- 19 Aug, 2012 8 commits
-
-
Hangbin Liu authored
[ Upstream commit 42493570 ] TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int. But patch "tcp: Add TCP_USER_TIMEOUT socket option"(dca43c75) didn't check the negative values. If a user assign -1 to it, the socket will set successfully and wait for 4294967295 miliseconds. This patch add a negative value check to avoid this issue. Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Alan Cox authored
[ Upstream commit 8b72ff64 ] gcc really should warn about these ! Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Alan Cox authored
[ Upstream commit c66b9b7d ] Reported-by: <rucsoftsec@gmail.com> Resolves-bug: http://bugzilla.kernel.org/show_bug?44441Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Paul Moore authored
[ Upstream commit 89d7ae34 ] As reported by Alan Cox, and verified by Lin Ming, when a user attempts to add a CIPSO option to a socket using the CIPSO_V4_TAG_LOCAL tag the kernel dies a terrible death when it attempts to follow a NULL pointer (the skb argument to cipso_v4_validate() is NULL when called via the setsockopt() syscall). This patch fixes this by first checking to ensure that the skb is non-NULL before using it to find the incoming network interface. In the unlikely case where the skb is NULL and the user attempts to add a CIPSO option with the _TAG_LOCAL tag we return an error as this is not something we want to allow. A simple reproducer, kindly supplied by Lin Ming, although you must have the CIPSO DOI #3 configure on the system first or you will be caught early in cipso_v4_validate(): #include <sys/types.h> #include <sys/socket.h> #include <linux/ip.h> #include <linux/in.h> #include <string.h> struct local_tag { char type; char length; char info[4]; }; struct cipso { char type; char length; char doi[4]; struct local_tag local; }; int main(int argc, char **argv) { int sockfd; struct cipso cipso = { .type = IPOPT_CIPSO, .length = sizeof(struct cipso), .local = { .type = 128, .length = sizeof(struct local_tag), }, }; memset(cipso.doi, 0, 4); cipso.doi[3] = 3; sockfd = socket(AF_INET, SOCK_DGRAM, 0); #define SOL_IP 0 setsockopt(sockfd, SOL_IP, IP_OPTIONS, &cipso, sizeof(struct cipso)); return 0; } CC: Lin Ming <mlin@ss.pku.edu.cn> Reported-by: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Paul Moore <pmoore@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Sjur Brændeland authored
[ Upstream commit 96f80d12 ] unregister_netdevice_notifier() must be called before unregister_pernet_subsys() to avoid accessing already freed pernet memory. This fixes the following oops when doing rmmod: Call Trace: [<ffffffffa0f802bd>] caif_device_notify+0x4d/0x5a0 [caif] [<ffffffff81552ba9>] unregister_netdevice_notifier+0xb9/0x100 [<ffffffffa0f86dcc>] caif_device_exit+0x1c/0x250 [caif] [<ffffffff810e7734>] sys_delete_module+0x1a4/0x300 [<ffffffff810da82d>] ? trace_hardirqs_on_caller+0x15d/0x1e0 [<ffffffff813517de>] ? trace_hardirqs_on_thunk+0x3a/0x3 [<ffffffff81696bad>] system_call_fastpath+0x1a/0x1f RIP [<ffffffffa0f7f561>] caif_get+0x51/0xb0 [caif] Signed-off-by: Sjur Brændeland <sjur.brandeland@stericsson.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Neil Horman authored
[ Upstream commit 2eebc1e1 ] A few days ago Dave Jones reported this oops: [22766.294255] general protection fault: 0000 [#1] PREEMPT SMP [22766.295376] CPU 0 [22766.295384] Modules linked in: [22766.387137] ffffffffa169f292 6b6b6b6b6b6b6b6b ffff880147c03a90 ffff880147c03a74 [22766.387135] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 00000000000 [22766.387136] Process trinity-watchdo (pid: 10896, threadinfo ffff88013e7d2000, [22766.387137] Stack: [22766.387140] ffff880147c03a10 [22766.387140] ffffffffa169f2b6 [22766.387140] ffff88013ed95728 [22766.387143] 0000000000000002 [22766.387143] 0000000000000000 [22766.387143] ffff880003fad062 [22766.387144] ffff88013c120000 [22766.387144] [22766.387145] Call Trace: [22766.387145] <IRQ> [22766.387150] [<ffffffffa169f292>] ? __sctp_lookup_association+0x62/0xd0 [sctp] [22766.387154] [<ffffffffa169f2b6>] __sctp_lookup_association+0x86/0xd0 [sctp] [22766.387157] [<ffffffffa169f597>] sctp_rcv+0x207/0xbb0 [sctp] [22766.387161] [<ffffffff810d4da8>] ? trace_hardirqs_off_caller+0x28/0xd0 [22766.387163] [<ffffffff815827e3>] ? nf_hook_slow+0x133/0x210 [22766.387166] [<ffffffff815902fc>] ? ip_local_deliver_finish+0x4c/0x4c0 [22766.387168] [<ffffffff8159043d>] ip_local_deliver_finish+0x18d/0x4c0 [22766.387169] [<ffffffff815902fc>] ? ip_local_deliver_finish+0x4c/0x4c0 [22766.387171] [<ffffffff81590a07>] ip_local_deliver+0x47/0x80 [22766.387172] [<ffffffff8158fd80>] ip_rcv_finish+0x150/0x680 [22766.387174] [<ffffffff81590c54>] ip_rcv+0x214/0x320 [22766.387176] [<ffffffff81558c07>] __netif_receive_skb+0x7b7/0x910 [22766.387178] [<ffffffff8155856c>] ? __netif_receive_skb+0x11c/0x910 [22766.387180] [<ffffffff810d423e>] ? put_lock_stats.isra.25+0xe/0x40 [22766.387182] [<ffffffff81558f83>] netif_receive_skb+0x23/0x1f0 [22766.387183] [<ffffffff815596a9>] ? dev_gro_receive+0x139/0x440 [22766.387185] [<ffffffff81559280>] napi_skb_finish+0x70/0xa0 [22766.387187] [<ffffffff81559cb5>] napi_gro_receive+0xf5/0x130 [22766.387218] [<ffffffffa01c4679>] e1000_receive_skb+0x59/0x70 [e1000e] [22766.387242] [<ffffffffa01c5aab>] e1000_clean_rx_irq+0x28b/0x460 [e1000e] [22766.387266] [<ffffffffa01c9c18>] e1000e_poll+0x78/0x430 [e1000e] [22766.387268] [<ffffffff81559fea>] net_rx_action+0x1aa/0x3d0 [22766.387270] [<ffffffff810a495f>] ? account_system_vtime+0x10f/0x130 [22766.387273] [<ffffffff810734d0>] __do_softirq+0xe0/0x420 [22766.387275] [<ffffffff8169826c>] call_softirq+0x1c/0x30 [22766.387278] [<ffffffff8101db15>] do_softirq+0xd5/0x110 [22766.387279] [<ffffffff81073bc5>] irq_exit+0xd5/0xe0 [22766.387281] [<ffffffff81698b03>] do_IRQ+0x63/0xd0 [22766.387283] [<ffffffff8168ee2f>] common_interrupt+0x6f/0x6f [22766.387283] <EOI> [22766.387284] [22766.387285] [<ffffffff8168eed9>] ? retint_swapgs+0x13/0x1b [22766.387285] Code: c0 90 5d c3 66 0f 1f 44 00 00 4c 89 c8 5d c3 0f 1f 00 55 48 89 e5 48 83 ec 20 48 89 5d e8 4c 89 65 f0 4c 89 6d f8 66 66 66 66 90 <0f> b7 87 98 00 00 00 48 89 fb 49 89 f5 66 c1 c0 08 66 39 46 02 [22766.387307] [22766.387307] RIP [22766.387311] [<ffffffffa168a2c9>] sctp_assoc_is_match+0x19/0x90 [sctp] [22766.387311] RSP <ffff880147c039b0> [22766.387142] ffffffffa16ab120 [22766.599537] ---[ end trace 3f6dae82e37b17f5 ]--- [22766.601221] Kernel panic - not syncing: Fatal exception in interrupt It appears from his analysis and some staring at the code that this is likely occuring because an association is getting freed while still on the sctp_assoc_hashtable. As a result, we get a gpf when traversing the hashtable while a freed node corrupts part of the list. Nominally I would think that an mibalanced refcount was responsible for this, but I can't seem to find any obvious imbalance. What I did note however was that the two places where we create an association using sctp_primitive_ASSOCIATE (__sctp_connect and sctp_sendmsg), have failure paths which free a newly created association after calling sctp_primitive_ASSOCIATE. sctp_primitive_ASSOCIATE brings us into the sctp_sf_do_prm_asoc path, which issues a SCTP_CMD_NEW_ASOC side effect, which in turn adds a new association to the aforementioned hash table. the sctp command interpreter that process side effects has not way to unwind previously processed commands, so freeing the association from the __sctp_connect or sctp_sendmsg error path would lead to a freed association remaining on this hash table. I've fixed this but modifying sctp_[un]hash_established to use hlist_del_init, which allows us to proerly use hlist_unhashed to check if the node is on a hashlist safely during a delete. That in turn alows us to safely call sctp_unhash_established in the __sctp_connect and sctp_sendmsg error paths before freeing them, regardles of what the associations state is on the hash list. I noted, while I was doing this, that the __sctp_unhash_endpoint was using hlist_unhsashed in a simmilar fashion, but never nullified any removed nodes pointers to make that function work properly, so I fixed that up in a simmilar fashion. I attempted to test this using a virtual guest running the SCTP_RR test from netperf in a loop while running the trinity fuzzer, both in a loop. I wasn't able to recreate the problem prior to this fix, nor was I able to trigger the failure after (neither of which I suppose is suprising). Given the trace above however, I think its likely that this is what we hit. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: davej@redhat.com CC: davej@redhat.com CC: "David S. Miller" <davem@davemloft.net> CC: Vlad Yasevich <vyasevich@gmail.com> CC: Sridhar Samudrala <sri@us.ibm.com> CC: linux-sctp@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Alan Cox authored
[ Upstream commit 7ac2908e ] Resolves-bug: https://bugzilla.kernel.org/show_bug.cgi?id=44461Signed-off-by: Alan Cox <alan@linux.intel.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Michael Chan authored
[ Upstream commit c1f5163d ] In rare cases, bnx2x_free_tx_skbs() can unmap the wrong DMA address when it gets to the last entry of the tx ring. We were not using the proper macro to skip the last entry when advancing the tx index. Reported-by: Zongyun Lai <zlai@vmware.com> Reviewed-by: Jeffrey Huang <huangjw@broadcom.com> Signed-off-by: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
- 09 Aug, 2012 32 commits
-
-
Ben Hutchings authored
-
Tomoya MORINAGA authored
commit 38bd2a1a upstream. Parity Setting value is reverse. E.G. In case of setting ODD parity, EVEN value is set. This patch inverts "if" condition. Signed-off-by: Tomoya MORINAGA <tomoya.rohm@gmail.com> Acked-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Tomoya MORINAGA authored
