- 03 Dec, 2014 1 commit
-
-
Paolo Bonzini authored
Merge tag 'kvm-s390-next-20141128' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD KVM: s390: Several fixes,cleanups and reworks Here is a bunch of fixes that deal mostly with architectural compliance: - interrupt priorities - interrupt handling - intruction exit handling We also provide a helper function for getting the guest visible storage key.
-
- 28 Nov, 2014 11 commits
-
-
Jens Freimann authored
Allow to specify CR14, logout area, external damage code and failed storage address. Since more then one machine check can be indicated to the guest at a time we need to combine all indication bits with already pending requests. Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Jens Freimann authored
This patch adapts handling of local interrupts to be more compliant with the z/Architecture Principles of Operation and introduces a data structure which allows more efficient handling of interrupts. * get rid of li->active flag, use bitmap instead * Keep interrupts in a bitmap instead of a list * Deliver interrupts in the order of their priority as defined in the PoP * Use a second bitmap for sigp emergency requests, as a CPU can have one request pending from every other CPU in the system. Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Jens Freimann authored
Adds a bitmap to the vcpu structure which is used to keep track of local pending interrupts. Also add enum with all interrupt types sorted in order of priority (highest to lowest) Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Jens Freimann authored
Move delivery code for cpu-local interrupt from the huge do_deliver_interrupt() to smaller functions which handle one type of interrupt. Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Jens Freimann authored
Get rid of open coded value for virtio and pfault completion interrupts. Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
David Hildenbrand authored
The 32bit external interrupt parameter is only valid for timing-alert and service-signal interrupts. Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Jens Freimann authored
In preparation for the rework of the local interrupt injection code, factor out injection routines from kvm_s390_inject_vcpu(). Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Jason J. Herne authored
Define get_guest_storage_key which can be used to get the value of a guest storage key. This compliments the functionality provided by the helper function set_guest_storage_key. Both functions are needed for live migration of s390 guests that use storage keys. Signed-off-by: Jason J. Herne <jjherne@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Christian Borntraeger authored
When injecting a floating interrupt and no CPU is idle we kick one CPU to do an external exit. In case of I/O we should trigger an I/O exit instead. This does not matter for Linux guests as external and I/O interrupts are enabled/disabled at the same time, but play safe anyway. The same holds true for machine checks. Since there is no special exit, just reuse the generic stop exit. The injection code inside the VCPU loop will recheck anyway and rearm the proper exits (e.g. control registers) if necessary. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
-
Thomas Huth authored
A couple of our interception handlers rewind the PSW to the beginning of the instruction to run the intercepted instruction again during the next SIE entry. This normally works fine, but there is also the possibility that the instruction did not get run directly but via an EXECUTE instruction. In this case, the PSW does not point to the instruction that caused the interception, but to the EXECUTE instruction! So we've got to rewind the PSW to the beginning of the EXECUTE instruction instead. This is now accomplished with a new helper function kvm_s390_rewind_psw(). Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
Thomas Huth authored
This patch includes two small fixes for the PFMF handler: First, the start address for PFMF has to be masked according to the current addressing mode, which is now done with kvm_s390_logical_to_effective(). Second, the protection exceptions have a lower priority than the specification exceptions, so the check for low-address protection has to be moved after the last spot where we inject a specification exception. Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
-
- 24 Nov, 2014 2 commits
-
-
Paolo Bonzini authored
cs.base is declared as a __u64 variable and vector is a u32 so this causes a static checker warning. The user indeed can set "sipi_vector" to any u32 value in kvm_vcpu_ioctl_x86_set_vcpu_events(), but the value should really have 8-bit precision only. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Create a new header, and hide the device assignment functions there. Move struct kvm_assigned_dev_kernel to assigned-dev.c by modifying arch/x86/kvm/iommu.c to take a PCI device struct. Based on a patch by Radim Krcmar <rkrcmark@redhat.com>. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 23 Nov, 2014 2 commits
-
-
Paolo Bonzini authored
This feature is not supported inside KVM guests yet, because we do not emulate MSR_IA32_XSS. Mask it out. Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Radim Krčmář authored
Now that ia64 is gone, we can hide deprecated device assignment in x86. Notable changes: - kvm_vm_ioctl_assigned_device() was moved to x86/kvm_arch_vm_ioctl() The easy parts were removed from generic kvm code, remaining - kvm_iommu_(un)map_pages() would require new code to be moved - struct kvm_assigned_dev_kernel depends on struct kvm_irq_ack_notifier Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 21 Nov, 2014 3 commits
