You need to sign in or sign up before continuing.
ha_partition.h 58.5 KB
Newer Older
1 2 3
#ifndef HA_PARTITION_INCLUDED
#define HA_PARTITION_INCLUDED

Kent Boortz's avatar
Kent Boortz committed
4
/*
Sergei Golubchik's avatar
Sergei Golubchik committed
5
   Copyright (c) 2005, 2012, Oracle and/or its affiliates.
Sergei Golubchik's avatar
Sergei Golubchik committed
6
   Copyright (c) 2009, 2013, Monty Program Ab & SkySQL Ab.
7

8 9 10
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.
11

12 13 14 15
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
16

17 18 19
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */
20

21 22 23
#include "sql_partition.h"      /* part_id_range, partition_element */
#include "queues.h"             /* QUEUE */

24
#define PARTITION_BYTES_IN_POS 2
25

26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/** Struct used for partition_name_hash */
typedef struct st_part_name_def
{
  uchar *partition_name;
  uint length;
  uint32 part_id;
  my_bool is_subpart;
} PART_NAME_DEF;

/** class where to save partitions Handler_share's */
class Parts_share_refs
{
public:
  uint num_parts;                              /**< Size of ha_share array */
  Handler_share **ha_shares;                   /**< Storage for each part */
  Parts_share_refs()
  {
    num_parts= 0;
    ha_shares= NULL;
  }
  ~Parts_share_refs()
  {
    uint i;
    for (i= 0; i < num_parts; i++)
Eugene Kosov's avatar
Eugene Kosov committed
51 52
      delete ha_shares[i];
    delete[] ha_shares;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  }
  bool init(uint arg_num_parts)
  {
    DBUG_ASSERT(!num_parts && !ha_shares);
    num_parts= arg_num_parts;
    /* Allocate an array of Handler_share pointers */
    ha_shares= new Handler_share *[num_parts];
    if (!ha_shares)
    {
      num_parts= 0;
      return true;
    }
    memset(ha_shares, 0, sizeof(Handler_share*) * num_parts);
    return false;
  }
};

70 71 72 73 74 75 76 77 78 79 80
class ha_partition;

/* Partition Full Text Search info */
struct st_partition_ft_info
{
  struct _ft_vft        *please;
  st_partition_ft_info  *next;
  ha_partition          *file;
  FT_INFO               **part_ft_info;
};

81

Sergei Golubchik's avatar
Sergei Golubchik committed
82
#ifdef HAVE_PSI_MUTEX_INTERFACE
83
extern PSI_mutex_key key_partition_auto_inc_mutex;
Sergei Golubchik's avatar
Sergei Golubchik committed
84
#endif
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/**
  Partition specific Handler_share.
*/
class Partition_share : public Handler_share
{
public:
  bool auto_inc_initialized;
  mysql_mutex_t auto_inc_mutex;                /**< protecting auto_inc val */
  ulonglong next_auto_inc_val;                 /**< first non reserved value */
  /**
    Hash of partition names. Initialized in the first ha_partition::open()
    for the table_share. After that it is read-only, i.e. no locking required.
  */
  bool partition_name_hash_initialized;
  HASH partition_name_hash;
  /** Storage for each partitions Handler_share */
Eugene Kosov's avatar
Eugene Kosov committed
102
  Parts_share_refs partitions_share_refs;
103 104 105 106 107 108 109 110 111 112 113
  Partition_share()
    : auto_inc_initialized(false),
    next_auto_inc_val(0),
    partition_name_hash_initialized(false),
    partition_names(NULL)
  {
    mysql_mutex_init(key_partition_auto_inc_mutex,
                    &auto_inc_mutex,
                    MY_MUTEX_INIT_FAST);
  }

114 115 116
  ~Partition_share()
  {
    mysql_mutex_destroy(&auto_inc_mutex);
117 118 119 120
    if (partition_names)
    {
      my_free(partition_names);
    }
121
    if (partition_name_hash_initialized)
122
    {
123
      my_hash_free(&partition_name_hash);
124
    }
125
  }
126
  
127
  bool init(uint num_parts);
128 129 130 131 132 133 134 135 136 137 138 139 140 141

  /**
    Release reserved auto increment values not used.
    @param thd             Thread.
    @param table_share     Table Share
    @param next_insert_id  Next insert id (first non used auto inc value).
    @param max_reserved    End of reserved auto inc range.
  */
  void release_auto_inc_if_possible(THD *thd, TABLE_SHARE *table_share,
                                    const ulonglong next_insert_id,
                                    const ulonglong max_reserved);

  /** lock mutex protecting auto increment value next_auto_inc_val. */
  inline void lock_auto_inc()
142 143 144
  {
    mysql_mutex_lock(&auto_inc_mutex);
  }
145 146
  /** unlock mutex protecting auto increment value next_auto_inc_val. */
  inline void unlock_auto_inc()
147 148 149
  {
    mysql_mutex_unlock(&auto_inc_mutex);
  }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  /**
    Populate partition_name_hash with partition and subpartition names
    from part_info.
    @param part_info  Partition info containing all partitions metadata.

    @return Operation status.
      @retval false Success.
      @retval true  Failure.
  */
  bool populate_partition_name_hash(partition_info *part_info);
  /** Get partition name.

  @param part_id  Partition id (for subpartitioned table only subpartition
                  names will be returned.)

