kernel. Therefore, get rid of preempt_disable() and preempt_enable() when the preload is done for splitting purpose. As a result we do not guarantee now that a CPU is preloaded, instead we minimize the case when it is not, with this change, by populating the per cpu preload pointer under the vmap_area_lock. This implies that at least each caller that has done the preallocation will not fallback to an atomic allocation later. It is possible that the preallocation would be pointless or that no preallocation is done because of the race but the data shows that this is really rare. For example i run the special test case that follows the preload pattern and path. 20 "unbind" threads run it and each does 1000000 allocations. Only 3.5 times among 1000000 a CPU was not preloaded. So it can happen but the number is negligible. [mhocko@suse.com: changelog additions] Link: http://lkml.kernel.org/r/20191016095438.12391-1-urezki@gmail.com Fixes: 82dd23e8 ("mm/vmalloc.c: preload a CPU with one object for split purpose") Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Daniel Wagner <dwagner@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Liu Xiang authored
gfpflags_allow_blocking() does not care about __GFP_HIGHMEM, so highmem_mask can be removed. Link: http://lkml.kernel.org/r/1568812319-3467-1-git-send-email-liuxiang_1999@126.comSigned-off-by: Liu Xiang <liuxiang_1999@126.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
Vincent has noticed [1] that there is something unusual with the memmap allocations going on on his platform : I noticed this because on my ARM64 platform, with 1 GiB of memory the : first [and only] section is allocated from the zeroing path while with : 2 GiB of memory the first 1 GiB section is allocated from the : non-zeroing path. The underlying problem is that although sparse_buffer_init allocates enough memory for all sections on the node sparse_buffer_alloc is not able to consume them due to mismatch in the expected allocation alignement. While sparse_buffer_init preallocation uses the PAGE_SIZE alignment the real memmap has to be aligned to section_map_size() this results in a wasted initial chunk of the preallocated memmap and unnecessary fallback allocation for a section. While we are at it also change __populate_section_memmap to align to the requested size because at least VMEMMAP has constrains to have memmap properly aligned. [1] http://lkml.kernel.org/r/20191030131122.8256-1-vincent.whitchurch@axis.com [akpm@linux-foundation.org: tweak layout, per David] Link: http://lkml.kernel.org/r/20191119092642.31799-1-mhocko@kernel.org Fixes: 35fd1eb1 ("mm/sparse: abstract sparse buffer allocations") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Vincent Whitchurch <vincent.whitchurch@axis.com> Debugged-by: Vincent Whitchurch <vincent.whitchurch@axis.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Oscar Salvador <OSalvador@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Ilya Leoshkevich authored
Building the kernel on s390 with -Og produces the following warning: WARNING: vmlinux.o(.text+0x28dabe): Section mismatch in reference from the function populate_section_memmap() to the function .meminit.text:__populate_section_memmap() The function populate_section_memmap() references the function __meminit __populate_section_memmap(). This is often because populate_section_memmap lacks a __meminit annotation or the annotation of __populate_section_memmap is wrong. While -Og is not supported, in theory this might still happen with another compiler or on another architecture. So fix this by using the correct section annotations. [iii@linux.ibm.com: v2] Link: http://lkml.kernel.org/r/20191030151639.41486-1-iii@linux.ibm.com Link: http://lkml.kernel.org/r/20191028165549.14478-1-iii@linux.ibm.comSigned-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Oscar Salvador <OSalvador@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vincent Whitchurch authored
sparsemem without VMEMMAP has two allocation paths to allocate the memory needed for its memmap (done in sparse_mem_map_populate()). In one allocation path (sparse_buffer_alloc() succeeds), the memory is not zeroed (since it was previously allocated with memblock_alloc_try_nid_raw()). In the other allocation path (sparse_buffer_alloc() fails and sparse_mem_map_populate() falls back to memblock_alloc_try_nid()), the memory is zeroed. AFAICS this difference does not appear to be on purpose. If the code is supposed to work with non-initialized memory (__init_single_page() takes care of zeroing the struct pages which are actually used), we should consistently not zero the memory, to avoid masking bugs. ( I noticed this because on my ARM64 platform, with 1 GiB of memory the first [and only] section is allocated from the zeroing path while with 2 GiB of memory the first 1 GiB section is allocated from the non-zeroing path. ) Michal: "the main user visible problem is a memory wastage. The overal amount of memory should be small. I wouldn't call it stable material." Link: http://lkml.kernel.org/r/20191030131122.8256-1-vincent.whitchurch@axis.comSigned-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
