An error occurred fetching the project authors.
- 30 Aug, 2017 1 commit
-
-
Neal Cardwell authored
[ Upstream commit cdbeb633 ] In some situations tcp_send_loss_probe() can realize that it's unable to send a loss probe (TLP), and falls back to calling tcp_rearm_rto() to schedule an RTO timer. In such cases, sometimes tcp_rearm_rto() realizes that the RTO was eligible to fire immediately or at some point in the past (delta_us <= 0). Previously in such cases tcp_rearm_rto() was scheduling such "overdue" RTOs to happen at now + icsk_rto, which caused needless delays of hundreds of milliseconds (and non-linear behavior that made reproducible testing difficult). This commit changes the logic to schedule "overdue" RTOs ASAP, rather than at now + icsk_rto. Fixes: 6ba8a3b1 ("tcp: Tail loss probe (TLP)") Suggested-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net> Signed-off-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 Aug, 2017 1 commit
-
-
Yuchung Cheng authored
[ Upstream commit ed254971 ] If the sender switches the congestion control during ECN-triggered cwnd-reduction state (CA_CWR), upon exiting recovery cwnd is set to the ssthresh value calculated by the previous congestion control. If the previous congestion control is BBR that always keep ssthresh to TCP_INIFINITE_SSTHRESH, cwnd ends up being infinite. The safe step is to avoid assigning invalid ssthresh value when recovery ends. Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Acked-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net> Signed-off-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 07 Jun, 2017 2 commits
-
-
Soheil Hassas Yeganeh authored
[ Upstream commit bafbb9c7 ] tcp_ack() can call tcp_fragment() which may dededuct the value tp->fackets_out when MSS changes. When prior_fackets is larger than tp->fackets_out, tcp_clean_rtx_queue() can invoke tcp_update_reordering() with negative values. This results in absurd tp->reodering values higher than sysctl_tcp_max_reordering. Note that tcp_update_reordering indeeds sets tp->reordering to min(sysctl_tcp_max_reordering, metric), but because the comparison is signed, a negative metric always wins. Fixes: c7caf8d3 ("[TCP]: Fix reord detection due to snd_una covered holes") Reported-by:
Rebecca Isaacs <risaacs@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net> Signed-off-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Yuchung Cheng authored
[ Upstream commit b451e5d2 ] This patch fixes a bug in splitting an SKB during SACK processing. Specifically if an skb contains multiple packets and is only partially sacked in the higher sequences, tcp_match_sack_to_skb() splits the skb and marks the second fragment as SACKed. The current code further attempts rounding up the first fragment to MSS boundaries. But it misses a boundary condition when the rounded-up fragment size (pkt_len) is exactly skb size. Spliting such an skb is pointless and causses a kernel warning and aborts the SACK processing. This patch universally checks such over-split before calling tcp_fragment to prevent these unnecessary warnings. Fixes: adb92db8 ("tcp: Make SACK code to split only at mss boundaries") Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Acked-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net> Signed-off-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 30 Mar, 2017 1 commit
-
-
Eric Dumazet authored
[ Upstream commit 15bb7745 ] icsk_ack.lrcvtime has a 0 value at socket creation time. tcpi_last_data_recv can have bogus value if no payload is ever received. This patch initializes icsk_ack.lrcvtime for active sessions in tcp_finish_connect(), and for passive sessions in tcp_create_openreq_child() Signed-off-by:
Eric Dumazet <edumazet@google.com> Acked-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net> Signed-off-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 22 Mar, 2017 1 commit
-
-
Eric Dumazet authored
[ Upstream commit 449809a6 ] SYN processing really was meant to be handled from BH. When I got rid of BH blocking while processing socket backlog in commit 5413d1ba ("net: do not block BH while processing socket backlog"), I forgot that a malicious user could transition to TCP_LISTEN from a state that allowed (SYN) packets to be parked in the socket backlog while socket is owned by the thread doing the listen() call. Sure enough syzkaller found this and reported the bug ;) ================================= [ INFO: inconsistent lock state ] 4.10.0+ #60 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. syz-executor0/5090 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] spin_lock include/linux/spinlock.h:299 [inline] (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 {IN-SOFTIRQ-W} state was registered at: mark_irqflags kernel/locking/lockdep.c:2923 [inline] __lock_acquire+0xbcf/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 tcp_conn_request+0x25cc/0x3310 net/ipv4/tcp_input.c:6399 tcp_v4_conn_request+0x157/0x220 net/ipv4/tcp_ipv4.c:1262 tcp_rcv_state_process+0x802/0x4130 net/ipv4/tcp_input.c:5889 tcp_v4_do_rcv+0x56b/0x940 net/ipv4/tcp_ipv4.c:1433 tcp_v4_rcv+0x2e12/0x3210 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x4ce/0xc40 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:257 [inline] ip_local_deliver+0x1ce/0x710 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:492 [inline] ip_rcv_finish+0xb1d/0x2110 net/ipv4/ip_input.c:396 NF_HOOK include/linux/netfilter.h:257 [inline] ip_rcv+0xd90/0x19c0 net/ipv4/ip_input.c:487 __netif_receive_skb_core+0x1ad1/0x3400 net/core/dev.c:4179 __netif_receive_skb+0x2a/0x170 net/core/dev.c:4217 netif_receive_skb_internal+0x1d6/0x430 net/core/dev.c:4245 napi_skb_finish net/core/dev.c:4602 [inline] napi_gro_receive+0x4e6/0x680 net/core/dev.c:4636 e1000_receive_skb drivers/net/ethernet/intel/e1000/e1000_main.c:4033 [inline] e1000_clean_rx_irq+0x5e0/0x1490 drivers/net/ethernet/intel/e1000/e1000_main.c:4489 e1000_clean+0xb9a/0x2910 drivers/net/ethernet/intel/e1000/e1000_main.c:3834 napi_poll net/core/dev.c:5171 [inline] net_rx_action+0xe70/0x1900 net/core/dev.c:5236 __do_softirq+0x2fb/0xb7d kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x19e/0x1d0 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:658 [inline] do_IRQ+0x81/0x1a0 arch/x86/kernel/irq.c:250 ret_from_intr+0x0/0x20 native_safe_halt+0x6/0x10 arch/x86/include/asm/irqflags.h:53 arch_safe_halt arch/x86/include/asm/paravirt.h:98 [inline] default_idle+0x8f/0x410 arch/x86/kernel/process.c:271 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:262 default_idle_call+0x36/0x60 kernel/sched/idle.c:96 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x348/0x440 kernel/sched/idle.c:243 cpu_startup_entry+0x18/0x20 kernel/sched/idle.c:345 start_secondary+0x344/0x440 arch/x86/kernel/smpboot.c:272 verify_cpu+0x0/0xfc irq event stamp: 1741 hardirqs last enabled at (1741): [<ffffffff84d49d77>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:160 [inline] hardirqs last enabled at (1741): [<ffffffff84d49d77>] _raw_spin_unlock_irqrestore+0xf7/0x1a0 kernel/locking/spinlock.c:191 hardirqs last disabled at (1740): [<ffffffff84d4a732>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (1740): [<ffffffff84d4a732>] _raw_spin_lock_irqsave+0xa2/0x110 kernel/locking/spinlock.c:159 softirqs last enabled at (1738): [<ffffffff84d4deff>] __do_softirq+0x7cf/0xb7d kernel/softirq.c:310 softirqs last disabled at (1571): [<ffffffff84d4b92c>] do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:902 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&hashinfo->ehash_locks[i])->rlock); <Interrupt> lock(&(&hashinfo->ehash_locks[i])->rlock); *** DEADLOCK *** 1 lock held by syz-executor0/5090: #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] lock_sock include/net/sock.h:1460 [inline] #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] sock_setsockopt+0x233/0x1e40 net/core/sock.c:683 stack backtrace: CPU: 1 PID: 5090 Comm: syz-executor0 Not tainted 4.10.0+ #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0x292/0x398 lib/dump_stack.c:51 print_usage_bug+0x3ef/0x450 kernel/locking/lockdep.c:2387 valid_state kernel/locking/lockdep.c:2400 [inline] mark_lock_irq kernel/locking/lockdep.c:2602 [inline] mark_lock+0xf30/0x1410 kernel/locking/lockdep.c:3065 mark_irqflags kernel/locking/lockdep.c:2941 [inline] __lock_acquire+0x6dc/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 dccp_v6_conn_request+0xada/0x11b0 net/dccp/ipv6.c:380 dccp_rcv_state_process+0x51e/0x1660 net/dccp/input.c:606 dccp_v6_do_rcv+0x213/0x350 net/dccp/ipv6.c:632 sk_backlog_rcv include/net/sock.h:896 [inline] __release_sock+0x127/0x3a0 net/core/sock.c:2052 release_sock+0xa5/0x2b0 net/core/sock.c:2539 sock_setsockopt+0x60f/0x1e40 net/core/sock.c:1016 SYSC_setsockopt net/socket.c:1782 [inline] SyS_setsockopt+0x2fb/0x3a0 net/socket.c:1765 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: 0033:0x4458b9 RSP: 002b:00007fe8b26c2b58 EFLAGS: 00000292 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 00000000004458b9 RDX: 000000000000001a RSI: 0000000000000001 RDI: 0000000000000006 RBP: 00000000006e2110 R08: 0000000000000010 R09: 0000000000000000 R10: 00000000208c3000 R11: 0000000000000292 R12: 0000000000708000 R13: 0000000020000000 R14: 0000000000001000 R15: 0000000000000000 Fixes: 5413d1ba ("net: do not block BH while processing socket backlog") Signed-off-by:
Eric Dumazet <edumazet@google.com> Reported-by:
Andrey Konovalov <andreyknvl@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net> Signed-off-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 06 Dec, 2016 1 commit
-
-
Marcelo Ricardo Leitner authored
There have been some reports lately about TCP connection stalls caused by NIC drivers that aren't setting gso_size on aggregated packets on rx path. This causes TCP to assume that the MSS is actually the size of the aggregated packet, which is invalid. Although the proper fix is to be done at each driver, it's often hard and cumbersome for one to debug, come to such root cause and report/fix it. This patch amends this situation in two ways. First, it adds a warning on when this situation occurs, so it gives a hint to those trying to debug this. It also limit the maximum probed MSS to the adverised MSS, as it should never be any higher than that. The result is that the connection may not have the best performance ever but it shouldn't stall, and the admin will have a hint on what to look for. Tested with virtio by forcing gso_size to 0. v2: updated msg per David's suggestion v3: use skb_iif to find the interface and also log its name, per Eric Dumazet's suggestion. As the skb may be backlogged and the interface gone by then, we need to check if the number still has a meaning. v4: use helper tcp_gro_dev_warn() and avoid pr_warn_once inside __once, per David's suggestion Cc: Jonathan Maxwell <jmaxwell37@gmail.com> Signed-off-by:
Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 25 Sep, 2016 1 commit
-
-
KOVACS Krisztian authored
The introduction of TCP_NEW_SYN_RECV state, and the addition of request sockets to the ehash table seems to have broken the --transparent option of the socket match for IPv6 (around commit a9407000). Now that the socket lookup finds the TCP_NEW_SYN_RECV socket instead of the listener, the --transparent option tries to match on the no_srccheck flag of the request socket. Unfortunately, that flag was only set for IPv4 sockets in tcp_v4_init_req() by copying the transparent flag of the listener socket. This effectively causes '-m socket --transparent' not match on the ACK packet sent by the client in a TCP handshake. Based on the suggestion from Eric Dumazet, this change moves the code initializing no_srccheck to tcp_conn_request(), rendering the above scenario working again. Fixes: a9407000 ("netfilter: xt_socket: prepare for TCP_NEW_SYN_RECV support") Signed-off-by:
Alex Badics <alex.badics@balabit.com> Signed-off-by:
KOVACS Krisztian <hidden@balabit.com> Signed-off-by:
Pablo Neira Ayuso <pablo@netfilter.org>
-
- 23 Sep, 2016 1 commit
-
-
Eric Dumazet authored
If DBGUNDO() is enabled (FASTRETRANS_DEBUG > 1), a compile error will happen, since inet6_sk(sk)->daddr became sk->sk_v6_daddr Fixes: efe4208f ("ipv6: make lookups simpler and faster") Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 22 Sep, 2016 1 commit
-
-
Yuchung Cheng authored
Since the TFO socket is accepted right off SYN-data, the socket owner can call getsockopt(TCP_INFO) to collect ongoing SYN-ACK retransmission or timeout stats (i.e., tcpi_total_retrans, tcpi_retransmits). Currently those stats are only updated upon handshake completes. This patch fixes it. Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 21 Sep, 2016 5 commits
-
-
Yuchung Cheng authored
This commit introduces an optional new "omnipotent" hook, cong_control(), for congestion control modules. The cong_control() function is called at the end of processing an ACK (i.e., after updating sequence numbers, the SACK scoreboard, and loss detection). At that moment we have precise delivery rate information the congestion control module can use to control the sending behavior (using cwnd, TSO skb size, and pacing rate) in any CA state. This function can also be used by a congestion control that prefers not to use the default cwnd reduction approach (i.e., the PRR algorithm) during CA_Recovery to control the cwnd and sending rate during loss recovery. We take advantage of the fact that recent changes defer the retransmission or transmission of new data (e.g. by F-RTO) in recovery until the new tcp_cong_control() function is run. With this commit, we only run tcp_update_pacing_rate() if the congestion control is not using this new API. New congestion controls which use the new API do not want the TCP stack to run the default pacing rate calculation and overwrite whatever pacing rate they have chosen at initialization time. Signed-off-by:
Van Jacobson <vanj@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Nandita Dukkipati <nanditad@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Yuchung Cheng authored
