- 31 Oct, 2014 39 commits
-
-
David S. Miller authored
[ Upstream commit 26cf4325 ] Instead of returning false we should at least check the most basic things, otherwise page table corruptions will be very difficult to debug. PMD and PTE tables are of size PAGE_SIZE, so none of the sub-PAGE_SIZE bits should be set. We also complement this with a check that the physical address the pud/pmd points to is valid memory. PowerPC was used as a guide while implementating this. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 0eef331a ] Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit ee73887e ] In commit b2d43834 ("sparc64: Make PAGE_OFFSET variable."), the MAX_PHYS_ADDRESS_BITS value was increased (to 47). This constant reference to '41UL' was missed. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit eaf85da8 ] Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit c2e4e676 ] When _PAGE_SPECIAL and _PAGE_PMD_HUGE were added to the mask, the comment was not updated. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 04df419d ] The large PMD path needs to check _PAGE_VALID not _PAGE_PRESENT, to decide if it needs to bail and return 0. pmd_large() should therefore just check _PAGE_PMD_HUGE. Calls to gup_huge_pmd() are guarded with a check of pmd_large(), so we just need to add a valid bit check. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 51e5ef1b ] On sparc64 "present" and "valid" are seperate PTE bits, this allows us to naturally distinguish between the user explicitly asking for PROT_NONE with mprotect() and other situations. However we weren't handling this properly in the huge PMD paths. First of all, the page table walker in the TSB miss path only checks for _PAGE_PMD_HUGE. So the generic pmdp_invalidate() would clear _PAGE_PRESENT but the TLB miss paths would still load it into the TLB as a valid huge PMD. Fix this by clearing the valid bit in pmdp_invalidate(), and also checking the valid bit in USER_PGTABLE_CHECK_PMD_HUGE using "brgez" since _PAGE_VALID is bit 63 in both the sun4u and sun4v pte layouts. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 5b1e94fa ] This code was mistakenly using the exec bit from the PMD in all cases, even when the PMD isn't a huge PMD. If it's not a huge PMD, test the exec bit in the individual ptes down in tlb_batch_pmd_scan(). Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Kleikamp authored
This reverts commit 145e1c00. This commit broke the behavior of __copy_from_user_inatomic when it is only partially successful. Instead of returning the number of bytes not copied, it now returns 1. This translates to the wrong value being returned by iov_iter_copy_from_user_atomic. xfstests generic/246 and LTP writev01 both fail on btrfs and nfs because of this. Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: David S. Miller <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
-
oftedal authored
commit 557fc587 upstream. The SIMBA APB Bridges lacks the 'ranges' of-property describing the PCI I/O and memory areas located beneath the bridge. Faking this information has been performed by reading range registers in the APB bridge, and calculating the corresponding areas. In commit 01f94c4a ("Fix sabre pci controllers with new probing scheme.") a bug was introduced into this calculation, causing the PCI memory areas to be calculated incorrectly: The shift size was set to be identical for I/O and MEM ranges, which is incorrect. This patch set the shift size of the MEM range back to the value used before 01f94c4a. Signed-off-by: Kjetil Oftedal <oftedal@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
commit a7b9403f upstream. Now that we have 64-bits for PMDs we can stop using special encodings for the huge PMD values, and just put real PTEs in there. We allocate a _PAGE_PMD_HUGE bit to distinguish between plain PMDs and huge ones. It is the same for both 4U and 4V PTE layouts. We also use _PAGE_SPECIAL to indicate the splitting state, since a huge PMD cannot also be special. All of the PMD --> PTE translation code disappears, and most of the huge PMD bit modifications and tests just degenerate into the PTE operations. In particular USER_PGTABLE_CHECK_PMD_HUGE becomes trivial. As a side effect, normal PMDs don't shift the physical address around. This also speeds up the page table walks in the TLB miss paths since they don't have to do the shifts any more. Another non-trivial aspect is that pte_modify() has to be changed to preserve the _PAGE_PMD_HUGE bits as well as the page size field of the pte. Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