Our onlining/offlining code is unnecessarily complicated. Only memory blocks added during boot can have holes (a range that is not IORESOURCE_SYSTEM_RAM). Hotplugged memory never has holes (e.g., see add_memory_resource()). All memory blocks that belong to boot memory are already online. Note that boot memory can have holes and the memmap of the holes is marked PG_reserved. However, also memory allocated early during boot is PG_reserved - basically every page of boot memory that is not given to the buddy is PG_reserved. Therefore, when we stop allowing to offline memory blocks with holes, we implicitly no longer have to deal with onlining memory blocks with holes. E.g., online_pages() will do a walk_system_ram_range(..., online_pages_range), whereby online_pages_range() will effectively only free the memory holes not falling into a hole to the buddy. The other pages (holes) are kept PG_reserved (via move_pfn_range_to_zone()->memmap_init_zone()). This allows to simplify the code. For example, we no longer have to worry about marking pages that fall into memory holes PG_reserved when onlining memory. We can stop setting pages PG_reserved completely in memmap_init_zone(). Offlining memory blocks added during boot is usually not guaranteed to work either way (unmovable data might have easily ended up on that memory during boot). So stopping to do that should not really hurt. Also, people are not even aware of a setup where onlining/offlining of memory blocks with holes used to work reliably (see [1] and [2] especially regarding the hotplug path) - I doubt it worked reliably. For the use case of offlining memory to unplug DIMMs, we should see no change. (holes on DIMMs would be weird). Please note that hardware errors (PG_hwpoison) are not memory holes and are not affected by this change when offlining. [1] https://lkml.org/lkml/2019/10/22/135 [2] https://lkml.org/lkml/2019/8/14/1365 Link: http://lkml.kernel.org/r/20191119115237.6662-1-david@redhat.comReviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
The mem_sysfs_mutex isn't really helpful. Also, it's not really clear what the mutex protects at all. The device lists of the memory subsystem are protected separately. We don't need that mutex when looking up. creating, or removing independent devices. find_memory_block_by_id() will perform locking on its own and grab a reference of the returned device. At the time memory_dev_init() is called, we cannot have concurrent hot(un)plug operations yet - we're still fairly early during boot. We don't need any locking. The creation/removal of memory block devices should be protected on a higher level - especially using the device hotplug lock to avoid documented issues (see Documentation/core-api/memory-hotplug.rst) - or if that is reworked, using similar locking. Protecting in the context of these functions only doesn't really make sense. Especially, if we would have a situation where the same memory blocks are created/deleted at the same time, there is something horribly going wrong (imagining adding/removing a DIMM at the same time from two call paths) - after the functions succeeded something else in the callers would blow up (e.g., create_memory_block_devices() succeeded but there are no memory block devices anymore). All relevant call paths (except when adding memory early during boot via ACPI, which is now documented) hold the device hotplug lock when adding memory, and when removing memory. Let's document that instead. Add a simple safety net to create_memory_block_devices() in case we would actually remove memory blocks while adding them, so we'll never dereference a NULL pointer. Simplify memory_dev_init() now that the lock is gone. Link: http://lkml.kernel.org/r/20190925082621.4927-1-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Ben Dooks (Codethink) authored
The {set,clear}_zone_contiguous are built whatever the configuratoon so move the definitions outside the current ifdef to avoid the following compiler warnings: mm/page_alloc.c:1550:6: warning: no previous prototype for 'set_zone_contiguous' [-Wmissing-prototypes] mm/page_alloc.c:1571:6: warning: no previous prototype for 'clear_zone_contiguous' [-Wmissing-prototypes] Link: http://lkml.kernel.org/r/20191106123911.7435-1-ben.dooks@codethink.co.ukSigned-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