Currently the TCP send buffer expands to twice cwnd, in order to allow limited transmits in the CA_Recovery state. This assumes that cwnd does not increase in the CA_Recovery. For some congestion control algorithms, like the upcoming BBR module, if the losses in recovery do not indicate congestion then we may continue to raise cwnd multiplicatively in recovery. In such cases the current multiplier will falsely limit the sending rate, much as if it were limited by the application. This commit adds an optional congestion control callback to use a different multiplier to expand the TCP send buffer. For congestion control modules that do not specificy this callback, TCP continues to use the previous default of 2. Signed-off-by:
Van Jacobson <vanj@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Nandita Dukkipati <nanditad@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Acked-by:
Stephen Hemminger <stephen@networkplumber.org> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Yuchung Cheng authored
This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by:
Van Jacobson <vanj@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Nandita Dukkipati <nanditad@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Neal Cardwell authored
Count the number of packets that a TCP connection marks lost. Congestion control modules can use this loss rate information for more intelligent decisions about how fast to send. Specifically, this is used in TCP BBR policer detection. BBR uses a high packet loss rate as one signal in its policer detection and policer bandwidth estimation algorithm. The BBR policer detection algorithm cannot simply track retransmits, because a retransmit can be (and often is) an indicator of packets lost long, long ago. This is particularly true in a long CA_Loss period that repairs the initial massive losses when a policer kicks in. Signed-off-by:
Van Jacobson <vanj@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Nandita Dukkipati <nanditad@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Neal Cardwell authored
Refactor the TCP min_rtt code to reuse the new win_minmax library in lib/win_minmax.c to simplify the TCP code. This is a pure refactor: the functionality is exactly the same. We just moved the windowed min code to make TCP easier to read and maintain, and to allow other parts of the kernel to use the windowed min/max filter code. Signed-off-by:
Van Jacobson <vanj@google.com> Signed-off-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
Nandita Dukkipati <nanditad@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 16 Sep, 2016 1 commit
-
-
Eric Dumazet authored
When skb replaces another one in ooo queue, I forgot to also update tp->ooo_last_skb as well, if the replaced skb was the last one in the queue. To fix this, we simply can re-use the code that runs after an insertion, trying to merge skbs at the right of current skb. This not only fixes the bug, but also remove all small skbs that might be a subset of the new one. Example: We receive segments 2001:3001, 4001:5001 Then we receive 2001:8001 : We should replace 2001:3001 with the big skb, but also remove 4001:50001 from the queue to save space. packetdrill test demonstrating the bug 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> +0.100 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +0.01 < . 1001:2001(1000) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1001:2001> +0.01 < . 1001:3001(2000) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1001:2001 1001:3001> Fixes: 9f5afeae ("tcp: use an RB tree for ooo receive queue") Signed-off-by:
Eric Dumazet <edumazet@google.com> Reported-by:
Yuchung Cheng <ycheng@google.com> Cc: Yaogong Wang <wygivan@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 11 Sep, 2016 1 commit
-
-
Eric Dumazet authored
Willem noticed that we could avoid an rbtree lookup if the the attempt to coalesce incoming skb to the last skb failed for some reason. Since most ooo additions are at the tail, this is definitely worth adding a test and fast path. Suggested-by:
Willem de Bruijn <willemb@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Cc: Yaogong Wang <wygivan@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 09 Sep, 2016 1 commit
-
-
Yaogong Wang authored