commit 9539dfb7 upstream. Rx Error interrupt(E.G. parity error) is not enabled. So, when parity error occurs, error interrupt is not occurred. As a result, the received data is not dropped. This patch adds enable/disable rx error interrupt code. Signed-off-by: Tomoya MORINAGA <tomoya.rohm@gmail.com> Acked-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [Backported by Tomoya MORINGA: adjusted context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Alan Cox authored
commit 9bc03743 upstream. Otherwise we fall back to the wrong value. Reported-by: <dcb314@hotmail.com> Resolves-bug: https://bugzilla.kernel.org/show_bug.cgi?id=44091Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Dumazet authored
commit bec4596b upstream. drop_monitor calls several sleeping functions while in atomic context. BUG: sleeping function called from invalid context at mm/slub.c:943 in_atomic(): 1, irqs_disabled(): 0, pid: 2103, name: kworker/0:2 Pid: 2103, comm: kworker/0:2 Not tainted 3.5.0-rc1+ #55 Call Trace: [<ffffffff810697ca>] __might_sleep+0xca/0xf0 [<ffffffff811345a3>] kmem_cache_alloc_node+0x1b3/0x1c0 [<ffffffff8105578c>] ? queue_delayed_work_on+0x11c/0x130 [<ffffffff815343fb>] __alloc_skb+0x4b/0x230 [<ffffffffa00b0360>] ? reset_per_cpu_data+0x160/0x160 [drop_monitor] [<ffffffffa00b022f>] reset_per_cpu_data+0x2f/0x160 [drop_monitor] [<ffffffffa00b03ab>] send_dm_alert+0x4b/0xb0 [drop_monitor] [<ffffffff810568e0>] process_one_work+0x130/0x4c0 [<ffffffff81058249>] worker_thread+0x159/0x360 [<ffffffff810580f0>] ? manage_workers.isra.27+0x240/0x240 [<ffffffff8105d403>] kthread+0x93/0xa0 [<ffffffff816be6d4>] kernel_thread_helper+0x4/0x10 [<ffffffff8105d370>] ? kthread_freezable_should_stop+0x80/0x80 [<ffffffff816be6d0>] ? gs_change+0xb/0xb Rework the logic to call the sleeping functions in right context. Use standard timer/workqueue api to let system chose any cpu to perform the allocation and netlink send. Also avoid a loop if reset_per_cpu_data() cannot allocate memory : use mod_timer() to wait 1/10 second before next try. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neil Horman <nhorman@tuxdriver.com> Reviewed-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Neil Horman authored
commit 4fdcfa12 upstream. I just noticed after some recent updates, that the init path for the drop monitor protocol has a minor error. drop monitor maintains a per cpu structure, that gets initalized from a single cpu. Normally this is fine, as the protocol isn't in use yet, but I recently made a change that causes a failed skb allocation to reschedule itself . Given the current code, the implication is that this workqueue reschedule will take place on the wrong cpu. If drop monitor is used early during the boot process, its possible that two cpus will access a single per-cpu structure in parallel, possibly leading to data corruption. This patch fixes the situation, by storing the cpu number that a given instance of this per-cpu data should be accessed from. In the case of a need for a reschedule, the cpu stored in the struct is assigned the rescheule, rather than the currently executing cpu Tested successfully by myself. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: David Miller <davem@davemloft.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Neil Horman authored
commit 3885ca78 upstream. Eric Dumazet pointed out to me that the drop_monitor protocol has some holes in its smp protections. Specifically, its possible to replace data->skb while its being written. This patch corrects that by making data->skb an rcu protected variable. That will prevent it from being overwritten while a tracepoint is modifying it. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Eric Dumazet <eric.dumazet@gmail.com> CC: David Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Neil Horman authored
commit cde2e9a6 upstream. Eric Dumazet pointed out this warning in the drop_monitor protocol to me: [ 38.352571] BUG: sleeping function called from invalid context at kernel/mutex.c:85 [ 38.352576] in_atomic(): 1, irqs_disabled(): 0, pid: 4415, name: dropwatch [ 38.352580] Pid: 4415, comm: dropwatch Not tainted 3.4.0-rc2+ #71 [ 38.352582] Call Trace: [ 38.352592] [<ffffffff8153aaf0>] ? trace_napi_poll_hit+0xd0/0xd0 [ 38.352599] [<ffffffff81063f2a>] __might_sleep+0xca/0xf0 [ 38.352606] [<ffffffff81655b16>] mutex_lock+0x26/0x50 [ 38.352610] [<ffffffff8153aaf0>] ? trace_napi_poll_hit+0xd0/0xd0 [ 38.352616] [<ffffffff810b72d9>] tracepoint_probe_register+0x29/0x90 [ 38.352621] [<ffffffff8153a585>] set_all_monitor_traces+0x105/0x170 [ 38.352625] [<ffffffff8153a8ca>] net_dm_cmd_trace+0x2a/0x40 [ 38.352630] [<ffffffff8154a81a>] genl_rcv_msg+0x21a/0x2b0 [ 38.352636] [<ffffffff810f8029>] ? zone_statistics+0x99/0xc0 [ 38.352640] [<ffffffff8154a600>] ? genl_rcv+0x30/0x30 [ 38.352645] [<ffffffff8154a059>] netlink_rcv_skb+0xa9/0xd0 [ 38.352649] [<ffffffff8154a5f0>] genl_rcv+0x20/0x30 [ 38.352653] [<ffffffff81549a7e>] netlink_unicast+0x1ae/0x1f0 [ 38.352658] [<ffffffff81549d76>] netlink_sendmsg+0x2b6/0x310 [ 38.352663] [<ffffffff8150824f>] sock_sendmsg+0x10f/0x130 [ 38.352668] [<ffffffff8150abe0>] ? move_addr_to_kernel+0x60/0xb0 [ 38.352673] [<ffffffff81515f04>] ? verify_iovec+0x64/0xe0 [ 38.352677] [<ffffffff81509c46>] __sys_sendmsg+0x386/0x390 [ 38.352682] [<ffffffff810ffaf9>] ? handle_mm_fault+0x139/0x210 [ 38.352687] [<ffffffff8165b5bc>] ? do_page_fault+0x1ec/0x4f0 [ 38.352693] [<ffffffff8106ba4d>] ? set_next_entity+0x9d/0xb0 [ 38.352699] [<ffffffff81310b49>] ? tty_ldisc_deref+0x9/0x10 [ 38.352703] [<ffffffff8106d363>] ? pick_next_task_fair+0x63/0x140 [ 38.352708] [<ffffffff8150b8d4>] sys_sendmsg+0x44/0x80 [ 38.352713] [<ffffffff8165f8e2>] system_call_fastpath+0x16/0x1b It stems from holding a spinlock (trace_state_lock) while attempting to register or unregister tracepoint hooks, making in_atomic() true in this context, leading to the warning when the tracepoint calls might_sleep() while its taking a mutex. Since we only use the trace_state_lock to prevent trace protocol state races, as well as hardware stat list updates on an rcu write side, we can just convert the spinlock to a mutex to avoid this problem. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Eric Dumazet <eric.dumazet@gmail.com> CC: David Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jeongdo Son authored
commit a769f957 upstream. This is a RT3070 based device. Signed-off-by: Jeongdo Son <sohn9086@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jesse Barnes authored
commit 2514bc51 upstream. High frequency link configurations have the potential to cause trouble with long and/or cheap cables, so prefer slow and wide configurations instead. This patch has the potential to cause trouble for eDP configurations that lie about available lanes, so if we run into that we can make it conditional on eDP. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=45801 Tested-by: peter@colberg.org Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Andreas Schwab authored
commit 9e2760d1 upstream. User space access must always go through uaccess accessors, since on classic m68k user space and kernel space are completely separate. Signed-off-by: Andreas Schwab <schwab@linux-m68k.org> Tested-by: Thorsten Glaser <tg@debian.org> Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Boaz Harrosh authored
commit 9e62bb44 upstream. _ios_obj() is accessed by group_index not device_table index. The oc->comps array is only a group_full of devices at a time it is not like ore_comp_dev() which is indexed by a global device_table index. This did not BUG until now because exofs only uses a single COMP for all devices. But with other FSs like PanFS this is not true. This bug was only in the write_path, all other users were using it correctly [This is a bug since 3.2 Kernel] Signed-off-by: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit 707fba3f upstream. Lenovo Thinkpad T530 with ALC269VC codec has a dock port but BIOS doesn't set up the pins properly. Enable the pins as well as on Thinkpad X230 Tablet. Reported-and-tested-by: Mario <anyc@hadiko.de> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Daniel Mack authored
commit aff252a8 upstream. uac_clock_source_is_valid() uses the control selector value to access the bmControls bitmap of the clock source unit. This is wrong, as control selector values start from 1, while the bitmap uses all available bits. In other words, "Clock Validity Control" is stored in D3..2, not D5..4 of the clock selector unit's bmControls. Signed-off-by: Daniel Mack <zonque@gmail.com> Reported-by: Andreas Koch <andreas@akdesigninc.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Mel Gorman authored
commit d833352a upstream. If a process creates a large hugetlbfs mapping that is eligible for page table sharing and forks heavily with children some of whom fault and others which destroy the mapping then it is possible for page tables to get corrupted. Some teardowns of the mapping encounter a "bad pmd" and output a message to the kernel log. The final teardown will trigger a BUG_ON in mm/filemap.c. This was reproduced in 3.4 but is known to have existed for a long time and goes back at least as far as 2.6.37. It was probably was introduced in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages look like this; [ ..........] Lots of bad pmd messages followed by this [ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7). [ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7). [ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7). [ 127.186778] ------------[ cut here ]------------ [ 127.186781] kernel BUG at mm/filemap.c:134! [ 127.186782] invalid opcode: 0000 [#1] SMP [ 127.186783] CPU 7 [ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod [ 127.186801] [ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR [ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002 [ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0 [ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00 [ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003 [ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8 [ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8 [ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000 [ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0 [ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0) [ 127.186821] Stack: [ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b [ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98 [ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000 [ 127.186827] Call Trace: [ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80 [ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220 [ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30 [ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0 [ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0 [ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50 [ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130 [ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0 [ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230 [ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150 [ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30 [ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80 [ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360 [ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170 [ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b [ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0 [ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186870] RSP <ffff8804144b5c08> [ 127.186871] ---[ end trace 7cbac5d1db69f426 ]--- The bug is a race and not always easy to reproduce. To reproduce it I was doing the following on a single socket I7-based machine with 16G of RAM. $ hugeadm --pool-pages-max DEFAULT:13G $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall $ for i in `seq 1 9000`; do ./hugetlbfs-test; done On my particular machine, it usually triggers within 10 minutes but enabling debug options can change the timing such that it never hits. Once the bug is triggered, the machine is in trouble and needs to be rebooted. The machine will respond but processes accessing proc like "ps aux" will hang due to the BUG_ON. shutdown will also hang and needs a hard reset or a sysrq-b. The basic problem is a race between page table sharing and teardown. For the most part page table sharing depends on i_mmap_mutex. In some cases, it is also taking the mm->page_table_lock for the PTE updates but with shared page tables, it is the i_mmap_mutex that is more important. Unfortunately it appears to be also insufficient. Consider the following situation Process A Process B --------- --------- hugetlb_fault shmdt LockWrite(mmap_sem) do_munmap unmap_region unmap_vmas unmap_single_vma unmap_hugepage_range Lock(i_mmap_mutex) Lock(mm->page_table_lock) huge_pmd_unshare/unmap tables <--- (1) Unlock(mm->page_table_lock) Unlock(i_mmap_mutex) huge_pte_alloc ... Lock(i_mmap_mutex) ... vma_prio_walk, find svma, spte ... Lock(mm->page_table_lock) ... share spte ... Unlock(mm->page_table_lock) ... Unlock(i_mmap_mutex) ... hugetlb_no_page <--- (2) free_pgtables unlink_file_vma hugetlb_free_pgd_range remove_vma_list In this scenario, it is possible for Process A to share page tables with Process B that is trying to tear them down. The i_mmap_mutex on its own does not prevent Process A walking Process B's page tables. At (1) above, the page tables are not shared yet so it unmaps the PMDs. Process A sets up page table sharing and at (2) faults a new entry. Process B then trips up on it in free_pgtables. This patch fixes the problem by adding a new function __unmap_hugepage_range_final that is only called when the VMA is about to be destroyed. This function clears VM_MAYSHARE during unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA ineligible for sharing and avoids the race. Superficially this looks like it would then be vunerable to truncate and madvise issues but hugetlbfs has its own truncate handlers so does not use unmap_mapping_range() and does not support madvise(DONTNEED). This should be treated as a -stable candidate if it is merged. Test program is as follows. The test case was mostly written by Michal Hocko with a few minor changes to reproduce this bug. ==== CUT HERE ==== static size_t huge_page_size = (2UL << 20); static size_t nr_huge_page_A = 512; static size_t nr_huge_page_B = 5632; unsigned int get_random(unsigned int max) { struct timeval tv; gettimeofday(&tv, NULL); srandom(tv.tv_usec); return random() % max; } static void play(void *addr, size_t size) { unsigned char *start = addr, *end = start + size, *a; start += get_random(size/2); /* we could itterate on huge pages but let's give it more time. */ for (a = start; a < end; a += 4096) *a = 0; } int main(int argc, char **argv) { key_t key = IPC_PRIVATE; size_t sizeA = nr_huge_page_A * huge_page_size; size_t sizeB = nr_huge_page_B * huge_page_size; int shmidA, shmidB; void *addrA = NULL, *addrB = NULL; int nr_children = 300, n = 0; if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } fork_child: switch(fork()) { case 0: switch (n%3) { case 0: play(addrA, sizeA); break; case 1: play(addrB, sizeB); break; case 2: break; } break; case -1: perror("fork:"); break; default: if (++n < nr_children) goto fork_child; play(addrA, sizeA); break; } shmdt(addrA); shmdt(addrB); do { wait(NULL); } while (--n > 0); shmctl(shmidA, IPC_RMID, NULL); shmctl(shmidB, IPC_RMID, NULL); return 0; } [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build] Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: - Adjust context - Drop the mmu_gather * parameters] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Xiao Guangrong authored