We have two types of users of page isolation: 1. Memory offlining: Offline memory so it can be unplugged. Memory won't be touched. 2. Memory allocation: Allocate memory (e.g., alloc_contig_range()) to become the owner of the memory and make use of it. For example, in case we want to offline memory, we can ignore (skip over) PageHWPoison() pages, as the memory won't get used. We can allow to offline memory. In contrast, we don't want to allow to allocate such memory. Let's generalize the approach so we can special case other types of pages we want to skip over in case we offline memory. While at it, also pass the same flags to test_pages_isolated(). Link: http://lkml.kernel.org/r/20191021172353.3056-3-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
Patch series "mm: Memory offlining + page isolation cleanups", v2. This patch (of 2): We call __offline_isolated_pages() from __offline_pages() after all pages were isolated and are either free (PageBuddy()) or PageHWPoison. Nothing can stop us from offlining memory at this point. In __offline_isolated_pages() we first set all affected memory sections offline (offline_mem_sections(pfn, end_pfn)), to mark the memmap as invalid (pfn_to_online_page() will no longer succeed), and then walk over all pages to pull the free pages from the free lists (to the isolated free lists, to be precise). Note that re-onlining a memory block will result in the whole memmap getting reinitialized, overwriting any old state. We already poision the memmap when offlining is complete to find any access to stale/uninitialized memmaps. So, setting the pages PageReserved() is not helpful. The memap is marked offline and all pageblocks are isolated. As soon as offline, the memmap is stale either way. This looks like a leftover from ancient times where we initialized the memmap when adding memory and not when onlining it (the pages were set PageReserved so re-onling would work as expected). Link: http://lkml.kernel.org/r/20191021172353.3056-2-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Oscar Salvador <osalvador@suse.de> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
Let's drop the now unused functions. Link: http://lkml.kernel.org/r/20190909114830.662-4-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Qian Cai <cai@lca.pw> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Sasha Levin <sashal@kernel.org> Cc: Stephen Hemminger <sthemmin@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
Let's use the generic onlining function - which will now also take care of calling kernel_map_pages(). Link: http://lkml.kernel.org/r/20190909114830.662-3-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Sasha Levin <sashal@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Hildenbrand authored
Patch series "mm/memory_hotplug: Export generic_online_page()". Let's replace the __online_page...() functions by generic_online_page(). Hyper-V only wants to delay the actual onlining of un-backed pages, so we can simpy re-use the generic function. This patch (of 3): Let's expose generic_online_page() so online_page_callback users can simply fall back to the generic implementation when actually deciding to online the pages. Link: http://lkml.kernel.org/r/20190909114830.662-2-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Sasha Levin <sashal@kernel.org> Cc: Stephen Hemminger <sthemmin@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alastair D'Silva authored
On PowerPC, the address ranges allocated to OpenCAPI LPC memory are allocated from firmware. These address ranges may be higher than what older kernels permit, as we increased the maximum permissable address in commit 4ffe713b ("powerpc/mm: Increase the max addressable memory to 2PB"). It is possible that the addressable range may change again in the future. In this scenario, we end up with a bogus section returned from __section_nr (see the discussion on the thread "mm: Trigger bug on if a section is not found in __section_nr"). Adding a check here means that we fail early and have an opportunity to handle the error gracefully, rather than rumbling on and potentially accessing an incorrect section. Further discussion is also on the thread ("powerpc: Perform a bounds check in arch_add_memory") http://lkml.kernel.org/r/20190827052047.31547-1-alastair@au1.ibm.com Link: http://lkml.kernel.org/r/20191001004617.7536-2-alastair@au1.ibm.comSigned-off-by: Alastair D'Silva <alastair@d-silva.org> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Anshuman Khandual authored