  @return partition name or NULL if error.
  */
  const char *get_partition_name(size_t part_id) const;
private:
  const uchar **partition_names;
  /**
    Insert [sub]partition name into  partition_name_hash
    @param name        Partition name.
    @param part_id     Partition id.
    @param is_subpart  True if subpartition else partition.

    @return Operation status.
      @retval false Success.
      @retval true  Failure.
  */
  bool insert_partition_name_in_hash(const char *name,
                                     uint part_id,
                                     bool is_subpart);
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
typedef struct st_partition_key_multi_range
{
  uint id;
  uchar *key[2];
  uint length[2];
  KEY_MULTI_RANGE key_multi_range;
  range_id_t ptr;
  st_partition_key_multi_range *next;
} PARTITION_KEY_MULTI_RANGE;


typedef struct st_partition_part_key_multi_range
{
  PARTITION_KEY_MULTI_RANGE *partition_key_multi_range;
  st_partition_part_key_multi_range *next;
} PARTITION_PART_KEY_MULTI_RANGE;


class ha_partition;
typedef struct st_partition_part_key_multi_range_hld
{
  ha_partition *partition;
  uint32 part_id;
  PARTITION_PART_KEY_MULTI_RANGE *partition_part_key_multi_range;
} PARTITION_PART_KEY_MULTI_RANGE_HLD;

211

212
extern "C" int cmp_key_part_id(void *key_p, uchar *ref1, uchar *ref2);
213 214
extern "C" int cmp_key_rowid_part_id(void *ptr, uchar *ref1, uchar *ref2);

215 216 217 218 219 220 221
class ha_partition :public handler
{
private:
  enum partition_index_scan_type
  {
    partition_index_read= 0,
    partition_index_first= 1,
222
    partition_index_last= 3,
Sergei Golubchik's avatar
Sergei Golubchik committed
223 224
    partition_index_read_last= 4,
    partition_read_range = 5,
225 226 227
    partition_no_index_scan= 6,
    partition_read_multi_range = 7,
    partition_ft_read= 8
228 229
  };
  /* Data for the partition handler */
unknown's avatar
unknown committed
230 231
  int  m_mode;                          // Open mode
  uint m_open_test_lock;                // Open test_if_locked
232
  uchar *m_file_buffer;                 // Content of the .par file
233
  char *m_name_buffer_ptr;		// Pointer to first partition name
234
  MEM_ROOT m_mem_root;
unknown's avatar
WL#2936  
unknown committed
235
  plugin_ref *m_engine_array;           // Array of types of the handlers
236
  handler **m_file;                     // Array of references to handler inst.
unknown's avatar
unknown committed
237
  uint m_file_tot_parts;                // Debug
unknown's avatar
unknown committed
238 239 240
  handler **m_new_file;                 // Array of references to new handlers
  handler **m_reorged_file;             // Reorganised partitions
  handler **m_added_file;               // Added parts kept for errors
241
  LEX_CSTRING *m_connect_string;
242 243
  partition_info *m_part_info;          // local reference to partition
  Field **m_part_field_array;           // Part field array locally to save acc
244
  uchar *m_ordered_rec_buffer;          // Row and key buffer for ord. idx scan
245 246
  st_partition_ft_info *ft_first;
  st_partition_ft_info *ft_current;
247 248 249 250 251 252 253 254 255
  /*
    Current index.
    When used in key_rec_cmp: If clustered pk, index compare
    must compare pk if given index is same for two rows.
    So normally m_curr_key_info[0]= current index and m_curr_key[1]= NULL,
    and if clustered pk, [0]= current index, [1]= pk, [2]= NULL
  */
  KEY *m_curr_key_info[3];              // Current index
  uchar *m_rec0;                        // table->record[0]
256
  const uchar *m_err_rec;               // record which gave error
unknown's avatar
unknown committed
257
  QUEUE m_queue;                        // Prio queue used by sorted read
258 259 260 261 262

  /*
    Length of an element in m_ordered_rec_buffer. The elements are composed of

      [part_no] [table->record copy] [underlying_table_rowid]
263

264 265
    underlying_table_rowid is only stored when the table has no extended keys.
  */
266
  size_t m_priority_queue_rec_len;
267 268 269 270 271 272 273

  /*
    If true, then sorting records by key value also sorts them by their
    underlying_table_rowid.
  */
  bool m_using_extended_keys;

274 275 276 277 278 279 280
  /*
    Since the partition handler is a handler on top of other handlers, it
    is necessary to keep information about what the underlying handler
    characteristics is. It is not possible to keep any handler instances
    for this since the MySQL Server sometimes allocating the handler object
    without freeing them.
  */
281 282 283 284 285 286 287 288
  enum enum_handler_status
  {
    handler_not_initialized= 0,
    handler_initialized,
    handler_opened,
    handler_closed
  };
  enum_handler_status m_handler_status;
289

