- 20 Oct, 2011 8 commits
-
-
Lukas Czerner authored
We should retirn EINVAL if the start is beyond the end of the file system in the btrfs_ioctl_fitrim(). Fix that by adding the appropriate check for it. Also in the btrfs_trim_fs() it is possible that len+start might overflow if big values are passed. Fix it by decrementing the len so that start+len is equal to the file system size in the worst case. Signed-off-by: Lukas Czerner <lczerner@redhat.com>
-
Li Zefan authored
We won't defrag an extent, if it's bigger than the threshold we specified and there's no small extent before it, but actually the code doesn't work this way. There are three bugs: - When should_defrag_range() decides we should keep on defragmenting an extent, last_len is not incremented. (old bug) - The length that passes to should_defrag_range() is not the length we're going to defrag. (new bug) - We always defrag 256K bytes data, and a big extent can be part of this range. (new bug) For a file with 4 extents: | 4K | 4K | 256K | 256K | The result of defrag with (the default) 256K extent thresh should be: | 264K | 256K | but with those bugs, we'll get: | 520K | Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
-
Jeff Liu authored
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
-
Li Zefan authored
It's off-by-one, and thus we may skip the last page while defragmenting. An example case: # create /mnt/file with 2 4K file extents # btrfs fi defrag /mnt/file # sync # filefrag /mnt/file /mnt/file: 2 extents found So it's not defragmented. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
-
Li Zefan authored
Don't use inode->i_size directly, since we're not holding i_mutex. This also fixes another bug, that i_size can change after it's checked against 0 and then (i_size - 1) can be negative. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
-
Li Zefan authored
There's an off-by-one bug: # create a file with lots of 4K file extents # btrfs fi defrag /mnt/file # sync # filefrag -v /mnt/file Filesystem type is: 9123683e File size of /mnt/file is 1228800 (300 blocks, blocksize 4096) ext logical physical expected length flags 0 0 3372 64 1 64 3136 3435 1 2 65 3436 3136 64 3 129 3201 3499 1 4 130 3500 3201 64 5 194 3266 3563 1 6 195 3564 3266 64 7 259 3331 3627 1 8 260 3628 3331 40 eof After this patch: ... # filefrag -v /mnt/file Filesystem type is: 9123683e File size of /mnt/file is 1228800 (300 blocks, blocksize 4096) ext logical physical expected length flags 0 0 3372 300 eof /mnt/file: 1 extent found Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
-
Diego Calleja authored
kmemleak found this: unreferenced object 0xffff8801b64af968 (size 512): comm "btrfs-cleaner", pid 3317, jiffies 4306810886 (age 903.272s) hex dump (first 32 bytes): 00 82 01 07 00 ea ff ff c0 83 01 07 00 ea ff ff ................ 80 82 01 07 00 ea ff ff c0 87 01 07 00 ea ff ff ................ backtrace: [<ffffffff816875cc>] kmemleak_alloc+0x5c/0xc0 [<ffffffff8114aec3>] kmem_cache_alloc_trace+0x163/0x240 [<ffffffff8127a290>] btrfs_defrag_file+0xf0/0xb20 [<ffffffff8125d9a5>] btrfs_run_defrag_inodes+0x165/0x210 [<ffffffff812479d7>] cleaner_kthread+0x177/0x190 [<ffffffff81075c7d>] kthread+0x8d/0xa0 [<ffffffff816af5f4>] kernel_thread_helper+0x4/0x10 [<ffffffffffffffff>] 0xffffffffffffffff "pages" is not always freed. Fix it removing the unnecesary additional return. Signed-off-by: Diego Calleja <diegocg@gmail.com>
-
Yan, Zheng authored
Offset field in data extent backref can underflow if clone range ioctl is used. We can reliably detect the underflow because max file size is limited to 2^63 and max data extent size is limited by block group size. Signed-off-by: Zheng Yan <zheng.z.yan@intel.com>
-
- 19 Oct, 2011 32 commits
-
-
Josef Bacik authored
I noticed we had a little bit of latency when writing out the space cache inodes. It's because we flush it before we write anything in case we have dirty pages already there. This doesn't matter though since we're just going to overwrite the space, and there really shouldn't be any dirty pages anyway. This makes some of my tests run a little bit faster. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Mitch kept hitting a panic because he was getting ENOSPC. One of my previous patches makes it so we are much better at not allocating new metadata chunks. Unfortunately coupled with the overcommit patch this works us into a bit of a problem if we are removing a bunch of space and end up chewing up all of our space with pinned extents. We can allocate chunks fine and overflow is ok, but the only way to reclaim this space is to commit the transaction. So if we go to overcommit, first check and see how much pinned space we have. If we have more than 80% of the free space chewed up with pinned extents, just commit the transaction, this will free up enough space for our reservation and we won't have this problem anymore. With this patch Mitch's test doesn't blow up anymore. Thanks, Reported-and-tested-by: Mitch Harder <mitch.harder@sabayonlinux.org> Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Currently btrfs_block_rsv_check does 2 things, it will either refill a block reserve like in the truncate or refill case, or it will check to see if there is enough space in the global reserve and possibly refill it. However because of overcommit we could be well overcommitting ourselves just to try and refill the global reserve, when really we should just be committing the transaction. So breack this out into btrfs_block_rsv_refill and btrfs_block_rsv_check. Refill will try to reserve more metadata if it can and btrfs_block_rsv_check will not, it will only tell you if the factor of the total space is still reserved. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