Currently during memory hot add procedure, memory gets into memblock before calling arch_add_memory() which creates its linear mapping. add_memory_resource() { .................. memblock_add_node() .................. arch_add_memory() .................. } But during memory hot remove procedure, removal from memblock happens first before its linear mapping gets teared down with arch_remove_memory() which is not consistent. Resource removal should happen in reverse order as they were added. However this does not pose any problem for now, unless there is an assumption regarding linear mapping. One example was a subtle failure on arm64 platform [1]. Though this has now found a different solution. try_remove_memory() { .................. memblock_free() memblock_remove() .................. arch_remove_memory() .................. } This changes the sequence of resource removal including memblock and linear mapping tear down during memory hot remove which will now be the reverse order in which they were added during memory hot add. The changed removal order looks like the following. try_remove_memory() { .................. arch_remove_memory() .................. memblock_free() memblock_remove() .................. } [1] https://patchwork.kernel.org/patch/11127623/ Memory hot remove now works on arm64 without this because a recent commit 60bb462fc7ad ("drivers/base/node.c: simplify unregister_memory_block_under_nodes()"). This does not fix a serious problem. It just removes an inconsistency while freeing resources during memory hot remove which for now does not pose a real problem. David mentioned that re-ordering should still make sense for consistency purpose (removing stuff in the reverse order they were added). This patch is now detached from arm64 hot-remove series. Michal: : I would just a note that the inconsistency doesn't pose any problem now : but if somebody makes any assumptions about linear mappings then it could : get subtly broken like your example for arm64 which has found a different : solution in the meantime. Link: http://lkml.kernel.org/r/1569380273-7708-1-git-send-email-anshuman.khandual@arm.comSigned-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yunfeng Ye authored
page_shift() is supported after the commit 94ad9338 ("mm: introduce page_shift()"). So replace with page_shift() in add_to_kill() for readability. Link: http://lkml.kernel.org/r/543d8bc9-f2e7-3023-7c35-2e7ed67c0e82@huawei.comSigned-off-by: Yunfeng Ye <yeyunfeng@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently soft_offline_page() receives struct page, and its sibling memory_failure() receives pfn. This discrepancy looks weird and makes precheck on pfn validity tricky. So let's align them. Link: http://lkml.kernel.org/r/20191016234706.GA5493@www9186uo.sakura.ne.jpSigned-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jane Chu authored
add_to_kill() expects the first 'tk' to be pre-allocated, it makes subsequent allocations on need basis, this makes the code a bit difficult to read. Move all the allocation internal to add_to_kill() and drop the **tk argument. Link: http://lkml.kernel.org/r/1565112345-28754-2-git-send-email-jane.chu@oracle.comSigned-off-by: Jane Chu <jane.chu@oracle.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joel Fernandes (Google) authored
In this test, the parent and child both have writable private mappings. The test shows that without the patch in this series, the parent and child shared the same memory which is incorrect. In other words, COW needs to be triggered so any writes to child's copy stays local to the child. Link: http://lkml.kernel.org/r/20191107195355.80608-2-joel@joelfernandes.orgSigned-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Hugh Dickins <hughd@google.com> Cc: Nicolas Geoffray <ngeoffray@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Nicolas Geoffray authored
F_SEAL_FUTURE_WRITE has unexpected behavior when used with MAP_PRIVATE: A private mapping created after the memfd file that gets sealed with F_SEAL_FUTURE_WRITE loses the copy-on-write at fork behavior, meaning children and parent share the same memory, even though the mapping is private. The reason for this is due to the code below: static int shmem_mmap(struct file *file, struct vm_area_struct *vma) { struct shmem_inode_info *info = SHMEM_I(file_inode(file)); if (info->seals & F_SEAL_FUTURE_WRITE) { /* * New PROT_WRITE and MAP_SHARED mmaps are not allowed when * "future write" seal active. */ if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EPERM; /* * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED * read-only mapping, take care to not allow mprotect to