unknown's avatar
unknown committed
290
  uint m_reorged_parts;                  // Number of reorganised parts
291
  uint m_tot_parts;                      // Total number of partitions;
292
  uint m_num_locks;                       // For engines like ha_blackhole, which needs no locks
Mattias Jonsson's avatar
Mattias Jonsson committed
293
  uint m_last_part;                      // Last file that we update,write,read
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  part_id_range m_part_spec;             // Which parts to scan
  uint m_scan_value;                     // Value passed in rnd_init
                                         // call
  uint m_ref_length;                     // Length of position in this
                                         // handler object
  key_range m_start_key;                 // index read key range
  enum partition_index_scan_type m_index_scan_type;// What type of index
                                                   // scan
  uint m_top_entry;                      // Which partition is to
                                         // deliver next result
  uint m_rec_length;                     // Local copy of record length

  bool m_ordered;                        // Ordered/Unordered index scan
  bool m_pkey_is_clustered;              // Is primary key clustered
  bool m_create_handler;                 // Handler used to create table
  bool m_is_sub_partitioned;             // Is subpartitioned
  bool m_ordered_scan_ongoing;
311
  bool m_rnd_init_and_first;
312
  bool m_ft_init_and_first;
313

314
  /*
315 316 317 318 319
    If set, this object was created with ha_partition::clone and doesn't
    "own" the m_part_info structure.
  */
  ha_partition *m_is_clone_of;
  MEM_ROOT *m_clone_mem_root;
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  /*
    We keep track if all underlying handlers are MyISAM since MyISAM has a
    great number of extra flags not needed by other handlers.
  */
  bool m_myisam;                         // Are all underlying handlers
                                         // MyISAM
  /*
    We keep track of InnoDB handlers below since it requires proper setting
    of query_id in fields at index_init and index_read calls.
  */
  bool m_innodb;                        // Are all underlying handlers
                                        // InnoDB
  /*
    When calling extra(HA_EXTRA_CACHE) we do not pass this to the underlying
    handlers immediately. Instead we cache it and call the underlying
    immediately before starting the scan on the partition. This is to
    prevent allocating a READ CACHE for each partition in parallel when
    performing a full table scan on MyISAM partitioned table.
    This state is cleared by extra(HA_EXTRA_NO_CACHE).
  */
  bool m_extra_cache;
  uint m_extra_cache_size;
343 344
  /* The same goes for HA_EXTRA_PREPARE_FOR_UPDATE */
  bool m_extra_prepare_for_update;
345 346
  /* Which partition has active cache */
  uint m_extra_cache_part_id;
347 348 349 350 351 352 353

  void init_handler_variables();
  /*
    Variables for lock structures.
  */
  THR_LOCK_DATA lock;                   /* MySQL lock */

354 355 356 357 358 359
  bool auto_increment_lock;             /**< lock reading/updating auto_inc */
  /**
    Flag to keep the auto_increment lock through out the statement.
    This to ensure it will work with statement based replication.
  */
  bool auto_increment_safe_stmt_log_lock;
360 361 362 363 364
  /** For optimizing ha_start_bulk_insert calls */
  MY_BITMAP m_bulk_insert_started;
  ha_rows   m_bulk_inserted_rows;
  /** used for prediction of start_bulk_insert rows */
  enum_monotonicity_info m_part_func_monotonicity_info;
365
  part_id_range m_direct_update_part_spec;
366 367
  bool                m_pre_calling;
  bool                m_pre_call_use_parallel;
368 369 370
  /* Keep track of bulk access requests */
  bool                bulk_access_executing;

371 372 373 374 375 376
  /** keep track of locked partitions */
  MY_BITMAP m_locked_partitions;
  /** Stores shared auto_increment etc. */
  Partition_share *part_share;
  /** Temporary storage for new partitions Handler_shares during ALTER */
  List<Parts_share_refs> m_new_partitions_share_refs;
377 378 379 380 381 382
  /** Sorted array of partition ids in descending order of number of rows. */
  uint32 *m_part_ids_sorted_by_num_of_records;
  /* Compare function for my_qsort2, for reversed order. */
  static int compare_number_of_records(ha_partition *me,
                                       const uint32 *a,
                                       const uint32 *b);
383 384
  /** keep track of partitions to call ha_reset */
  MY_BITMAP m_partitions_to_reset;
385 386 387
  /** partitions that returned HA_ERR_KEY_NOT_FOUND. */
  MY_BITMAP m_key_not_found_partitions;
  bool m_key_not_found;
388 389
  List<String> *m_partitions_to_open;
  MY_BITMAP m_opened_partitions;
390 391 392
  /** This is one of the m_file-s that it guaranteed to be opened. */
  /**  It is set in open_read_partitions() */
  handler *m_file_sample;
393
public:
Monty's avatar
Monty committed
394 395 396 397
  handler **get_child_handlers()
  {
    return m_file;
  }
Monty's avatar
Monty committed
398 399 400 401 402 403 404 405
  virtual part_id_range *get_part_spec()
  {
    return &m_part_spec;
  }
  virtual uint get_no_current_part_id()
  {
    return NO_CURRENT_PART_ID;
  }
406
  Partition_share *get_part_share() { return part_share; }
407
  handler *clone(const char *name, MEM_ROOT *mem_root);
408
  virtual void set_part_info(partition_info *part_info)
unknown's avatar
unknown committed
409 410
  {
     m_part_info= part_info;
411
     m_is_sub_partitioned= part_info->is_sub_partitioned();
unknown's avatar
unknown committed
412
  }
413 414 415

  virtual void return_record_by_parent();