In __unlink_start_trans() if we don't have enough room for a reservation we will check to see if the unlink will free up space. If it does that's great, but we will still could add an orphan item, so we need to reserve enough space to add the orphan item. Do this and migrate the space the global reserve so it all works out right. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
We started setting trans->block_rsv = NULL to allow the delayed refs flushing stuff to use the right block_rsv and then just made btrfs_trans_release_metadata() unconditionally use the trans block rsv. The problem with this is we need to reserve some space in the transaction and then migrate it to the global block rsv, so we need to be able to free that out properly. So instead just move btrfs_trans_release_metadata() before the delayed ref flushing and use trans->block_rsv for the freeing. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Currently we only allow a maximum of 2 megabytes of pages to be flushed at a time. This was ok before, but now we have overcommit which will screw us in a heartbeat if we are quickly filling the disk. So instead pick either 2 megabytes or the number of pages we need to reclaim to be safe again, which ever is larger. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
The only way we actually reclaim delalloc space is waiting for the IO to completely finish. Usually we kick off a bunch of IO and wait for a little bit and hope we can make our reservation, and usually this works out pretty well. With overcommit however we can get seriously underwater if we're filling up the disk quickly, so we need to be able to force the delalloc shrinker to wait for the ordered IO to finish to give us a better chance of actually reclaiming enough space to get our reservation. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Before the only reason to commit the transaction to recover space in reserve_metadata_bytes() was if there were enough pinned_bytes to satisfy our reservation. But now we have the delayed inode stuff which will hold it's reservations until we commit the transaction. So say we max out our reservation by creating a bunch of files but don't have any pinned bytes we will ENOSPC out early even though we could commit the transaction and get that space back. So now just unconditionally commit the transaction since currently there is no way to know how much metadata space is being reserved by delayed inode stuff. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Recently I changed the xattr stuff to unconditionally set the xattr first in case the xattr didn't exist yet. This has introduced a regression when setting an xattr that already exists with a large value. If we find the key we are looking for split_leaf will assume that we're extending that item. The problem is the size we pass down to btrfs_search_slot includes the size of the item already, so if we have the largest xattr we can possibly have plus the size of the xattr item plus the xattr item that btrfs_search_slot we'd overflow the leaf. Thankfully this is not what we're doing, but split_leaf doesn't know this so it just returns EOVERFLOW. So in the xattr code we need to check and see if we got back EOVERFLOW and treat it like EEXIST since that's really what happened. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Our unlink reservations were a bit much, we were reserving 10 and I only count 8 possible items we're touching, so comment what we're reserving for and fix the count value. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
I noticed recently that my overcommit patch was causing one of my enospc tests to fail 25% of the time with early ENOSPC. This is because my overcommit patch was letting us go way over board, but it wasn't waiting long enough to let the delalloc shrinker do it's job. The problem is we just start writeback and wait a little bit hoping we flush enough, but we only free up delalloc space by having the writes complete all the way. We do this by waiting for ordered extents, which we do but only if we already free'd enough for the reservation, which isn't right, we should flush ordered extents if we didn't reclaim enough in case that will push us over the edge. With this patch I've not seen a failure in this enospc test after running it in a loop for an hour. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Yeah yeah I know this is how we used to do it and then I changed it, but damnit I'm changing it back. The fact is that writing out checksums will modify metadata, which could cause us to dirty a block group we've already written out, so we have to truncate it and all of it's checksums and re-write it which will write new checksums which could dirty a blockg roup that has already been written and you see where I'm going with this? This can cause unmount or really anything that depends on a transaction to commit to take it's sweet damned time to happen. So go back to the way it was, only this time we're specifically setting NODATACOW because we can't go through the COW pathway anyway and we're doing our own built-in cow'ing by truncating the free space cache. The other new thing is once we truncate the old cache and preallocate the new space, we don't need to do that song and dance at all for the rest of the transaction, we can just overwrite the existing space with the new cache if the block group changes for whatever reason, and the NODATACOW will let us do this fine. So keep track of which transaction we last cleared our cache in and if we cleared it in this transaction just say we're all setup and carry on. This survives xfstests and stress.sh. The inode cache will continue to use the normal csum infrastructure since it only gets written once and there will be no more modifications to the fs tree in a transaction commit. Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