commit 2b77933c upstream. To make the page tables compact, we were using 32-bit PGDs and PMDs. We only had to support <= 43 bits of physical addresses so this was quite feasible. In order to support larger physical addresses we have to move to 64-bit PGDs and PMDs. Most of the changes are straight-forward: 1) {pgd,pmd}_t --> unsigned long 2) Anything that tries to use plain "unsigned int" types with pgd/pmd values needs to be adjusted. In particular things like "0U" become "0UL". 3) {PGDIR,PMD}_BITS decrease by one. 4) In the assembler page table walkers, use "ldxa" instead of "lduwa" and adjust the low bit masks to clear out the low 3 bits instead of just the low 2 bits during pgd/pmd address formation. Also, use PTRS_PER_PGD and PTRS_PER_PMD in the sizing of the swapper_{pg_dir,low_pmd_dir} arrays. This patch does not try to take advantage of having 64-bits in the PMDs to simplify the hugepage code, that will come in a subsequent change. Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
commit 37b3a8ff upstream. The impetus for this is that we would like to move to 64-bit PMDs and PGDs, but that would result in only supporting a 42-bit address space with the current page table layout. It'd be nice to support at least 43-bits. The reason we'd end up with only 42-bits after making PMDs and PGDs 64-bit is that we only use half-page sized PTE tables in order to make PMDs line up to 4MB, the hardware huge page size we use. So what we do here is we make huge pages 8MB, and fabricate them using 4MB hw TLB entries. Facilitate this by providing a "REAL_HPAGE_SHIFT" which is used in places that really need to operate on hardware 4MB pages. Use full pages (512 entries) for PTE tables, and adjust PMD_SHIFT, PGD_SHIFT, and the build time CPP test as needed. Use a CPP test to make sure REAL_HPAGE_SHIFT and the _PAGE_SZHUGE_* we use match up. This makes the pgtable cache completely unused, so remove the code managing it and the state used in mm_context_t. Now we have less spinlocks taken in the page table allocation path. The technique we use to fabricate the 8MB pages is to transfer bit 22 from the missing virtual address into the PTEs physical address field. That takes care of the transparent huge pages case. For hugetlb, we fill things in at the PTE level and that code already puts the sub huge page physical bits into the PTEs, based upon the offset, so there is nothing special we need to do. It all just works out. So, a small amount of complexity in the THP case, but this code is about to get much simpler when we move the 64-bit PMDs as we can move away from the fancy 32-bit huge PMD encoding and just put a real PTE value in there. With bug fixes and help from Bob Picco. Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
commit b2d43834 upstream. Choose PAGE_OFFSET dynamically based upon cpu type. Original UltraSPARC-I (spitfire) chips only supported a 44-bit virtual address space. Newer chips (T4 and later) support 52-bit virtual addresses and up to 47-bits of physical memory space. Therefore we have to adjust PAGE_SIZE dynamically based upon the capabilities of the chip. Note that this change alone does not allow us to support > 43-bit physical memory, to do that we need to re-arrange our page table support. The current encodings of the pmd_t and pgd_t pointers restricts us to "32 + 11" == 43 bits. This change can waste quite a bit of memory for the various tables. In particular, a future change should work to size and allocate kern_linear_bitmap[] and sparc64_valid_addr_bitmap[] dynamically. This isn't easy as we really cannot take a TLB miss when accessing kern_linear_bitmap[]. We'd have to lock it into the TLB or similar. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com>
-
David S. Miller authored
commit f998c9c0 upstream. Some parts of the code use '41' others use '42', make them all use the same value. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com>
-
David S. Miller authored
commit bb7b4353 upstream. This way we can see exactly what they are derived from, and in particular how they would change if we were to use a different PAGE_OFFSET value. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com>
-