416 417 418 419 420 421 422 423 424 425 426
  /*
    -------------------------------------------------------------------------
    MODULE create/delete handler object
    -------------------------------------------------------------------------
    Object create/delete methode. The normal called when a table object
    exists. There is also a method to create the handler object with only
    partition information. This is used from mysql_create_table when the
    table is to be created and the engine type is deduced to be the
    partition handler.
    -------------------------------------------------------------------------
  */
427 428
    ha_partition(handlerton *hton, TABLE_SHARE * table);
    ha_partition(handlerton *hton, partition_info * part_info);
429 430 431
    ha_partition(handlerton *hton, TABLE_SHARE *share,
                 partition_info *part_info_arg,
                 ha_partition *clone_arg,
432
                 MEM_ROOT *clone_mem_root_arg);
433
   ~ha_partition();
434
   void ha_partition_init();
435 436 437 438 439 440
  /*
    A partition handler has no characteristics in itself. It only inherits
    those from the underlying handlers. Here we set-up those constants to
    enable later calls of the methods to retrieve constants from the under-
    lying handlers. Returns false if not successful.
  */
441
   bool initialize_partition(MEM_ROOT *mem_root);
442 443 444 445 446 447 448 449 450 451 452 453

  /*
    -------------------------------------------------------------------------
    MODULE meta data changes
    -------------------------------------------------------------------------
    Meta data routines to CREATE, DROP, RENAME table and often used at
    ALTER TABLE (update_create_info used from ALTER TABLE and SHOW ..).

    update_table_comment is used in SHOW TABLE commands to provide a
    chance for the handler to add any interesting comments to the table
    comments not provided by the users comment.

454
    create_partitioning_metadata is called before opening a new handler object
455 456 457 458 459 460
    with openfrm to call create. It is used to create any local handler
    object needed in opening the object in openfrm
    -------------------------------------------------------------------------
  */
  virtual int delete_table(const char *from);
  virtual int rename_table(const char *from, const char *to);
unknown's avatar
unknown committed
461 462
  virtual int create(const char *name, TABLE *form,
		     HA_CREATE_INFO *create_info);
463
  virtual int create_partitioning_metadata(const char *name,
464
                                   const char *old_name, int action_flag);
unknown's avatar
unknown committed
465
  virtual void update_create_info(HA_CREATE_INFO *create_info);
466
  virtual char *update_table_comment(const char *comment);
unknown's avatar
unknown committed
467 468
  virtual int change_partitions(HA_CREATE_INFO *create_info,
                                const char *path,
469 470
                                ulonglong * const copied,
                                ulonglong * const deleted,
471 472
                                const uchar *pack_frm_data,
                                size_t pack_frm_len);
unknown's avatar
unknown committed
473
  virtual int drop_partitions(const char *path);
unknown's avatar
unknown committed
474
  virtual int rename_partitions(const char *path);
475
  bool get_no_parts(const char *name, uint *num_parts)
unknown's avatar
unknown committed
476 477
  {
    DBUG_ENTER("ha_partition::get_no_parts");
478
    *num_parts= m_tot_parts;
unknown's avatar
unknown committed
479 480
    DBUG_RETURN(0);
  }
481
  virtual void change_table_ptr(TABLE *table_arg, TABLE_SHARE *share);
482 483
  virtual bool check_if_incompatible_data(HA_CREATE_INFO *create_info,
                                          uint table_changes);
484 485 486 487
  void update_part_create_info(HA_CREATE_INFO *create_info, uint part_id)
  {
    m_file[part_id]->update_create_info(create_info);
  }
488
private:
489
  int copy_partitions(ulonglong * const copied, ulonglong * const deleted);
unknown's avatar
unknown committed
490 491
  void cleanup_new_partition(uint part_count);
  int prepare_new_partition(TABLE *table, HA_CREATE_INFO *create_info,
492
                            handler *file, const char *part_name,
493 494
                            partition_element *p_elem,
                            uint disable_non_uniq_indexes);
495
  /*
496
    delete_table and rename_table uses very similar logic which
497 498
    is packed into this routine.
  */
499
  uint del_ren_table(const char *from, const char *to);
500 501 502 503 504 505
  /*
    One method to create the table_name.par file containing the names of the
    underlying partitions, their engine and the number of partitions.
    And one method to read it in.
  */
  bool create_handler_file(const char *name);
506 507 508 509
  bool setup_engine_array(MEM_ROOT *mem_root);
  bool read_par_file(const char *name);
  bool get_from_handler_file(const char *name, MEM_ROOT *mem_root,
                             bool is_clone);
510 511
  bool new_handlers_from_part_info(MEM_ROOT *mem_root);
  bool create_handlers(MEM_ROOT *mem_root);
512
  void clear_handler_file();
513 514 515 516
  int set_up_table_before_create(TABLE *table_arg,
                                 const char *partition_name_with_path,
                                 HA_CREATE_INFO *info,
                                 partition_element *p_elem);
517
  partition_element *find_partition_element(uint part_id);
518 519 520 521 522
  bool insert_partition_name_in_hash(const char *name, uint part_id,
                                     bool is_subpart);
  bool populate_partition_name_hash();
  Partition_share *get_share();
  bool set_ha_share_ref(Handler_share **ha_share);
523
  void fix_data_dir(char* path);
524 525
  bool init_partition_bitmaps();
  void free_partition_bitmaps();
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
public:

  /*
    -------------------------------------------------------------------------
    MODULE open/close object
    -------------------------------------------------------------------------
    Open and close handler object to ensure all underlying files and
    objects allocated and deallocated for query handling is handled
    properly.
    -------------------------------------------------------------------------

    A handler object is opened as part of its initialisation and before
    being used for normal queries (not before meta-data changes always.
    If the object was opened it will also be closed before being deleted.
  */
  virtual int open(const char *name, int mode, uint test_if_locked);
  virtual int close(void);

  /*
    -------------------------------------------------------------------------
    MODULE start/end statement
    -------------------------------------------------------------------------
    This module contains methods that are used to understand start/end of
    statements, transaction boundaries, and aid for proper concurrency
    control.
    The partition handler need not implement abort and commit since this
    will be handled by any underlying handlers implementing transactions.
    There is only one call to each handler type involved per transaction
    and these go directly to the handlers supporting transactions
    -------------------------------------------------------------------------
  */
  virtual THR_LOCK_DATA **store_lock(THD * thd, THR_LOCK_DATA ** to,
				     enum thr_lock_type lock_type);
  virtual int external_lock(THD * thd, int lock_type);
561
  LEX_CSTRING *engine_name() { return hton_name(partition_ht()); }
562 563 564 565
  /*
    When table is locked a statement is started by calling start_stmt
    instead of external_lock
  */
unknown's avatar
merge  
unknown committed
566
  virtual int start_stmt(THD * thd, thr_lock_type lock_type);
567 568 569 570 571 572 573 574
  /*
    Lock count is number of locked underlying handlers (I assume)
  */
  virtual uint lock_count(void) const;
  /*
    Call to unlock rows not to be updated in transaction
  */
  virtual void unlock_row();
Mattias Jonsson's avatar
Mattias Jonsson committed
575 576 577 578
  /*
    Check if semi consistent read
  */
  virtual bool was_semi_consistent_read();
579 580 581 582
  /*
    Call to hint about semi consistent read
  */
  virtual void try_semi_consistent_read(bool);
583

584 585 586 587 588 589 590 591 592 593 594 595
  /*
    NOTE: due to performance and resource issues with many partitions,
    we only use the m_psi on the ha_partition handler, excluding all
    partitions m_psi.
  */
#ifdef HAVE_M_PSI_PER_PARTITION
  /*
    Bind the table/handler thread to track table i/o.
  */
  virtual void unbind_psi();
  virtual void rebind_psi();
#endif
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
  /*
    -------------------------------------------------------------------------
    MODULE change record
    -------------------------------------------------------------------------
    This part of the handler interface is used to change the records
    after INSERT, DELETE, UPDATE, REPLACE method calls but also other
    special meta-data operations as ALTER TABLE, LOAD DATA, TRUNCATE.
    -------------------------------------------------------------------------

    These methods are used for insert (write_row), update (update_row)
    and delete (delete_row). All methods to change data always work on
    one row at a time. update_row and delete_row also contains the old
    row.
    delete_all_rows will delete all rows in the table in one call as a
    special optimisation for DELETE from table;

    Bulk inserts are supported if all underlying handlers support it.
    start_bulk_insert and end_bulk_insert is called before and after a
    number of calls to write_row.
  */
616
  virtual int write_row(uchar * buf);
617 618 619 620 621
  virtual bool start_bulk_update();
  virtual int exec_bulk_update(ha_rows *dup_key_found);
  virtual int end_bulk_update();
  virtual int bulk_update_row(const uchar *old_data, const uchar *new_data,
                              ha_rows *dup_key_found);
622
  virtual int update_row(const uchar * old_data, const uchar * new_data);
623 624
  virtual int direct_update_rows_init(List<Item> *update_fields);
  virtual int pre_direct_update_rows_init(List<Item> *update_fields);
625 626 627 628
  virtual int direct_update_rows(ha_rows *update_rows);
  virtual int pre_direct_update_rows();
  virtual bool start_bulk_delete();
  virtual int end_bulk_delete();
629
  virtual int delete_row(const uchar * buf);
630 631 632 633
  virtual int direct_delete_rows_init();
  virtual int pre_direct_delete_rows_init();
  virtual int direct_delete_rows(ha_rows *delete_rows);
  virtual int pre_direct_delete_rows();
634
  virtual int delete_all_rows(void);
635
  virtual int truncate();
Igor Babaev's avatar
Igor Babaev committed
636
  virtual void start_bulk_insert(ha_rows rows, uint flags);
637
  virtual int end_bulk_insert();
638 639
private:
  ha_rows guess_bulk_insert_rows();
640 641
  void start_part_bulk_insert(THD *thd, uint part_id);
  long estimate_read_buffer_size(long original_size);
642
public:
643

644 645 646 647 648 649 650
  /*
    Method for truncating a specific partition.
    (i.e. ALTER TABLE t1 TRUNCATE PARTITION p).