revert * protections. */ vma->vm_flags &= ~(VM_MAYWRITE); } ... } And for the mm to know if a mapping is copy-on-write: static inline bool is_cow_mapping(vm_flags_t flags) { return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; } The patch fixes the issue by making the mprotect revert protection happen only for shared mappings. For private mappings, using mprotect will have no effect on the seal behavior. The F_SEAL_FUTURE_WRITE feature was introduced in v5.1 so v5.3.x stable kernels would need a backport. [akpm@linux-foundation.org: reflow comment, per Christoph] Link: http://lkml.kernel.org/r/20191107195355.80608-1-joel@joelfernandes.org Fixes: ab3948f5 ("mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd") Signed-off-by: Nicolas Geoffray <ngeoffray@google.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Thomas Hellstrom authored
A huge pud page can theoretically be faulted in racing with pmd_alloc() in __handle_mm_fault(). That will lead to pmd_alloc() returning an invalid pmd pointer. Fix this by adding a pud_trans_unstable() function similar to pmd_trans_unstable() and check whether the pud is really stable before using the pmd pointer. Race: Thread 1: Thread 2: Comment create_huge_pud() Fallback - not taken. create_huge_pud() Taken. pmd_alloc() Returns an invalid pointer. This will result in user-visible huge page data corruption. Note that this was caught during a code audit rather than a real experienced problem. It looks to me like the only implementation that currently creates huge pud pagetable entries is dev_dax_huge_fault() which doesn't appear to care much about private (COW) mappings or write-tracking which is, I believe, a prerequisite for create_huge_pud() falling back on thread 1, but not in thread 2. Link: http://lkml.kernel.org/r/20191115115808.21181-2-thomas_os@shipmail.org Fixes: a00cc7d9 ("mm, x86: add support for PUD-sized transparent hugepages") Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Thomas Hellstrom authored
The asm-generic/pgtable.h include file appears to be the correct place for the backup x_devmap() inline functions. Moving them here is also necessary if we want to include x_devmap() in the [pmd|pud]_unstable functions. So move the x_devmap() functions to asm-generic/pgtable.h Link: http://lkml.kernel.org/r/20191115115808.21181-1-thomas_os@shipmail.orgSigned-off-by: Thomas Hellstrom <thellstrom@vmware.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yang Shi authored
The __page_check_anon_rmap() just calls two BUG_ON()s protected by CONFIG_DEBUG_VM, the #ifdef could be eliminated by using VM_BUG_ON_PAGE(). Link: http://lkml.kernel.org/r/1573157346-111316-1-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miles Chen authored
Replace DESTROY_BY_RCU with SLAB_TYPESAFE_BY_RCU because SLAB_DESTROY_BY_RCU has been renamed to SLAB_TYPESAFE_BY_RCU by commit 5f0d5a3a ("mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU") Link: http://lkml.kernel.org/r/20191017093554.22562-1-miles.chen@mediatek.comSigned-off-by: Miles Chen <miles.chen@mediatek.com> Cc: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vineet Gupta authored
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat. With this patch we see the following code reduction. | bloat-o-meter2 vmlinux-D-elide-p4d_free_tlb vmlinux-E-elide-p?d_clear_bad | add/remove: 0/2 grow/shrink: 0/0 up/down: 0/-40 (-40) | function old new delta | pud_clear_bad 20 - -20 | p4d_clear_bad 20 - -20 | Total: Before=4136930, After=4136890, chg -1.000000% Link: http://lkml.kernel.org/r/20191016162400.14796-6-vgupta@synopsys.comSigned-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will@kernel.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vineet Gupta authored
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat. With this patch we see the following code reduction. | bloat-o-meter2 vmlinux-E-elide-p?d_clear_bad vmlinux-F-elide-pmd_free_tlb | add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-112 (-112) | function old new delta | free_pgd_range 422 310 -112 | Total: Before=4137042, After=4136930, chg -1.000000% Note that pmd folding can be tricky: In 2-level setup (where pmd is conceptually folded) most pmd routines are valid and refer to upper levels. In this patch we can, but see next patch for example where we can't Link: http://lkml.kernel.org/r/20191016162400.14796-5-vgupta@synopsys.comSigned-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vineet Gupta authored