Over the years, TCP BDP has increased by several orders of magnitude, and some people are considering to reach the 2 Gbytes limit. Even with current window scale limit of 14, ~1 Gbytes maps to ~740,000 MSS. In presence of packet losses (or reorders), TCP stores incoming packets into an out of order queue, and number of skbs sitting there waiting for the missing packets to be received can be in the 10^5 range. Most packets are appended to the tail of this queue, and when packets can finally be transferred to receive queue, we scan the queue from its head. However, in presence of heavy losses, we might have to find an arbitrary point in this queue, involving a linear scan for every incoming packet, throwing away cpu caches. This patch converts it to a RB tree, to get bounded latencies. Yaogong wrote a preliminary patch about 2 years ago. Eric did the rebase, added ofo_last_skb cache, polishing and tests. Tested with network dropping between 1 and 10 % packets, with good success (about 30 % increase of throughput in stress tests) Next step would be to also use an RB tree for the write queue at sender side ;) Signed-off-by:
Yaogong Wang <wygivan@google.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-By:
Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 19 Aug, 2016 1 commit
-
-
Eric Dumazet authored
Over the years, TCP BDP has increased a lot, and is typically in the order of ~10 Mbytes with help of clever Congestion Control modules. In presence of packet losses, TCP stores incoming packets into an out of order queue, and number of skbs sitting there waiting for the missing packets to be received can match the BDP (~10 Mbytes) In some cases, TCP needs to make room for incoming skbs, and current strategy can simply remove all skbs in the out of order queue as a last resort, incurring a huge penalty, both for receiver and sender. Unfortunately these 'last resort events' are quite frequent, forcing sender to send all packets again, stalling the flow and wasting a lot of resources. This patch cleans only a part of the out of order queue in order to meet the memory constraints. Signed-off-by:
Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: C. Stephen Gun <csg@google.com> Cc: Van Jacobson <vanj@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Acked-by:
Yuchung Cheng <ycheng@google.com> Acked-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 15 Jul, 2016 1 commit
-
-
Jason Baron authored
The per-socket rate limit for 'challenge acks' was introduced in the context of limiting ack loops: commit f2b2c582 ("tcp: mitigate ACK loops for connections as tcp_sock") And I think it can be extended to rate limit all 'challenge acks' on a per-socket basis. Since we have the global tcp_challenge_ack_limit, this patch allows for tcp_challenge_ack_limit to be set to a large value and effectively rely on the per-socket limit, or set tcp_challenge_ack_limit to a lower value and still prevents a single connections from consuming the entire challenge ack quota. It further moves in the direction of eliminating the global limit at some point, as Eric Dumazet has suggested. This a follow-up to: Subject: tcp: make challenge acks less predictable Cc: Eric Dumazet <edumazet@google.com> Cc: David S. Miller <davem@davemloft.net> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Yue Cao <ycao009@ucr.edu> Signed-off-by:
Jason Baron <jbaron@akamai.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 11 Jul, 2016 1 commit
-
-
Eric Dumazet authored
Yue Cao claims that current host rate limiting of challenge ACKS (RFC 5961) could leak enough information to allow a patient attacker to hijack TCP sessions. He will soon provide details in an academic paper. This patch increases the default limit from 100 to 1000, and adds some randomization so that the attacker can no longer hijack sessions without spending a considerable amount of probes. Based on initial analysis and patch from Linus. Note that we also have per socket rate limiting, so it is tempting to remove the host limit in the future. v2: randomize the count of challenge acks per second, not the period. Fixes: 282f23c6 ("tcp: implement RFC 5961 3.2") Reported-by:
Yue Cao <ycao009@ucr.edu> Signed-off-by:
Eric Dumazet <edumazet@google.com> Suggested-by:
Linus Torvalds <torvalds@linux-foundation.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by:
Neal Cardwell <ncardwell@google.com> Acked-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 27 Jun, 2016 1 commit
-
-
Huw Davies authored
If set, these will take precedence over the parent's options during both sending and child creation. If they're not set, the parent's options (if any) will be used. This is to allow the security_inet_conn_request() hook to modify the IPv6 options in just the same way that it already may do for IPv4. Signed-off-by:
Huw Davies <huw@codeweavers.com> Signed-off-by:
Paul Moore <paul@paul-moore.com>
-
- 11 Jun, 2016 1 commit
-
-
Lawrence Brakmo authored
Add in_flight (bytes in flight when packet was sent) field to tx component of tcp_skb_cb and make it available to congestion modules' pkts_acked() function through the ack_sample function argument. Signed-off-by:
Lawrence Brakmo <brakmo@fb.com> Acked-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 08 Jun, 2016 1 commit
-
-
Pau Espin Pedrol authored
RFC 5961 advises to only accept RST packets containing a seq number matching the next expected seq number instead of the whole receive window in order to avoid spoofing attacks. However, this situation is not optimal in the case SACK is in use at the time the RST is sent. I recently run into a scenario in which packet losses were high while uploading data to a server, and userspace was willing to frequently terminate connections by sending a RST. In this case, the ACK sent on the receiver side (rcv_nxt) is frozen waiting for a lost packet retransmission and SACK blocks are used to let the client continue uploading data. At some point later on, the client sends the RST (snd_nxt), which matches the next expected seq number of the right-most SACK block on the receiver side which is going forward receiving data. In this scenario, as RFC 5961 defines, the RST SEQ doesn't match the frozen main ACK at receiver side and thus gets dropped and a challenge ACK is sent, which gets usually lost due to network conditions. The main consequence is that the connection stays alive for a while even if it made sense to accept the RST. This can get really bad if lots of connections like this one are created in few seconds, allocating all the resources of the server easily. For security reasons, not all SACK blocks are checked (there could be a big amount of SACK blocks => acceptable SEQ numbers). Furthermore, it wouldn't make sense to check for RST in blocks other than the right-most received one because the sender is not expected to be sending new data after the RST. For simplicity, only up to the 4 most recently updated SACK blocks (selective_acks[4] field) are compared to find the right-most block, as usually those are the ones with bigger probability to contain it. This patch was tested in a 3.18 kernel and probed to improve the situation in the scenario described above. Signed-off-by:
Pau Espin Pedrol <pau.espin@tessares.net> Acked-by:
Eric Dumazet <edumazet@google.com> Acked-by:
Neal Cardwell <ncardwell@google.com> Tested-by:
Neal Cardwell <ncardwell@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 11 May, 2016 1 commit
-
-
Lawrence Brakmo authored
Replace 2 arguments (cnt and rtt) in the congestion control modules' pkts_acked() function with a struct. This will allow adding more information without having to modify existing congestion control modules (tcp_nv in particular needs bytes in flight when packet was sent). As proposed by Neal Cardwell in his comments to the tcp_nv patch. Signed-off-by:
Lawrence Brakmo <brakmo@fb.com> Acked-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 04 May, 2016 1 commit
-
-
Eric Dumazet authored
tcp_snd_una_update() and tcp_rcv_nxt_update() call u64_stats_update_begin() either from process context or BH handler. This triggers a lockdep splat on 32bit & SMP builds. We could add u64_stats_update_begin_bh() variant but this would slow down 32bit builds with useless local_disable_bh() and local_enable_bh() pairs, since we own the socket lock at this point. I add sock_owned_by_me() helper to have proper lockdep support even on 64bit builds, and new u64_stats_update_begin_raw() and u64_stats_update_end_raw methods. Fixes: c10d9310 ("tcp: do not assume TCP code is non preemptible") Reported-by:
Fabio Estevam <festevam@gmail.com> Diagnosed-by:
Francois Romieu <romieu@fr.zoreil.com> Signed-off-by:
Eric Dumazet <edumazet@google.com> Tested-by:
Fabio Estevam <fabio.estevam@nxp.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 02 May, 2016 2 commits
-
-
Eric Dumazet authored
AFAIK, nothing in current TCP stack absolutely wants BH being disabled once socket is owned by a thread running in process context. As mentioned in my prior patch ("tcp: give prequeue mode some care"), processing a batch of packets might take time, better not block BH at all. Signed-off-by:
Eric Dumazet <edumazet@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Acked-by:
Alexei Starovoitov <ast@kernel.org> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Eric Dumazet authored
We want to to make TCP stack preemptible, as draining prequeue and backlog queues can take lot of time. Many SNMP updates were assuming that BH (and preemption) was disabled. Need to convert some __NET_INC_STATS() calls to NET_INC_STATS() and some __TCP_INC_STATS() to TCP_INC_STATS() Before using this_cpu_ptr(net->ipv4.tcp_sk) in tcp_v4_send_reset() and tcp_v4_send_ack(), we add an explicit preempt disabled section. Signed-off-by:
Eric Dumazet <edumazet@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 28 Apr, 2016 4 commits