commit 3ad3d901 upstream. mmu_notifier_release() is called when the process is exiting. It will delete all the mmu notifiers. But at this time the page belonging to the process is still present in page tables and is present on the LRU list, so this race will happen: CPU 0 CPU 1 mmu_notifier_release: try_to_unmap: hlist_del_init_rcu(&mn->hlist); ptep_clear_flush_notify: mmu nofifler not found free page !!!!!! /* * At the point, the page has been * freed, but it is still mapped in * the secondary MMU. */ mn->ops->release(mn, mm); Then the box is not stable and sometimes we can get this bug: [ 738.075923] BUG: Bad page state in process migrate-perf pfn:03bec [ 738.075931] page:ffffea00000efb00 count:0 mapcount:0 mapping: (null) index:0x8076 [ 738.075936] page flags: 0x20000000000014(referenced|dirty) The same issue is present in mmu_notifier_unregister(). We can call ->release before deleting the notifier to ensure the page has been unmapped from the secondary MMU before it is freed. Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Xishi Qiu authored
commit ca57df79 upstream. On architectures with CONFIG_HUGETLB_PAGE_SIZE_VARIABLE set, such as Itanium, pageblock_order is a variable with default value of 0. It's set to the right value by set_pageblock_order() in function free_area_init_core(). But pageblock_order may be used by sparse_init() before free_area_init_core() is called along path: sparse_init() ->sparse_early_usemaps_alloc_node() ->usemap_size() ->SECTION_BLOCKFLAGS_BITS ->((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) The uninitialized pageblock_size will cause memory wasting because usemap_size() returns a much bigger value then it's really needed. For example, on an Itanium platform, sparse_init() pageblock_order=0 usemap_size=24576 free_area_init_core() before pageblock_order=0, usemap_size=24576 free_area_init_core() after pageblock_order=12, usemap_size=8 That means 24K memory has been wasted for each section, so fix it by calling set_pageblock_order() from sparse_init(). Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Andrew Morton authored
commit 955c1cd7 upstream. This has always been broken: one version takes an unsigned int and the other version takes no arguments. This bug was hidden because one version of set_pageblock_order() was a macro which doesn't evaluate its argument. Simplify it all and remove pageblock_default_order() altogether. Reported-by: rajman mekaco <rajman.mekaco@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Mark Brown authored
commit 9d40e558 upstream. Required for reliable power up from cold. Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Colin Ian King authored
commit f96a4216 upstream. The default 10 microsecond delay for the controller to come out of halt in dbgp_ehci_startup is too short, so increase it to 1 millisecond. This is based on emperical testing on various USB debug ports on modern machines such as a Lenovo X220i and an Ivybridge development platform that needed to wait ~450-950 microseconds. Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Russell King authored
commit 15ac49b6 upstream. While trying to get a v3.5 kernel booted on the cubox, I noticed that VFP does not work correctly with VFP bounce handling. This is because of the confusion over 16-bit vs 32-bit instructions, and where PC is supposed to point to. The rule is that FP handlers are entered with regs->ARM_pc pointing at the _next_ instruction to be executed. However, if the exception is not handled, regs->ARM_pc points at the faulting instruction. This is easy for ARM mode, because we know that the next instruction and previous instructions are separated by four bytes. This is not true of Thumb2 though. Since all FP instructions are 32-bit in Thumb2, it makes things easy. We just need to select the appropriate adjustment. Do this by moving the adjustment out of do_undefinstr() into the assembly code, as only the assembly code knows whether it's dealing with a 32-bit or 16-bit instruction. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Will Deacon authored