... independent of __ARCH_HAS_5LEVEL_HACK This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat. With this patch we see the following code reduction | bloat-o-meter2 vmlinux-C-elide-pud_free_tlb vmlinux-D-elide-p4d_free_tlb | add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-104 (-104) | function old new delta | free_pgd_range 552 422 -130 | Total: Before=4137172, After=4137042, chg -1.000000% Link: http://lkml.kernel.org/r/20191016162400.14796-4-vgupta@synopsys.comSigned-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vineet Gupta authored
... independent of __ARCH_HAS_4LEVEL_HACK This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat. With this patch we see the following code reduction | bloat-o-meter2 vmlinux-B-elide-ARCH_USE_5LEVEL_HACK vmlinux-C-elide-pud_free_tlb | add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-104 (-104) | function old new delta | free_pgd_range 656 552 -104 | Total: Before=4137276, After=4137172, chg -1.000000% Note: The primary change is alternate defintion for pud_free_tlb() but while there also removed empty stubs for __pud_free_tlb, which is anyhow called only from pud_free_tlb() Link: http://lkml.kernel.org/r/20191016162400.14796-3-vgupta@synopsys.comSigned-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vineet Gupta authored
Patch series "elide extraneous generated code for folded p4d/pud/pmd", v3. This series came out of seemingly benign excursion into understanding/removing __ARCH_USE_5LEVEL_HACK from ARC port showing some extraneous code being generated despite folded p4d/pud/pmd | bloat-o-meter2 vmlinux-[AB]* | add/remove: 0/0 grow/shrink: 3/0 up/down: 130/0 (130) | function old new delta | free_pgd_range 548 660 +112 | p4d_clear_bad 2 20 +18 The patches here address that | bloat-o-meter2 vmlinux-[BF]* | add/remove: 0/2 grow/shrink: 0/1 up/down: 0/-386 (-386) | function old new delta | pud_clear_bad 20 - -20 | p4d_clear_bad 20 - -20 | free_pgd_range 660 314 -346 The code savings are not a whole lot, but still worthwhile IMHO. This patch (of 5): With paging code made 5-level compliant, this is no longer needed. ARC has software page walker with 2 lookup levels (pgd -> pte) This was expected to be non functional change but ended with slight code bloat due to needless inclusions of p*d_free_tlb() macros which will be addressed in further patches. | bloat-o-meter2 vmlinux-[AB]* | add/remove: 0/0 grow/shrink: 2/0 up/down: 128/0 (128) | function old new delta | free_pgd_range 546 656 +110 | p4d_clear_bad 2 20 +18 | Total: Before=4137148, After=4137276, chg 0.000000% Link: http://lkml.kernel.org/r/20191016162400.14796-2-vgupta@synopsys.comSigned-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Gaowei Pu authored
get_unmapped_area() returns an address or -errno on failure. Historically we have checked for the failure by offset_in_page() which is correct but quite hard to read. Newer code started using IS_ERR_VALUE which is much easier to read. Convert remaining users of offset_in_page as well. [mhocko@suse.com: rewrite changelog] [mhocko@kernel.org: fix mremap.c and uprobes.c sites also] Link: http://lkml.kernel.org/r/20191012102512.28051-1-pugaowei@gmail.comSigned-off-by: Gaowei Pu <pugaowei@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richardw.yang@linux.intel.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Rik van Riel <riel@surriel.com> Cc: Qian Cai <cai@lca.pw> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
In __anon_vma_prepare(), we will try to find anon_vma if it is possible to reuse it. While on fork, the logic is different. Since commit 5beb4930 ("mm: change anon_vma linking to fix multi-process server scalability issue"), function anon_vma_clone() tries to allocate new anon_vma for child process. But the logic here will allocate a new anon_vma for each vma, even in parent this vma is mergeable and share the same anon_vma with its sibling. This may do better for scalability issue, while it is not necessary to do so especially after interval tree is used. Commit 7a3ef208 ("mm: prevent endless growth of anon_vma hierarchy") tries to reuse some anon_vma by counting child anon_vma and attached vmas. While for those mergeable anon_vmas, we can just reuse it and not necessary to go through the logic. After this change, kernel build test reduces 20% anon_vma allocation. Do the same kernel build test, it shows run time in sys reduced 11.6%. Origin: real 2m50.467s user 17m52.002s sys 1m51.953s real 2m48.662s user 17m55.464s sys 1m50.553s real 2m51.143s user 17m59.687s sys 1m53.600s Patched: real 2m39.933s user 17m1.835s sys 1m38.802s real 2m39.321s user 17m1.634s sys 1m39.206s real 2m39.575s user 17m1.420s sys 1m38.845s Link: http://lkml.kernel.org/r/20191011072256.16275-2-richardw.yang@linux.intel.comSigned-off-by: Wei Yang <richardw.yang@linux.intel.com> Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Rik van Riel <riel@surriel.com> Cc: Qian Cai <cai@lca.pw> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