David S. Miller authored
commit e0a45e35 upstream. This makes clearer the implications for a given choosen value. Based upon patches by Bob Picco. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com>
-
David S. Miller authored
commit 922631b9 upstream. This pertains to all of the computations of the kernel fast TLB miss xor values. Based upon a patch by Bob Picco. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com>
-
David S. Miller authored
commit c920745e upstream. Older UltraSPARC chips had an address space hole due to the MMU only supporting 44-bit virtual addresses. The top end of this hole also has the same value as the current definition of PAGE_OFFSET, so this can be confusing. Consolidate the defines for the userspace mmap exclusion range into page_64.h and use them in sys_sparc_64.c and hugetlbpage.c Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com>
-
David S. Miller authored
[ Upstream commit 06090e8e ] It is not sufficient to only implement get_user_pages_fast(), you must also implement the atomic version __get_user_pages_fast() otherwise you end up using the weak symbol fallback implementation which simply returns zero. This is dangerous, because it causes the futex code to loop forever if transparent hugepages are supported (see get_futex_key()). Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit ef3e035c ] Meelis Roos reported that kernels built with gcc-4.9 do not boot, we eventually narrowed this down to only impacting machines using UltraSPARC-III and derivitive cpus. The crash happens right when the first user process is spawned: [ 54.451346] Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000004 [ 54.451346] [ 54.571516] CPU: 1 PID: 1 Comm: init Not tainted 3.16.0-rc2-00211-gd7933ab7 #96 [ 54.666431] Call Trace: [ 54.698453] [0000000000762f8c] panic+0xb0/0x224 [ 54.759071] [000000000045cf68] do_exit+0x948/0x960 [ 54.823123] [000000000042cbc0] fault_in_user_windows+0xe0/0x100 [ 54.902036] [0000000000404ad0] __handle_user_windows+0x0/0x10 [ 54.978662] Press Stop-A (L1-A) to return to the boot prom [ 55.050713] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000004 Further investigation showed that compiling only per_cpu_patch() with an older compiler fixes the boot. Detailed analysis showed that the function is not being miscompiled by gcc-4.9, but it is using a different register allocation ordering. With the gcc-4.9 compiled function, something during the code patching causes some of the %i* input registers to get corrupted. Perhaps we have a TLB miss path into the firmware that is deep enough to cause a register window spill and subsequent restore when we get back from the TLB miss trap. Let's plug this up by doing two things: 1) Stop using the firmware stack for client interface calls into the firmware. Just use the kernel's stack. 2) As soon as we can, call into a new function "start_early_boot()" to put a one-register-window buffer between the firmware's deepest stack frame and the top-most initial kernel one. Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
-
Dave Kleikamp authored
[ Upstream commit 1cef94c3 ] This is the longest boot string that silo supports. Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com> Cc: Bob Picco <bob.picco@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit e2653143 ] This breaks the stack end corruption detection facility. What that facility does it write a magic value to "end_of_stack()" and checking to see if it gets overwritten. "end_of_stack()" is "task_thread_info(p) + 1", which for sparc64 is the beginning of the FPU register save area. So once the user uses the FPU, the magic value is overwritten and the debug checks trigger. Fix this by making the size explicit. Due to the size we use for the fpsaved[], gsr[], and xfsr[] arrays we are limited to 7 levels of FPU state saves. So each FPU register set is 256 bytes, allocate 256 * 7 for the fpregs area. Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit f4da3628 ] The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the key material is preloaded into the FPU registers, and then we loop over and over doing the crypt operation, reusing those pre-cooked key registers. There are intervening blkcipher*() calls between the crypt operation calls. And those might perform memcpy() and thus also try to use the FPU. The sparc64 kernel FPU usage mechanism is designed to allow such recursive uses, but with a catch. There has to be a trap between the two FPU using threads of control. The mechanism works by, when the FPU is already in use by the kernel, allocating a slot for FPU saving at trap time. Then if, within the trap handler, we try to use the FPU registers, the pre-trap FPU register state is saved into the slot. Then at trap return time we notice this and restore the pre-trap FPU state. Over the long term there are various more involved ways we can make this work, but for a quick fix let's take advantage of the fact that the situation where this happens is very limited. All sparc64 chips that support the crypto instructiosn also are using the Niagara4 memcpy routine, and that routine only uses the FPU for large copies where we can't get the source aligned properly to a multiple of 8 bytes. We look to see if the FPU is already in use in this context, and if so we use the non-large copy path which only uses integer registers. Furthermore, we also limit this special logic to when we are doing kernel copy, rather than a user copy. Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit bdcf81b6 ] Inconsistently, the raw_* IRQ routines do not interact with and update the irqflags tracing and lockdep state, whereas the raw_* spinlock interfaces do. This causes problems in p1275_cmd_direct() because we disable hardirqs by hand using raw_local_irq_restore() and then do a raw_spin_lock() which triggers a lockdep trace because the CPU's hw IRQ state doesn't match IRQ tracing's internal software copy of that state. The CPU's irqs are disabled, yet current->hardirqs_enabled is true. ==================== reboot: Restarting system ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at kernel/locking/lockdep.c:3536 check_flags+0x7c/0x240() DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) Modules linked in: openpromfs CPU: 0 PID: 1 Comm: systemd-shutdow Tainted: G W 3.17.0-dirty #145 Call Trace: [000000000045919c] warn_slowpath_common+0x5c/0xa0 [0000000000459210] warn_slowpath_fmt+0x30/0x40 [000000000048f41c] check_flags+0x7c/0x240 [0000000000493280] lock_acquire+0x20/0x1c0 [0000000000832b70] _raw_spin_lock+0x30/0x60 [000000000068f2fc] p1275_cmd_direct+0x1c/0x60 [000000000068ed28] prom_reboot+0x28/0x40 [000000000043610c] machine_restart+0x4c/0x80 [000000000047d2d4] kernel_restart+0x54/0x80 [000000000047d618] SyS_reboot+0x138/0x200 [00000000004060b4] linux_sparc_syscall32+0x34/0x60 ---[ end trace 5c439fe81c05a100 ]--- possible reason: unannotated irqs-off. irq event stamp: 2010267 hardirqs last enabled at (2010267): [<000000000049a358>] vprintk_emit+0x4b8/0x580 hardirqs last disabled at (2010266): [<0000000000499f08>] vprintk_emit+0x68/0x580 softirqs last enabled at (2010046): [<000000000045d278>] __do_softirq+0x378/0x4a0 softirqs last disabled at (2010039): [<000000000042bf08>] do_softirq_own_stack+0x28/0x40 Resetting ... ==================== Use local_* variables of the hw IRQ interfaces so that IRQ tracing sees all of our changes. Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit 473ad7f4 ] When we have to split up a flush request into multiple pieces (in order to avoid the firmware range) we don't specify the arguments in the right order for the second piece. Fix the order, or else we get hangs as the code tries to flush "a lot" of entries and we get lockups like this: [ 4422.981276] NMI watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [expect:117032] [ 4422.996130] Modules linked in: ipv6 loop usb_storage igb ptp sg sr_mod ehci_pci ehci_hcd pps_core n2_rng rng_core [ 4423.016617] CPU: 12 PID: 117032 Comm: expect Not tainted 3.17.0-rc4+ #1608 [ 4423.030331] task: fff8003cc730e220 ti: fff8003d99d54000 task.ti: fff8003d99d54000 [ 4423.045282] TSTATE: 0000000011001602 TPC: 00000000004521e8 TNPC: 00000000004521ec Y: 00000000 Not tainted [ 4423.064905] TPC: <__flush_tlb_kernel_range+0x28/0x40> [ 4423.074964] g0: 000000000052fd10 g1: 00000001295a8000 g2: ffffff7176ffc000 g3: 0000000000002000 [ 4423.092324] g4: fff8003cc730e220 g5: fff8003dfedcc000 g6: fff8003d99d54000 g7: 0000000000000006 [ 4423.109687] o0: 0000000000000000 o1: 0000000000000000 o2: 0000000000000003 o3: 00000000f0000000 [ 4423.127058] o4: 0000000000000080 o5: 00000001295a8000 sp: fff8003d99d56d01 ret_pc: 000000000052ff54 [ 4423.145121] RPC: <__purge_vmap_area_lazy+0x314/0x3a0> [ 4423.155185] l0: 0000000000000000 l1: 0000000000000000 