    @remark This method is a partitioning-specific hook
            and thus not a member of the general SE API.
  */
651
  int truncate_partition(Alter_info *, bool *binlog_stmt);
652

unknown's avatar
unknown committed
653
  virtual bool is_fatal_error(int error, uint flags)
654
  {
655
    if (!handler::is_fatal_error(error, flags) ||
656 657
        error == HA_ERR_NO_PARTITION_FOUND ||
        error == HA_ERR_NOT_IN_LOCK_PARTITIONS)
658 659 660
      return FALSE;
    return TRUE;
  }
661

Sergei Golubchik's avatar
Sergei Golubchik committed
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  /*
    -------------------------------------------------------------------------
    MODULE full table scan
    -------------------------------------------------------------------------
    This module is used for the most basic access method for any table
    handler. This is to fetch all data through a full table scan. No
    indexes are needed to implement this part.
    It contains one method to start the scan (rnd_init) that can also be
    called multiple times (typical in a nested loop join). Then proceeding
    to the next record (rnd_next) and closing the scan (rnd_end).
    To remember a record for later access there is a method (position)
    and there is a method used to retrieve the record based on the stored
    position.
    The position can be a file position, a primary key, a ROWID dependent
    on the handler below.
    -------------------------------------------------------------------------
  */
  /*
    unlike index_init(), rnd_init() can be called two times
    without rnd_end() in between (it only makes sense if scan=1).
    then the second call should prepare for the new table scan
    (e.g if rnd_init allocates the cursor, second call should
    position it to the start of the table, no need to deallocate
    and allocate it again
  */
  virtual int rnd_init(bool scan);
  virtual int rnd_end();
690 691
  virtual int rnd_next(uchar * buf);
  virtual int rnd_pos(uchar * buf, uchar * pos);
692
  virtual int rnd_pos_by_record(uchar *record);
693
  virtual void position(const uchar * record);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

  /*
    -------------------------------------------------------------------------
    MODULE index scan
    -------------------------------------------------------------------------
    This part of the handler interface is used to perform access through
    indexes. The interface is defined as a scan interface but the handler
    can also use key lookup if the index is a unique index or a primary
    key index.
    Index scans are mostly useful for SELECT queries but are an important
    part also of UPDATE, DELETE, REPLACE and CREATE TABLE table AS SELECT
    and so forth.
    Naturally an index is needed for an index scan and indexes can either
    be ordered, hash based. Some ordered indexes can return data in order
    but not necessarily all of them.
    There are many flags that define the behavior of indexes in the
    various handlers. These methods are found in the optimizer module.
    -------------------------------------------------------------------------

    index_read is called to start a scan of an index. The find_flag defines
    the semantics of the scan. These flags are defined in
    include/my_base.h
    index_read_idx is the same but also initializes index before calling doing
    the same thing as index_read. Thus it is similar to index_init followed
    by index_read. This is also how we implement it.

    index_read/index_read_idx does also return the first row. Thus for
    key lookups, the index_read will be the only call to the handler in
    the index scan.

    index_init initializes an index before using it and index_end does
    any end processing needed.
  */
727 728 729
  virtual int index_read_map(uchar * buf, const uchar * key,
                             key_part_map keypart_map,
                             enum ha_rkey_function find_flag);
730 731 732
  virtual int index_init(uint idx, bool sorted);
  virtual int index_end();

733 734 735 736 737 738 739 740 741
  /**
    @breif
    Positions an index cursor to the index specified in the hanlde. Fetches the
    row if available. If the key value is null, begin at first key of the
    index.
  */
  virtual int index_read_idx_map(uchar *buf, uint index, const uchar *key,
                                 key_part_map keypart_map,
                                 enum ha_rkey_function find_flag);
742 743 744 745
  /*
    These methods are used to jump to next or previous entry in the index
    scan. There are also methods to jump to first and last entry.
  */
746 747 748 749 750
  virtual int index_next(uchar * buf);
  virtual int index_prev(uchar * buf);
  virtual int index_first(uchar * buf);
  virtual int index_last(uchar * buf);
  virtual int index_next_same(uchar * buf, const uchar * key, uint keylen);
751

752 753 754 755
  int index_read_last_map(uchar *buf,
                          const uchar *key,
                          key_part_map keypart_map);

756 757 758 759 760
  /*
    read_first_row is virtual method but is only implemented by
    handler.cc, no storage engine has implemented it so neither
    will the partition handler.

761
    virtual int read_first_row(uchar *buf, uint primary_key);
762 763 764 765 766 767 768 769
  */


  virtual int read_range_first(const key_range * start_key,
			       const key_range * end_key,
			       bool eq_range, bool sorted);
  virtual int read_range_next();

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

  HANDLER_BUFFER *m_mrr_buffer;
  uint *m_mrr_buffer_size;
  uchar *m_mrr_full_buffer;
  uint m_mrr_full_buffer_size;
  uint m_mrr_new_full_buffer_size;
  MY_BITMAP m_mrr_used_partitions;
  uint *m_stock_range_seq;
  uint m_current_range_seq;
  uint m_mrr_mode;
  uint m_mrr_n_ranges;
  range_id_t *m_range_info;
  bool m_multi_range_read_first;
  uint m_mrr_range_init_flags;
  uint m_mrr_range_length;
  PARTITION_KEY_MULTI_RANGE *m_mrr_range_first;
  PARTITION_KEY_MULTI_RANGE *m_mrr_range_current;
  uint *m_part_mrr_range_length;
  PARTITION_PART_KEY_MULTI_RANGE **m_part_mrr_range_first;
  PARTITION_PART_KEY_MULTI_RANGE **m_part_mrr_range_current;
  PARTITION_PART_KEY_MULTI_RANGE_HLD *m_partition_part_key_multi_range_hld;
  range_seq_t m_seq;
  RANGE_SEQ_IF *m_seq_if;
  RANGE_SEQ_IF m_part_seq_if;