-
-
Martin KaFai Lau authored
This patch: 1. Prevent next_skb from coalescing to the prev_skb if TCP_SKB_CB(prev_skb)->eor is set 2. Update the TCP_SKB_CB(prev_skb)->eor if coalescing is allowed Packetdrill script for testing: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 write(4, ..., 11680) = 11680 0.200 > P. 1:731(730) ack 1 0.200 > P. 731:1461(730) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:13141(4380) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:13141,nop,nop> 0.300 > P. 1:731(730) ack 1 0.300 > P. 731:1461(730) ack 1 0.400 < . 1:1(0) ack 13141 win 257 0.400 close(4) = 0 0.400 > F. 13141:13141(0) ack 1 0.500 < F. 1:1(0) ack 13142 win 257 0.500 > . 13142:13142(0) ack 2 Signed-off-by:
Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by:
Eric Dumazet <edumazet@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Soheil Hassas Yeganeh authored
The SKBTX_ACK_TSTAMP flag is set in skb_shinfo->tx_flags when the timestamp of the TCP acknowledgement should be reported on error queue. Since accessing skb_shinfo is likely to incur a cache-line miss at the time of receiving the ack, the txstamp_ack bit was added in tcp_skb_cb, which is set iff the SKBTX_ACK_TSTAMP flag is set for an skb. This makes SKBTX_ACK_TSTAMP flag redundant. Remove the SKBTX_ACK_TSTAMP and instead use the txstamp_ack bit everywhere. Note that this frees one bit in shinfo->tx_flags. Signed-off-by:
Soheil Hassas Yeganeh <soheil@google.com> Acked-by:
Martin KaFai Lau <kafai@fb.com> Suggested-by:
Willem de Bruijn <willemb@google.com> Acked-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Eric Dumazet authored
Rename NET_INC_STATS_BH() to __NET_INC_STATS() and NET_ADD_STATS_BH() to __NET_ADD_STATS() Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Eric Dumazet authored
Rename TCP_INC_STATS_BH() to __TCP_INC_STATS() Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 25 Apr, 2016 1 commit
-
-
Eric Dumazet authored
We now have proper per-listener but also per network namespace counters for SYN packets that might be dropped. We replace the kfree_skb() by consume_skb() to be drop monitor [1] friendly, and remove an obsolete comment. FastOpen SYN packets can carry payload in them just fine. [1] perf record -a -g -e skb:kfree_skb sleep 1; perf report Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 24 Apr, 2016 1 commit
-
-
Eric Dumazet authored
Linux TCP stack painfully segments all TSO/GSO packets before retransmits. This was fine back in the days when TSO/GSO were emerging, with their bugs, but we believe the dark age is over. Keeping big packets in write queues, but also in stack traversal has a lot of benefits. - Less memory overhead, because write queues have less skbs - Less cpu overhead at ACK processing. - Better SACK processing, as lot of studies mentioned how awful linux was at this ;) - Less cpu overhead to send the rtx packets (IP stack traversal, netfilter traversal, drivers...) - Better latencies in presence of losses. - Smaller spikes in fq like packet schedulers, as retransmits are not constrained by TCP Small Queues. 1 % packet losses are common today, and at 100Gbit speeds, this translates to ~80,000 losses per second. Losses are often correlated, and we see many retransmit events leading to 1-MSS train of packets, at the time hosts are already under stress. Signed-off-by:
Eric Dumazet <edumazet@google.com> Acked-by:
Yuchung Cheng <ycheng@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 21 Apr, 2016 2 commits
-
-
Martin KaFai Lau authored
After receiving sacks, tcp_shifted_skb() will collapse skbs if possible. tx_flags and tskey also have to be merged. This patch reuses the tcp_skb_collapse_tstamp() to handle them. BPF Output Before: ~~~~~ <no-output-due-to-missing-tstamp-event> BPF Output After: ~~~~~ <...>-2024 [007] d.s. 88.644374: : ee_data:14599 Packetdrill Script: ~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 write(4, ..., 1460) = 1460 +0 setsockopt(4, SOL_SOCKET, 37, [2688], 4) = 0 0.200 write(4, ..., 13140) = 13140 0.200 > P. 1:1461(1460) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:14601(5840) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:14601,nop,nop> 0.300 > P. 1:1461(1460) ack 1 0.400 < . 1:1(0) ack 14601 win 257 0.400 close(4) = 0 0.400 > F. 14601:14601(0) ack 1 0.500 < F. 1:1(0) ack 14602 win 257 0.500 > . 14602:14602(0) ack 2 Signed-off-by:
Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Tested-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Martin KaFai Lau authored