commit 5a783cbc upstream. Commit cdf357f1 ("ARM: 6299/1: errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID") replaced by-ASID TLB flushing operations with all-ASID variants to workaround A9 erratum #720789. This patch extends the workaround to include the tlb_range operations, which were overlooked by the original patch. Tested-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Colin Cross authored
commit 24b35521 upstream. vfp_pm_suspend should save the VFP state in suspend after any lazy context switch. If it only saves when the VFP is enabled, the state can get lost when, on a UP system: Thread 1 uses the VFP Context switch occurs to thread 2, VFP is disabled but the VFP context is not saved Thread 2 initiates suspend vfp_pm_suspend is called with the VFP disabled, and the unsaved VFP context of Thread 1 in the registers Modify vfp_pm_suspend to save the VFP context whenever vfp_current_hw_state is not NULL. Includes a fix from Ido Yariv <ido@wizery.com>, who pointed out that on SMP systems, the state pointer can be pointing to a freed task struct if a task exited on another cpu, fixed by using #ifndef CONFIG_SMP in the new if clause. Cc: Barry Song <bs14@csr.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ido Yariv <ido@wizery.com> Cc: Daniel Drake <dsd@laptop.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Colin Cross <ccross@android.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Colin Cross authored
commit a84b895a upstream. vfp_pm_suspend runs on each cpu, only clear the hardware state pointer for the current cpu. Prevents a possible crash if one cpu clears the hw state pointer when another cpu has already checked if it is valid. Signed-off-by: Colin Cross <ccross@android.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Will Deacon authored
commit a76d7bd9 upstream. The open-coded mutex implementation for ARMv6+ cores suffers from a severe lack of barriers, so in the uncontended case we don't actually protect any accesses performed during the critical section. Furthermore, the code is largely a duplication of the ARMv6+ atomic_dec code but optimised to remove a branch instruction, as the mutex fastpath was previously inlined. Now that this is executed out-of-line, we can reuse the atomic access code for the locking (in fact, we use the xchg code as this produces shorter critical sections). This patch uses the generic xchg based implementation for mutexes on ARMv6+, which introduces barriers to the lock/unlock operations and also has the benefit of removing a fair amount of inline assembly code. Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Nicolas Pitre <nico@linaro.org> Reported-by: Shan Kang <kangshan0910@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Shawn Guo authored
commit 98bd8b96 upstream. The CPU will endlessly spin at the end of machine_halt and machine_restart calls. However, this will lead to a soft lockup warning after about 20 seconds, if CONFIG_LOCKUP_DETECTOR is enabled, as system timer is still alive. Disable interrupt before going to spin endlessly, so that the lockup warning will never be seen. Reported-by: Marek Vasut <marex@denx.de> Signed-off-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Stanislav Kinsbursky authored
commit caea33da upstream. Without this patch kernel will panic on LockD start, because lockd_up() checks lockd_up_net() result for negative value. From my pow it's better to return negative value from rpcbind routines instead of replacing all such checks like in lockd_up(). Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Ryusuke Konishi authored
commit 572d8b39 upstream. An fs-thaw ioctl causes deadlock with a chcp or mkcp -s command: chcp D ffff88013870f3d0 0 1325 1324 0x00000004 ... Call Trace: nilfs_transaction_begin+0x11c/0x1a0 [nilfs2] wake_up_bit+0x20/0x20 copy_from_user+0x18/0x30 [nilfs2] nilfs_ioctl_change_cpmode+0x7d/0xcf [nilfs2] nilfs_ioctl+0x252/0x61a [nilfs2] do_page_fault+0x311/0x34c get_unmapped_area+0x132/0x14e do_vfs_ioctl+0x44b/0x490 __set_task_blocked+0x5a/0x61 vm_mmap_pgoff+0x76/0x87 __set_current_blocked+0x30/0x4a sys_ioctl+0x4b/0x6f system_call_fastpath+0x16/0x1b thaw D ffff88013870d890 0 1352 1351 0x00000004 ... Call Trace: rwsem_down_failed_common+0xdb/0x10f call_rwsem_down_write_failed+0x13/0x20 down_write+0x25/0x27 thaw_super+0x13/0x9e do_vfs_ioctl+0x1f5/0x490 vm_mmap_pgoff+0x76/0x87 sys_ioctl+0x4b/0x6f filp_close+0x64/0x6c system_call_fastpath+0x16/0x1b where the thaw ioctl deadlocked at thaw_super() when called while chcp was waiting at nilfs_transaction_begin() called from nilfs_ioctl_change_cpmode(). This deadlock is 100% reproducible. This is because nilfs_ioctl_change_cpmode() first locks sb->s_umount in read mode and then waits for unfreezing in nilfs_transaction_begin(), whereas thaw_super() locks sb->s_umount in write mode. The locking of sb->s_umount here was intended to make snapshot mounts and the downgrade of snapshots to checkpoints exclusive. This fixes the deadlock issue by replacing the sb->s_umount usage in nilfs_ioctl_change_cpmode() with a dedicated mutex which protects snapshot mounts. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dan Rosenberg authored