l2: 0000000000a38040 l3: 0000000000000000 [ 4423.172559] l4: fff8003dae8965e0 l5: ffffffffffffffff l6: 0000000000000000 l7: 00000000f7e2b138 [ 4423.189913] i0: fff8003d99d576a0 i1: fff8003d99d576a8 i2: fff8003d99d575e8 i3: 0000000000000000 [ 4423.207284] i4: 0000000000008008 i5: fff8003d99d575c8 i6: fff8003d99d56df1 i7: 0000000000530c24 [ 4423.224640] I7: <free_vmap_area_noflush+0x64/0x80> [ 4423.234193] Call Trace: [ 4423.239051] [0000000000530c24] free_vmap_area_noflush+0x64/0x80 [ 4423.251029] [0000000000531a7c] remove_vm_area+0x5c/0x80 [ 4423.261628] [0000000000531b80] __vunmap+0x20/0x120 [ 4423.271352] [000000000071cf18] n_tty_close+0x18/0x40 [ 4423.281423] [00000000007222b0] tty_ldisc_close+0x30/0x60 [ 4423.292183] [00000000007225a4] tty_ldisc_reinit+0x24/0xa0 [ 4423.303120] [0000000000722ab4] tty_ldisc_hangup+0xd4/0x1e0 [ 4423.314232] [0000000000719aa0] __tty_hangup+0x280/0x3c0 [ 4423.324835] [0000000000724cb4] pty_close+0x134/0x1a0 [ 4423.334905] [000000000071aa24] tty_release+0x104/0x500 [ 4423.345316] [00000000005511d0] __fput+0x90/0x1e0 [ 4423.354701] [000000000047fa54] task_work_run+0x94/0xe0 [ 4423.365126] [0000000000404b44] __handle_signal+0xc/0x2c Fixes: 4ca9a237 ("sparc64: Guard against flushing openfirmware mappings.") Signed-off-by: David S. Miller <davem@davemloft.net>
-
Andreas Larsson authored
[ Upstream commit 74cad25c ] This makes memset follow the standard (instead of returning 0 on success). This is needed when certain versions of gcc optimizes around memset calls and assume that the address argument is preserved in %o0. Signed-off-by: Andreas Larsson <andreas@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
Sowmini Varadhan authored
[ Upstream commit c21c4ab0 ] The request_irq() needs to be done from ldc_alloc() to avoid the following (caught by lockdep) [00000000004a0738] __might_sleep+0xf8/0x120 [000000000058bea4] kmem_cache_alloc_trace+0x184/0x2c0 [00000000004faf80] request_threaded_irq+0x80/0x160 [000000000044f71c] ldc_bind+0x7c/0x220 [0000000000452454] vio_port_up+0x54/0xe0 [00000000101f6778] probe_disk+0x38/0x220 [sunvdc] [00000000101f6b8c] vdc_port_probe+0x22c/0x300 [sunvdc] [0000000000451a88] vio_device_probe+0x48/0x60 [000000000074c56c] really_probe+0x6c/0x300 [000000000074c83c] driver_probe_device+0x3c/0xa0 [000000000074c92c] __driver_attach+0x8c/0xa0 [000000000074a6ec] bus_for_each_dev+0x6c/0xa0 [000000000074c1dc] driver_attach+0x1c/0x40 [000000000074b0fc] bus_add_driver+0xbc/0x280 Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Acked-by: Dwight Engen <dwight.engen@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
bob picco authored
[ Upstream commit 3dee9df5 ] We have seen an issue with guest boot into LDOM that causes early boot failures because of no matching rules for node identitity of the memory. I analyzed this on my T4 and concluded there might not be a solution. I saw the issue in mainline too when booting into the control/primary domain - with guests configured. Note, this could be a firmware bug on some older machines. I'll provide a full explanation of the issues below. Should we not find a matching BEST latency group for a real address (RA) then we will assume node 0. On the T4-2 here with the information provided I can't see an alternative. Technically the LDOM shown below should match the MBLOCK to the favorable latency group. However other factors must be considered too. Were the memory controllers configured "fine" grained interleave or "coarse" grain interleaved - T4. Also should a "group" MD node be considered a NUMA node? There has to be at least one Machine Description (MD) "group" and hence one NUMA node. The group can have one or more latency groups (lg) - more than one memory controller. The current code chooses the smallest latency as the most favorable per group. The latency and lg information is in MLGROUP below. MBLOCK is the base and size of the RAs for the machine as fetched from OBP /memory "available" property. My machine has one MBLOCK but more would be possible - with holes? For a T4-2 the following information has been gathered: with LDOM guest MEMBLOCK configuration: memory size = 0x27f870000 memory.cnt = 0x3 memory[0x0] [0x00000020400000-0x0000029fc67fff], 0x27f868000 bytes memory[0x1] [0x0000029fd8a000-0x0000029fd8bfff], 0x2000 bytes memory[0x2] [0x0000029fd92000-0x0000029fd97fff], 0x6000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00000020800000-0x000000216c15c0], 