  virtual int multi_range_key_create_key(
    RANGE_SEQ_IF *seq,
    range_seq_t seq_it
  );
  virtual ha_rows multi_range_read_info_const(uint keyno, RANGE_SEQ_IF *seq,
                                              void *seq_init_param,
                                              uint n_ranges, uint *bufsz,
                                              uint *mrr_mode,
                                              Cost_estimate *cost);
  virtual ha_rows multi_range_read_info(uint keyno, uint n_ranges, uint keys,
                                        uint key_parts, uint *bufsz,
                                        uint *mrr_mode, Cost_estimate *cost);
  virtual int multi_range_read_init(RANGE_SEQ_IF *seq, void *seq_init_param,
                                    uint n_ranges, uint mrr_mode,
                                    HANDLER_BUFFER *buf);
  virtual int multi_range_read_next(range_id_t *range_info);
  virtual int multi_range_read_explain_info(uint mrr_mode, char *str,
                                            size_t size);
813
  uint last_part() { return m_last_part; }
814

815
private:
816 817
  bool init_record_priority_queue();
  void destroy_record_priority_queue();
818
  int common_index_read(uchar * buf, bool have_start_key);
819 820
  int common_first_last(uchar * buf);
  int partition_scan_set_up(uchar * buf, bool idx_read_flag);
821 822
  bool check_parallel_search();
  int handle_pre_scan(bool reverse_order, bool use_parallel);
823 824 825
  int handle_unordered_next(uchar * buf, bool next_same);
  int handle_unordered_scan_next_partition(uchar * buf);
  int handle_ordered_index_scan(uchar * buf, bool reverse_order);
826
  int handle_ordered_index_scan_key_not_found();
827 828 829
  int handle_ordered_next(uchar * buf, bool next_same);
  int handle_ordered_prev(uchar * buf);
  void return_top_record(uchar * buf);
830 831 832 833 834 835 836 837 838 839
public:
  /*
    -------------------------------------------------------------------------
    MODULE information calls
    -------------------------------------------------------------------------
    This calls are used to inform the handler of specifics of the ongoing
    scans and other actions. Most of these are used for optimisation
    purposes.
    -------------------------------------------------------------------------
  */
840
  virtual int info(uint);
841
  void get_dynamic_partition_info(PARTITION_STATS *stat_info,
842
                                  uint part_id);
843 844
  void set_partitions_to_open(List<String> *partition_names);
  int change_partitions_to_open(List<String> *partition_names);
845
  int open_read_partitions(char *name_buff, size_t name_buff_size);
846
  virtual int extra(enum ha_extra_function operation);
847
  virtual int extra_opt(enum ha_extra_function operation, ulong arg);
848
  virtual int reset(void);
unknown's avatar
unknown committed
849 850 851 852 853 854
  virtual uint count_query_cache_dependant_tables(uint8 *tables_type);
  virtual my_bool
    register_query_cache_dependant_tables(THD *thd,
                                          Query_cache *cache,
                                          Query_cache_block_table **block,
                                          uint *n);
855 856

private:
857 858
  typedef int handler_callback(handler *, void *);

unknown's avatar
unknown committed
859
  my_bool reg_query_cache_dependant_table(THD *thd,
860 861 862 863
                                          char *engine_key,
                                          uint engine_key_len,
                                          char *query_key, uint query_key_len,
                                          uint8 type,
unknown's avatar
unknown committed
864 865 866 867
                                          Query_cache *cache,
                                          Query_cache_block_table
                                          **block_table,
                                          handler *file, uint *n);
Monty's avatar
Monty committed
868
  static const uint NO_CURRENT_PART_ID= NOT_A_PARTITION_ID;
869
  int loop_partitions(handler_callback callback, void *param);
870
  int loop_extra_alter(enum ha_extra_function operations);
871 872 873
  void late_extra_cache(uint partition_id);
  void late_extra_no_cache(uint partition_id);
  void prepare_extra_cache(uint cachesize);
874
  handler *get_open_file_sample() const { return m_file_sample; }
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
public:

  /*
    -------------------------------------------------------------------------
    MODULE optimiser support
    -------------------------------------------------------------------------
    -------------------------------------------------------------------------
  */

  /*
    NOTE !!!!!!
     -------------------------------------------------------------------------
     -------------------------------------------------------------------------
     One important part of the public handler interface that is not depicted in
     the methods is the attribute records

     which is defined in the base class. This is looked upon directly and is
     set by calling info(HA_STATUS_INFO) ?
     -------------------------------------------------------------------------
  */

896
private:
897 898 899
  /* Helper functions for optimizer hints. */
  ha_rows min_rows_for_estimate();
  uint get_biggest_used_partition(uint *part_index);
900 901
public:

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
  /*
    keys_to_use_for_scanning can probably be implemented as the
    intersection of all underlying handlers if mixed handlers are used.
    This method is used to derive whether an index can be used for
    index-only scanning when performing an ORDER BY query.
    Only called from one place in sql_select.cc
  */
  virtual const key_map *keys_to_use_for_scanning();

  /*
    Called in test_quick_select to determine if indexes should be used.
  */
  virtual double scan_time();