commit 3715c530 upstream. When using ALT+SysRq+Q all the pointers are replaced with "pK-error" like this: [23153.208033] .base: pK-error with echo h > /proc/sysrq-trigger it works: [23107.776363] .base: ffff88023e60d540 The intent behind this behavior was to return "pK-error" in cases where the %pK format specifier was used in interrupt context, because the CAP_SYSLOG check wouldn't be meaningful. Clearly this should only apply when kptr_restrict is actually enabled though. Reported-by: Stevie Trujillo <stevie.trujillo@gmail.com> Signed-off-by: Dan Rosenberg <dan.j.rosenberg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Greg Pearson authored
commit 6c4088ac upstream. efi_setup_pcdp_console() is called during boot to parse the HCDP/PCDP EFI system table and setup an early console for printk output. The routine uses ioremap/iounmap to setup access to the HCDP/PCDP table information. The call to ioremap is happening early in the boot process which leads to a panic on x86_64 systems: panic+0x01ca do_exit+0x043c oops_end+0x00a7 no_context+0x0119 __bad_area_nosemaphore+0x0138 bad_area_nosemaphore+0x000e do_page_fault+0x0321 page_fault+0x0020 reserve_memtype+0x02a1 __ioremap_caller+0x0123 ioremap_nocache+0x0012 efi_setup_pcdp_console+0x002b setup_arch+0x03a9 start_kernel+0x00d4 x86_64_start_reservations+0x012c x86_64_start_kernel+0x00fe This replaces the calls to ioremap/iounmap in efi_setup_pcdp_console() with calls to early_ioremap/early_iounmap which can be called during early boot. This patch was tested on an x86_64 prototype system which uses the HCDP/PCDP table for early console setup. Signed-off-by: Greg Pearson <greg.pearson@hp.com> Acked-by: Khalid Aziz <khalid.aziz@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
NeilBrown authored
commit b7219ccb upstream. If a resync of a RAID1 array with 2 devices finds a known bad block one device it will neither read from, or write to, that device for this block offset. So there will be one read_target (The other device) and zero write targets. This condition causes md/raid1 to abort the resync assuming that it has finished - without known bad blocks this would be true. When there are no write targets because of the presence of bad blocks we should only skip over the area covered by the bad block. RAID10 already gets this right, raid1 doesn't. Or didn't. As this can cause a 'sync' to abort early and appear to have succeeded it could lead to some data corruption, so it suitable for -stable. Reported-by: Alexander Lyakas <alex.bolshoy@gmail.com> Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jeff Layton authored
commit 5cf02d09 upstream. We've had some reports of a deadlock where rpciod ends up with a stack trace like this: PID: 2507 TASK: ffff88103691ab40 CPU: 14 COMMAND: "rpciod/14" #0 [ffff8810343bf2f0] schedule at ffffffff814dabd9 #1 [ffff8810343bf3b8] nfs_wait_bit_killable at ffffffffa038fc04 [nfs] #2 [ffff8810343bf3c8] __wait_on_bit at ffffffff814dbc2f #3 [ffff8810343bf418] out_of_line_wait_on_bit at ffffffff814dbcd8 #4 [ffff8810343bf488] nfs_commit_inode at ffffffffa039e0c1 [nfs] #5 [ffff8810343bf4f8] nfs_release_page at ffffffffa038bef6 [nfs] #6 [ffff8810343bf528] try_to_release_page at ffffffff8110c670 #7 [ffff8810343bf538] shrink_page_list.clone.0 at ffffffff81126271 #8 [ffff8810343bf668] shrink_inactive_list at ffffffff81126638 #9 [ffff8810343bf818] shrink_zone at ffffffff8112788f #10 [ffff8810343bf8c8] do_try_to_free_pages at ffffffff81127b1e #11 [ffff8810343bf958] try_to_free_pages at ffffffff8112812f #12 [ffff8810343bfa08] __alloc_pages_nodemask at ffffffff8111fdad #13 [ffff8810343bfb28] kmem_getpages at ffffffff81159942 #14 [ffff8810343bfb58] fallback_alloc at ffffffff8115a55a #15 [ffff8810343bfbd8] ____cache_alloc_node at ffffffff8115a2d9 #16 [ffff8810343bfc38] kmem_cache_alloc at ffffffff8115b09b #17 [ffff8810343bfc78] sk_prot_alloc at ffffffff81411808 #18 [ffff8810343bfcb8] sk_alloc at ffffffff8141197c #19 [ffff8810343bfce8] inet_create at ffffffff81483ba6 #20 [ffff8810343bfd38] __sock_create at ffffffff8140b4a7 #21 [ffff8810343bfd98] xs_create_sock at ffffffffa01f649b [sunrpc] #22 [ffff8810343bfdd8] xs_tcp_setup_socket at ffffffffa01f6965 [sunrpc] #23 [ffff8810343bfe38] worker_thread at ffffffff810887d0 #24 [ffff8810343bfee8] kthread at ffffffff8108dd96 #25 [ffff8810343bff48] kernel_thread at ffffffff8100c1ca rpciod is trying to allocate memory for a new socket to talk to the server. The VM ends up calling ->releasepage to get more memory, and it tries to do a blocking commit. That commit can't succeed however without a connected socket, so we deadlock. Fix this by setting PF_FSTRANS on the workqueue task prior to doing the socket allocation, and having nfs_release_page check for that flag when deciding whether to do a commit call. Also, set PF_FSTRANS unconditionally in rpc_async_schedule since that function can also do allocations sometimes. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-