-
-
Radim Krčmář authored
KVM ia64 is no longer present so new applications shouldn't use them. The main problem is that they most likely didn't work even before, because of a conflict in the #defines: #define KVM_SET_GUEST_DEBUG _IOW(KVMIO, 0x9b, struct kvm_guest_debug) #define KVM_IA64_VCPU_SET_STACK _IOW(KVMIO, 0x9b, void *) The argument to KVM_SET_GUEST_DEBUG is: struct kvm_guest_debug { __u32 control; __u32 pad; struct kvm_guest_debug_arch arch; }; struct kvm_guest_debug_arch { }; meaning that sizeof(struct kvm_guest_debug) == sizeof(void *) == 8 and KVM_SET_GUEST_DEBUG == KVM_IA64_VCPU_SET_STACK. KVM_SET_GUEST_DEBUG is handled in virt/kvm/kvm_main.c before even calling kvm_arch_vcpu_ioctl (which would have handled KVM_IA64_VCPU_SET_STACK), so KVM_IA64_VCPU_SET_STACK would just return -EINVAL. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Radim Krcmar authored
Signed-off-by: Radim Krcmar <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
ia64 does not need them anymore. Ack notifiers become x86-specific too. Suggested-by: Gleb Natapov <gleb@kernel.org> Reviewed-by: Radim Krcmar <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 20 Nov, 2014 2 commits
-
-
Tiejun Chen authored
kvm/ia64 is gone, clean up Documentation too. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
KVM for ia64 has been marked as broken not just once, but twice even, and the last patch from the maintainer is now roughly 5 years old. Time for it to rest in peace. Acked-by: Gleb Natapov <gleb@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 19 Nov, 2014 9 commits
-
-
Nicholas Krause authored
Remove FIXME comments about needing fault addresses to be returned. These are propaagated from walk_addr_generic to gva_to_gpa and from there to ops->read_std and ops->write_std. Signed-off-by: Nicholas Krause <xerofoify@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
The check on the higher limit of the segment, and the check on the maximum accessible size, is the same for both expand-up and expand-down segments. Only the computation of "lim" varies. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
register_address has been a duplicate of address_mask ever since the ancestor of __linearize was born in 90de84f5 (KVM: x86 emulator: preserve an operand's segment identity, 2010-11-17). However, we can put it to a better use by including the call to reg_read in register_address. Similarly, the call to reg_rmw can be moved to register_address_increment. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
In __linearize there is check of the condition whether to check if masking of the linear address is needed. It occurs immediately after switch that evaluates the same condition. Merge them. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
When SS is used using a non-canonical address, an #SS exception is generated on real hardware. KVM emulator causes a #GP instead. Fix it to behave as real x86 CPU. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
If branch (e.g., jmp, ret) causes limit violations, since the target IP > limit, the #GP exception occurs before the branch. In other words, the RIP pushed on the stack should be that of the branch and not that of the target. To do so, we can call __linearize, with new EIP, which also saves us the code which performs the canonical address checks. On the case of assigning an EIP >= 2^32 (when switching cs.l), we also safe, as __linearize will check the new EIP does not exceed the limit and would trigger #GP(0) otherwise. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
When segment is accessed, real hardware does not perform any privilege level checks. In contrast, KVM emulator does. This causes some discrepencies from real hardware. For instance, reading from readable code segment may fail due to incorrect segment checks. In addition, it introduces unnecassary overhead. To reference Intel SDM 5.5 ("Privilege Levels"): "Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register." The SDM never mentions privilege level checks during memory access, except for loading far pointers in section 5.10 ("Pointer Validation"). Those are actually segment selector loads and are emulated in the similarily (i.e., regardless to __linearize checks). This behavior was also checked using sysexit. A data-segment whose DPL=0 was loaded, and after sysexit (CPL=3) it is still accessible. Therefore, all the privilege level checks in __linearize are removed. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
When performing segmented-read/write in the emulator for stack operations, it ignores the stack size, and uses the ad_bytes as indication for the pointer size. As a result, a wrong address may be accessed. To fix this behavior, we can remove the masking of address in __linearize and perform it beforehand. It is already done for the operands (so currently it is inefficiently done twice). It is missing in two cases: 1. When using rip_relative 2. On fetch_bit_operand that changes the address. This patch masks the address on these two occassions, and removes the masking from __linearize. Note that it does not mask EIP during fetch. In protected/legacy mode code fetch when RIP >= 2^32 should result in #GP and not wrap-around. Since we make limit checks within __linearize, this is the expected behavior. Partial revert of commit 518547b3 (KVM: x86: Emulator does not calculate address correctly, 2014-09-30). Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