0xec15c1 bytes reserved[0x1] [0x00000024800000-0x0000002c180c1e], 0x7980c1f bytes MBLOCK[0]: base[20000000] size[280000000] offset[0] (note: "base" and "size" reported in "MBLOCK" encompass the "memory[X]" values) (note: (RA + offset) & mask = val is the formula to detect a match for the memory controller. should there be no match for find_node node, a return value of -1 resulted for the node - BAD) There is one group. It has these forward links MLGROUP[1]: node[545] latency[1f7e8] match[200000000] mask[200000000] MLGROUP[2]: node[54d] latency[2de60] match[0] mask[200000000] NUMA NODE[0]: node[545] mask[200000000] val[200000000] (latency[1f7e8]) (note: "val" is the best lg's (smallest latency) "match") no LDOM guest - bare metal MEMBLOCK configuration: memory size = 0xfdf2d0000 memory.cnt = 0x3 memory[0x0] [0x00000020400000-0x00000fff6adfff], 0xfdf2ae000 bytes memory[0x1] [0x00000fff6d2000-0x00000fff6e7fff], 0x16000 bytes memory[0x2] [0x00000fff766000-0x00000fff771fff], 0xc000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00000020800000-0x00000021a04580], 0x1204581 bytes reserved[0x1] [0x00000024800000-0x0000002c7d29fc], 0x7fd29fd bytes MBLOCK[0]: base[20000000] size[fe0000000] offset[0] there are two groups group node[16d5] MLGROUP[0]: node[1765] latency[1f7e8] match[0] mask[200000000] MLGROUP[3]: node[177d] latency[2de60] match[200000000] mask[200000000] NUMA NODE[0]: node[1765] mask[200000000] val[0] (latency[1f7e8]) group node[171d] MLGROUP[2]: node[1775] latency[2de60] match[0] mask[200000000] MLGROUP[1]: node[176d] latency[1f7e8] match[200000000] mask[200000000] NUMA NODE[1]: node[176d] mask[200000000] val[200000000] (latency[1f7e8]) (note: for this two "group" bare metal machine, 1/2 memory is in group one's lg and 1/2 memory is in group two's lg). Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit 84bd6d8b ] Every path that ends up at do_sparc64_fault() must install a valid FAULT_CODE_* bitmask in the per-thread fault code byte. Two paths leading to the label winfix_trampoline (which expects the FAULT_CODE_* mask in register %g4) were not doing so: 1) For pre-hypervisor TLB protection violation traps, if we took the 'winfix_trampoline' path we wouldn't have %g4 initialized with the FAULT_CODE_* value yet. Resulting in using the TLB_TAG_ACCESS register address value instead. 2) In the TSB miss path, when we notice that we are going to use a hugepage mapping, but we haven't allocated the hugepage TSB yet, we still have to take the window fixup case into consideration and in that particular path we leave %g4 not setup properly. Errors on this sort were largely invisible previously, but after commit 4ccb9272 ("sparc64: sun4v TLB error power off events") we now have a fault_code mask bit (FAULT_CODE_BAD_RA) that triggers due to this bug. FAULT_CODE_BAD_RA triggers because this bit is set in TLB_TAG_ACCESS (see #1 above) and thus we get seemingly random bus errors triggered for user processes. Fixes: 4ccb9272 ("sparc64: sun4v TLB error power off events") Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
-
bob picco authored
[ Upstream commit 4ccb9272 ] We've witnessed a few TLB events causing the machine to power off because of prom_halt. In one case it was some nfs related area during rmmod. Another was an mmapper of /dev/mem. A more recent one is an ITLB issue with a bad pagesize which could be a hardware bug. Bugs happen but we should attempt to not power off the machine and/or hang it when possible. This is a DTLB error from an mmapper of /dev/mem: [root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1 SUN4V-DTLB: TPC<0xfffff80100903e6c> SUN4V-DTLB: O7[fffff801081979d0] SUN4V-DTLB: O7<0xfffff801081979d0> SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2] . This is recent mainline for ITLB: [ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc> [ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8] [ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8> [ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4] . Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call prom_halt() and drop us to OF command prompt "ok". This isn't the case for LDOMs and the machine powers off. For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal one("1"). Otherwise, for %tl > 1, we proceed eventually to die_if_kernel(). The logic of this patch was partially inspired by David Miller's feedback. Power off of large sparc64 machines is painful. Plus die_if_kernel provides more context. A reset sequence isn't a brief period on large sparc64 but better than power-off/power-on sequence. Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