My overcommit stuff can be a little racy when we're filling up the disk with fs_mark and we overcommit into things that quickly get used up for data. So use num_bytes to see if we have enough available space so we're less likely to overcommit ourselves out of the ability to make reservations. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
We need to check the return value of filemap_write_and_wait in the space cache writeout code. Also don't set the inode's generation until we're sure nothing else is going to fail. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
In writing and reading the space cache we have one big loop that keeps track of which page we are on and then a bunch of sizeable loops underneath this big loop to try and read/write out properly. Especially in the write case this makes things hugely complicated and hard to follow, and makes our error checking and recovery equally as complex. So add a io_ctl struct with a bunch of helpers to keep track of the pages we have, where we are, if we have enough space etc. This unifies how we deal with the pages we're writing and keeps all the messy tracking internal. This allows us to kill the big loops in both the read and write case and makes reviewing and chaning the write and read paths much simpler. I've run xfstests and stress.sh on this code and it survives. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
I noticed a slight bug where we will not bother writing out the block group cache's space cache if it's space tree is empty. Since it could have a cluster or pinned extents that need to be written out this is just not a valid test. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Some users have requested this and I've found I needed a way to disable cache loading without actually clearing the cache, so introduce the no_space_cache option. Before we check the super blocks cache generation field and if it was populated we always turned space caching on. Now we check this and set the space cache option on, and then parse the mount options so that if we want it off it get's turned off. Then we check the mount option all the places we do the caching work instead of checking the super's cache generation. This makes things more consistent and lets us turn space caching off. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Xfstests 79 was failing because we were inheriting the S_APPEND flag when we weren't supposed to. There isn't any specific documentation on this so I'm taking the test as the standard of how things work, and having S_APPEND set on a directory doesn't mean that S_APPEND gets inherited by its children according to this test. So only inherit btrfs specific things. This will let us set compress/nocompress on specific directories and everything in the directories will inherit this flag, same with nodatacow. With this patch test 79 passes. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
One of the things that kills us is the fact that our ENOSPC reservations are horribly over the top in most normal cases. There isn't too much that can be done about this because when we are completely full we really need them to work like this so we don't under reserve. However if there is plenty of unallocated chunks on the disk we can use that to gauge how much we can overcommit. So this patch adds chunk free space accounting so we always know how much unallocated space we have. Then if we fail to make a reservation within our allocated space, check to see if we can overcommit. In the normal flushing case (like with delalloc metadata reservations) we'll take the free space and divide it by 2 if our metadata profile is setup for DUP or any of those, and then divide it by 8 to make sure we don't overcommit too much. Then if we're in a non-flushing case (we really need this reservation now!) we only limit ourselves to half of the free space. This makes this fio test [torrent] filename=torrent-test rw=randwrite size=4g ioengine=sync directory=/mnt/btrfs-test go from taking around 45 minutes to 10 seconds on my freshly formatted 3 TiB file system. This doesn't seem to break my other enospc tests, but could really use some more testing as this is a super scary change. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
I noticed while running xfstests 83 that if we didn't have enough space to delete our inode the orphan cleanup would just loop. This is because it keeps finding the same orphan item and keeps trying to kill it but can't because we don't get an error back from iput for deleting the inode. So keep track of the last guy we tried to kill, if it's the same as the one we're trying to kill currently we know we are having problems and can just error out. I don't have a way to test this so look hard and make sure it's right. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Xfstests 83 really stresses our ENOSPC since it uses a 100mb fs which ends up with the mixed block group stuff. Because of this we can run into a situation where we don't have enough space to delete inodes, or even worse we can't free the inodes when we next mount the fs which causes the orphan code to lose its mind. So if we fail to make our reservation, steal from the global reserve. The global reserve will end up taking up the entire rest of the free space on the fs in this worst case so there really is no other option. With this patch test 83 doesn't freak out. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