Before commit 7a3ef208 ("mm: prevent endless growth of anon_vma hierarchy"), anon_vma_clone() doesn't change dst->anon_vma. While after this commit, anon_vma_clone() will try to reuse an exist one on forking. But this commit go a little bit further for the case not forking. anon_vma_clone() is called from __vma_split(), __split_vma(), copy_vma() and anon_vma_fork(). For the first three places, the purpose here is get a copy of src and we don't expect to touch dst->anon_vma even it is NULL. While after that commit, it is possible to reuse an anon_vma when dst->anon_vma is NULL. This is not we intend to have. This patch stops reuse of anon_vma for non-fork cases. Link: http://lkml.kernel.org/r/20191011072256.16275-1-richardw.yang@linux.intel.com Fixes: 7a3ef208 ("mm: prevent endless growth of anon_vma hierarchy") Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Rik van Riel <riel@surriel.com> Cc: Qian Cai <cai@lca.pw> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
Now we use rb_parent to get next, while this is not necessary. When prev is NULL, this means vma should be the first element in the list. Then next should be current first one (mm->mmap), no matter whether we have parent or not. After removing it, the code shows the beauty of symmetry. Link: http://lkml.kernel.org/r/20190813032656.16625-1-richardw.yang@linux.intel.comSigned-off-by: Wei Yang <richardw.yang@linux.intel.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
Just make the code a little easier to read. Link: http://lkml.kernel.org/r/20191006012636.31521-3-richardw.yang@linux.intel.comSigned-off-by: Wei Yang <richardw.yang@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
The third parameter of __vma_unlink_common() could differentiate these two types. __vma_unlink_prev() is not necessary now. Link: http://lkml.kernel.org/r/20191006012636.31521-2-richardw.yang@linux.intel.comSigned-off-by: Wei Yang <richardw.yang@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
Currently __vma_unlink_common handles two cases: * has_prev * or not When has_prev is false, it is obvious prev is calculated from vma->vm_prev in __vma_unlink_common. When has_prev is true, the prev is passed through from __vma_unlink_prev in __vma_adjust for non-case 8. And at the beginning next is calculated from vma->vm_next, which implies vma is next->vm_prev. The above statement sounds a little complicated, while to think in another point of view, no matter whether vma and next is swapped, the mmap link list still preserves its property. It is proper to access vma->vm_prev. Link: http://lkml.kernel.org/r/20191006012636.31521-1-richardw.yang@linux.intel.comSigned-off-by: Wei Yang <richardw.yang@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Oscar Salvador <osalvador@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Konstantin Khlebnikov authored
This is a very slow operation. Right now POSIX_FADV_DONTNEED is the top user because it has to freeze page references when removing it from the cache. invalidate_bdev() calls it for the same reason. Both are triggered from userspace, so it's easy to generate a storm. mlock/mlockall no longer calls lru_add_drain_all - I've seen here serious slowdown on older kernels. There are some less obvious paths in memory migration/CMA/offlining which shouldn't call frequently. The worst case requires a non-trivial workload because lru_add_drain_all() skips cpus where vectors are empty. Something must constantly generate a flow of pages for each cpu. Also cpus must be busy to make scheduling per-cpu works slower. And the machine must be big enough (64+ cpus in our case). In our case that was a massive series of mlock calls in map-reduce while other tasks write logs (and generates flows of new pages in per-cpu vectors). Mlock calls were serialized by mutex and accumulated latency up to 10 seconds or more. The kernel does not call lru_add_drain_all on mlock paths since 4.15, but the same scenario could be triggered by fadvise(POSIX_FADV_DONTNEED) or any other remaining user. There is no reason to do the drain again if somebody else already drained all the per-cpu vectors while we waited for the lock. Piggyback on a drain starting and finishing while we wait for the lock: all pages pending at the time of our entry were drained from the vectors. Callers like POSIX_FADV_DONTNEED retry their operations once after draining per-cpu vectors when pages have unexpected references. Link: http://lkml.kernel.org/r/157019456205.3142.3369423180908482020.stgit@buzzSigned-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-