Daniel Hellstrom authored
[ Upstream commit d1105287 ] dma_zalloc_coherent() calls dma_alloc_coherent(__GFP_ZERO) but the sparc32 implementations sbus_alloc_coherent() and pci32_alloc_coherent() doesn't take the gfp flags into account. Tested on the SPARC32/LEON GRETH Ethernet driver which fails due to dma_alloc_coherent(__GFP_ZERO) returns non zeroed pages. Signed-off-by: Daniel Hellstrom <daniel@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit 8bccf5b3 ] Christopher reports that perf_event_print_debug() can crash in uniprocessor builds. The crash is due to pcr_ops being NULL. This happens because pcr_arch_init() is only invoked by smp_cpus_done() which only executes in SMP builds. init_hw_perf_events() is closely intertwined with pcr_ops being setup properly, therefore: 1) Call pcr_arch_init() early on from init_hw_perf_events(), instead of from smp_cpus_done(). 2) Do not hook up a PMU type if pcr_ops is NULL after pcr_arch_init(). 3) Move init_hw_perf_events to a later initcall so that it we will be sure to invoke pcr_arch_init() after all cpus are brought up. Finally, guard the one naked sequence of pcr_ops dereferences in __global_pmu_self() with an appropriate NULL check. Reported-by: Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net> Signed-off-by: David S. Miller <davem@davemloft.net>
-
David S. Miller authored
[ Upstream commit 58556104 ] nmi_cpu_busy() is a SMP function call that just makes sure that all of the cpus are spinning using cpu cycles while the NMI test runs. It does not need to disable IRQs because we just care about NMIs executing which will even with 'normal' IRQs disabled. It is not legal to enable hard IRQs in a SMP cross call, in fact this bug triggers the BUG check in irq_work_run_list(): BUG_ON(!irqs_disabled()); Because now irq_work_run() is invoked from the tail of generic_smp_call_function_single_interrupt(). Signed-off-by: David S. Miller <davem@davemloft.net>
-
Arjun Sreedharan authored
commit 2c4e3dbf upstream. When __usb_find_phy_dev() does not return error and try_module_get() fails, return -ENODEV. Signed-off-by: Arjun Sreedharan <arjun024@gmail.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Michal Kubeček authored
commit db115037 upstream. This is follow-up to da08143b ("vlan: more careful checksum features handling") which introduced more careful feature intersection in vlan code, taking into account that HW_CSUM should be considered superset of IP_CSUM/IPV6_CSUM. The same is needed in netif_skb_features() in order to avoid offloading mismatch warning when vlan is created on top of a bond consisting of slaves supporting IP/IPv6 checksumming but not vlan Tx offloading. Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Slava Pestov authored
commit bf0c55c9 upstream. Change-Id: I6abde52afe917633480caaf4e2518f42a816d886 Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Slava Pestov authored
commit c9a78332 upstream. If register_cache_set() failed, we would touch ca->set after it had already been freed. Also, fix an assertion to catch this. Change-Id: I748e5f5b223e2d9b2602075dec2f997cced2394d Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
Surbhi Palande authored
commit 5b25abad upstream. time_stats::btree_gc_max_duration_mc is not bit shifted by 8 Fixes BUG #138 Change-Id: I44fc6e1d0579674016acc533f1a546b080e5371a Signed-off-by: Surbhi Palande <sap@daterainc.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-
- 30 Oct, 2014 1 commit
-
-
Al Viro authored
commit c2338f2d upstream. Dentry that had been through (or into) __dentry_kill() might be seen by shrink_dentry_list(); that's normal, it'll be taken off the shrink list and freed if __dentry_kill() has already finished. The problem is, its ->d_parent might be pointing to already freed dentry, so lock_parent() needs to be careful. We need to check that dentry hasn't already gone into __dentry_kill() *and* grab rcu_read_lock() before dropping ->d_lock - the latter makes sure that whatever we see in ->d_parent after dropping ->d_lock it won't be freed until we drop rcu_read_lock(). Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
-