Assuming SOF_TIMESTAMPING_TX_ACK is on. When dup acks are received, it could incorrectly think that a skb has already been acked and queue a SCM_TSTAMP_ACK cmsg to the sk->sk_error_queue. In tcp_ack_tstamp(), it checks 'between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)'. If prior_snd_una == tcp_sk(sk)->snd_una like the following packetdrill script, between() returns true but the tskey is actually not acked. e.g. try between(3, 2, 1). The fix is to replace between() with one before() and one !before(). By doing this, the -1 offset on the tcp_sk(sk)->snd_una can also be removed. A packetdrill script is used to reproduce the dup ack scenario. Due to the lacking cmsg support in packetdrill (may be I cannot find it), a BPF prog is used to kprobe to sock_queue_err_skb() and print out the value of serr->ee.ee_data. Both the packetdrill and the bcc BPF script is attached at the end of this commit message. BPF Output Before Fix: ~~~~~~ <...>-2056 [001] d.s. 433.927987: : ee_data:1459 #incorrect packetdrill-2056 [001] d.s. 433.929563: : ee_data:1459 #incorrect packetdrill-2056 [001] d.s. 433.930765: : ee_data:1459 #incorrect packetdrill-2056 [001] d.s. 434.028177: : ee_data:1459 packetdrill-2056 [001] d.s. 434.029686: : ee_data:14599 BPF Output After Fix: ~~~~~~ <...>-2049 [000] d.s. 113.517039: : ee_data:1459 <...>-2049 [000] d.s. 113.517253: : ee_data:14599 BCC BPF Script: ~~~~~~ #!/usr/bin/env python from __future__ import print_function from bcc import BPF bpf_text = """ #include <uapi/linux/ptrace.h> #include <net/sock.h> #include <bcc/proto.h> #include <linux/errqueue.h> #ifdef memset #undef memset #endif int trace_err_skb(struct pt_regs *ctx) { struct sk_buff *skb = (struct sk_buff *)ctx->si; struct sock *sk = (struct sock *)ctx->di; struct sock_exterr_skb *serr; u32 ee_data = 0; if (!sk || !skb) return 0; serr = SKB_EXT_ERR(skb); bpf_probe_read(&ee_data, sizeof(ee_data), &serr->ee.ee_data); bpf_trace_printk("ee_data:%u\\n", ee_data); return 0; }; """ b = BPF(text=bpf_text) b.attach_kprobe(event="sock_queue_err_skb", fn_name="trace_err_skb") print("Attached to kprobe") b.trace_print() Packetdrill Script: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 +0 setsockopt(4, SOL_SOCKET, 37, [2688], 4) = 0 0.200 write(4, ..., 1460) = 1460 0.200 write(4, ..., 13140) = 13140 0.200 > P. 1:1461(1460) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:14601(5840) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:2921,nop,nop> 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:4381,nop,nop> 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:5841,nop,nop> 0.300 > P. 1:1461(1460) ack 1 0.400 < . 1:1(0) ack 14601 win 257 0.400 close(4) = 0 0.400 > F. 14601:14601(0) ack 1 0.500 < F. 1:1(0) ack 14602 win 257 0.500 > . 14602:14602(0) ack 2 Signed-off-by:
Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil.kdev@gmail.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by:
Soheil Hassas Yeganeh <soheil@google.com> Tested-by:
Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 15 Apr, 2016 2 commits
-
-
Eric Dumazet authored
Last known hot point during SYNFLOOD attack is the clearing of rx_opt.saw_tstamp in tcp_rcv_state_process() It is not needed for a listener, so we move it where it matters. Performance while a SYNFLOOD hits a single listener socket went from 5 Mpps to 6 Mpps on my test server (24 cores, 8 NIC RX queues) Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Eric Dumazet authored
When removing sk_refcnt manipulation on synflood, I missed that using skb_set_owner_w() was racy, if sk->sk_wmem_alloc had already transitioned to 0. We should hold sk_refcnt instead, but this is a big deal under attack. (Doing so increase performance from 3.2 Mpps to 3.8 Mpps only) In this patch, I chose to not attach a socket to syncookies skb. Performance is now 5 Mpps instead of 3.2 Mpps. Following patch will remove last known false sharing in tcp_rcv_state_process() Fixes: 3b24d854 ("tcp/dccp: do not touch listener sk_refcnt under synflood") Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 05 Apr, 2016 2 commits
-
-
Eric Dumazet authored
Goal: packets dropped by a listener are accounted for. This adds tcp_listendrop() helper, and clears sk_drops in sk_clone_lock() so that children do not inherit their parent drop count. Note that we no longer increment LINUX_MIB_LISTENDROPS counter when sending a SYNCOOKIE, since the SYN packet generated a SYNACK. We already have a separate LINUX_MIB_SYNCOOKIESSENT Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Eric Dumazet authored
Now ss can report sk_drops, we can instruct TCP to increment this per socket counter when it drops an incoming frame, to refine monitoring and debugging. Following patch takes care of listeners drops. Signed-off-by:
Eric Dumazet <edumazet@google.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-