While looking for a performance regression a user was complaining about, I noticed that we had a regression with the varmail test of filebench. This was introduced by 0d10ee2e which keeps us from calling writepages in writepage. This is a correct change, however it happens to help the varmail test because we write out in larger chunks. This is largly to do with how we write out dirty pages for each transaction. If you run filebench with load varmail set $dir=/mnt/btrfs-test run 60 prior to this patch you would get ~1420 ops/second, but with the patch you get ~1200 ops/second. This is a 16% decrease. So since we know the range of dirty pages we want to write out, don't write out in one page chunks, write out in ranges. So to do this we call filemap_fdatawrite_range() on the range of bytes. Then we convert the DIRTY extents to NEED_WAIT extents. When we then call btrfs_wait_marked_extents() we only have to filemap_fdatawait_range() on that range and clear the NEED_WAIT extents. This doesn't get us back to our original speeds, but I've been seeing ~1380 ops/second, which is a <5% regression as opposed to a >15% regression. That is acceptable given that the original commit greatly reduces our latency to begin with. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
If I have a range where I know a certain bit is and I want to set it to another bit the only option I have is to call set and then clear bit, which will result in 2 tree searches. This is inefficient, so introduce convert_extent_bit which will go through and set the bit I want and clear the old bit I don't want. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
There is a bug that may lead to early ENOSPC in our reservation code. We've been checking against num_bytes which may be above and beyond what we want to actually reserve, which could give us a false ENOSPC. Fix this by making sure the unused space is above how much we want to reserve and not how much we're trying to flush. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
In fixing how we deal with bad inodes, we had a regression in the orphan cleanup code, since it expects to get a bad inode back. So fix it to deal with getting -ESTALE back by deleting the orphan item manually and moving on. Thanks, Reported-by: Simon Kirby <sim@hostway.ca> Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Johannes pointed out we were allocating only kernel pages for doing writes, which is kind of a big deal if you are on 32bit and have more than a gig of ram. So fix our allocations to use the mapping's gfp but still clear __GFP_FS so we don't re-enter. Thanks, Reported-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
I kept getting warnings from evict because we were calling btrfs_start_transaction() with a transaction already started when doing a balance. This is because we remove a block group which requires a transaction, and the put the last reference on the cache inode. Instead of doing this we need to delay the iput so it is done not within a transaction having started. This gets rid of our warnings. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Checksums are charged in 2 different ways. The first case is when we're writing to the disk, we account for the new checksums with the delalloc block rsv. In order for this to work we check if we're allocating a block for the csum root and if trans->block_rsv == the delalloc block rsv. But when we're deleting the csums because of cow, this is charged to the global block rsv, and is done when we run the delayed refs. So we need to make sure that trans->block_rsv == NULL when running the delayed refs. So set it to NULL and reset it in should_end_transaction, and set it to NULL in commit_transaction. This got rid of the ridiculous amount of warnings I was seeing when trying to do a balance. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
The only thing that we need to have a trans handle for is in reserve_metadata_bytes and thats to know how much flushing we can do. So instead of passing it around, just check current->journal_info for a trans_handle so we know if we can commit a transaction to try and free up space or not. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Since the durable block rsv stuff has been killed there is no need to get the block_rsv in btrfs_free_tree_block anymore. Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
The alloc warnings everybody has been seeing is because we have been reserving space for csums, but we weren't actually using that space. So make get_block_rsv() return the trans->block_rsv if we're modifying the csum root. Also set the trans->block_rsv to NULL so that if we modify the csum root when running delayed ref's that comes out of the global reserve like it's supposed to. With this patch I'm not seeing those alloc warnings anymore. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
Since free space inodes now use normal checksumming we need to make sure to account for their metadata use. So reserve metadata space, and then if we fail to write out the metadata we can just release it, otherwise it will be freed up when the io completes. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-