Commit 10e38fc7cab6 ("KVM: x86: Emulator flag for instruction that only support 16-bit addresses in real mode") introduced NoBigReal for instructions such as MONITOR. Apparetnly, the Intel SDM description that led to this patch is misleading. Since no instruction is using NoBigReal, it is safe to remove it, we fully understand what the SDM means. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 18 Nov, 2014 2 commits
-
-
Tiejun Chen authored
MMIO_MAX_GEN is the same as MMIO_GEN_MASK. Use only one. Signed-off-by: Tiejun Chen <tiejun.chen@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Tiejun Chen authored
Instead, just use PFERR_{FETCH, PRESENT, WRITE}_MASK inside handle_ept_violation() for slightly better code. Signed-off-by: Tiejun Chen <tiejun.chen@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 17 Nov, 2014 5 commits
-
-
Nadav Amit authored
apic_find_highest_irr assumes irr_pending is set if any vector in APIC_IRR is set. If this assumption is broken and apicv is disabled, the injection of interrupts may be deferred until another interrupt is delivered to the guest. Ultimately, if no other interrupt should be injected to that vCPU, the pending interrupt may be lost. commit 56cc2406 ("KVM: nVMX: fix "acknowledge interrupt on exit" when APICv is in use") changed the behavior of apic_clear_irr so irr_pending is cleared after setting APIC_IRR vector. After this commit, if apic_set_irr and apic_clear_irr run simultaneously, a race may occur, resulting in APIC_IRR vector set, and irr_pending cleared. In the following example, assume a single vector is set in IRR prior to calling apic_clear_irr: apic_set_irr apic_clear_irr ------------ -------------- apic->irr_pending = true; apic_clear_vector(...); vec = apic_search_irr(apic); // => vec == -1 apic_set_vector(...); apic->irr_pending = (vec != -1); // => apic->irr_pending == false Nonetheless, it appears the race might even occur prior to this commit: apic_set_irr apic_clear_irr ------------ -------------- apic->irr_pending = true; apic->irr_pending = false; apic_clear_vector(...); if (apic_search_irr(apic) != -1) apic->irr_pending = true; // => apic->irr_pending == false apic_set_vector(...); Fixing this issue by: 1. Restoring the previous behavior of apic_clear_irr: clear irr_pending, call apic_clear_vector, and then if APIC_IRR is non-zero, set irr_pending. 2. On apic_set_irr: first call apic_set_vector, then set irr_pending. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Logical destination mode can be used to send NMI IPIs even when all APICs are software disabled, so if all APICs are software disabled we should still look at the DFRs. So the DFRs should all be the same, even if some or all APICs are software disabled. However, the SDM does not say this, so tweak the logic as follows: - if one APIC is enabled and has LDR != 0, use that one to build the map. This picks the right DFR in case an OS is only setting it for the software-enabled APICs, or in case an OS is using logical addressing on some APICs while leaving the rest in reset state (using LDR was suggested by Radim). - if all APICs are disabled, pick a random one to build the map. We use the last one with LDR != 0 for simplicity. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
Currently, the APIC logical map does not consider VCPUs whose local-apic is software-disabled. However, NMIs, INIT, etc. should still be delivered to such VCPUs. Therefore, the APIC mode should first be determined, and then the map, considering all VCPUs should be constructed. To address this issue, first find the APIC mode, and only then construct the logical map. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
The update_memslots invocation is only needed in one case. Make the code clearer by moving it to __kvm_set_memory_region, and removing the wrapper around insert_memslot. Reviewed-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
The two kmemdup invocations can be unified. I find that the new placement of the comment makes it easier to see what happens. Reviewed-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 14 Nov, 2014 3 commits
-
-
Paolo Bonzini authored
This completes the optimization from the previous patch, by removing the KVM_MEM_SLOTS_NUM-iteration loop from insert_memslot. Reviewed-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Igor Mammedov authored
memslots is a sorted array. When a slot is changed, heapsort (lib/sort.c) would take O(n log n) time to update it; an optimized insertion sort will only cost O(n) on an array with just one item out of order. Replace sort() with a custom sort that takes advantage of memslots usage pattern and the known position of the changed slot. performance change of 128 memslots insertions with gradually increasing size (the worst case): heap sort custom sort max: 249747 2500 cycles with custom sort alg taking ~98% less then original update time. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Igor Mammedov authored
With the 3 private slots, this gives us 512 slots total. Motivation for this is in addition to assigned devices support more memory hotplug slots, where 1 slot is used by a hotplugged memory stick. It will allow to support upto 256 hotplug memory slots and leave 253 slots for assigned devices and other devices that use them. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-