  /*
    The next method will never be called if you do not implement indexes.
  */
  virtual double read_time(uint index, uint ranges, ha_rows rows);
  /*
    For the given range how many records are estimated to be in this range.
    Used by optimiser to calculate cost of using a particular index.
  */
  virtual ha_rows records_in_range(uint inx, key_range * min_key,
				   key_range * max_key);

  /*
    Upper bound of number records returned in scan is sum of all
    underlying handlers.
  */
  virtual ha_rows estimate_rows_upper_bound();

  /*
    table_cache_type is implemented by the underlying handler but all
    underlying handlers must have the same implementation for it to work.
  */
  virtual uint8 table_cache_type();
938
  virtual ha_rows records();
939

940
  /* Calculate hash value for PARTITION BY KEY tables. */
Sergei Golubchik's avatar
Sergei Golubchik committed
941
  static uint32 calculate_key_hash_value(Field **field_array);
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
  /*
    -------------------------------------------------------------------------
    MODULE print messages
    -------------------------------------------------------------------------
    This module contains various methods that returns text messages for
    table types, index type and error messages.
    -------------------------------------------------------------------------
  */
  /*
    The name of the index type that will be used for display
    Here we must ensure that all handlers use the same index type
    for each index created.
  */
  virtual const char *index_type(uint inx);

958 959 960
  /* The name of the table type that will be used for display purposes */
  virtual const char *table_type() const;

961 962 963
  /* The name of the row type used for the underlying tables. */
  virtual enum row_type get_row_type() const;

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
  /*
     Handler specific error messages
  */
  virtual void print_error(int error, myf errflag);
  virtual bool get_error_message(int error, String * buf);
  /*
   -------------------------------------------------------------------------
    MODULE handler characteristics
    -------------------------------------------------------------------------
    This module contains a number of methods defining limitations and
    characteristics of the handler. The partition handler will calculate
    this characteristics based on underlying handler characteristics.
    -------------------------------------------------------------------------

    This is a list of flags that says what the storage engine
    implements. The current table flags are documented in handler.h
    The partition handler will support whatever the underlying handlers
    support except when specifically mentioned below about exceptions
    to this rule.
983 984
    NOTE: This cannot be cached since it can depend on TRANSACTION ISOLATION
    LEVEL which is dynamic, see bug#39084.
985 986 987 988 989 990 991 992 993 994

    HA_READ_RND_SAME:
    Not currently used. (Means that the handler supports the rnd_same() call)
    (MyISAM, HEAP)

    HA_TABLE_SCAN_ON_INDEX:
    Used to avoid scanning full tables on an index. If this flag is set then
    the handler always has a primary key (hidden if not defined) and this
    index is used for scanning rather than a full table scan in all
    situations.
995
    (InnoDB, Federated)
996 997 998 999 1000 1001

    HA_REC_NOT_IN_SEQ:
    This flag is set for handlers that cannot guarantee that the rows are
    returned accroding to incremental positions (0, 1, 2, 3...).
    This also means that rnd_next() should return HA_ERR_RECORD_DELETED
    if it finds a deleted row.
1002
    (MyISAM (not fixed length row), HEAP, InnoDB)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

    HA_CAN_GEOMETRY:
    Can the storage engine handle spatial data.
    Used to check that no spatial attributes are declared unless
    the storage engine is capable of handling it.
    (MyISAM)

    HA_FAST_KEY_READ:
    Setting this flag indicates that the handler is equally fast in
    finding a row by key as by position.
    This flag is used in a very special situation in conjunction with
    filesort's. For further explanation see intro to init_read_record.
1015
    (HEAP, InnoDB)
1016 1017 1018 1019 1020

    HA_NULL_IN_KEY:
    Is NULL values allowed in indexes.
    If this is not allowed then it is not possible to use an index on a
    NULLable field.
1021
    (HEAP, MyISAM, InnoDB)
1022

1023
    HA_DUPLICATE_POS:
1024 1025 1026 1027 1028 1029 1030 1031
    Tells that we can the position for the conflicting duplicate key
    record is stored in table->file->dupp_ref. (insert uses rnd_pos() on
    this to find the duplicated row)
    (MyISAM)

    HA_CAN_INDEX_BLOBS:
    Is the storage engine capable of defining an index of a prefix on
    a BLOB attribute.
1032
    (Federated, MyISAM, InnoDB)
1033 1034 1035 1036

    HA_AUTO_PART_KEY:
    Auto increment fields can be part of a multi-part key. For second part
    auto-increment keys, the auto_incrementing is done in handler.cc
1037
    (Federated, MyISAM)
1038 1039 1040 1041 1042 1043

    HA_REQUIRE_PRIMARY_KEY:
    Can't define a table without primary key (and cannot handle a table
    with hidden primary key)
    (No handler has this limitation currently)

1044
    HA_STATS_RECORDS_IS_EXACT:
1045
    Does the counter of records after the info call specify an exact
1046
    value or not. If it does this flag is set.
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    Only MyISAM and HEAP uses exact count.

    HA_CAN_INSERT_DELAYED:
    Can the storage engine support delayed inserts.
    To start with the partition handler will not support delayed inserts.
    Further investigation needed.
    (HEAP, MyISAM)

    HA_PRIMARY_KEY_IN_READ_INDEX:
    This parameter is set when the handler will also return the primary key
    when doing read-only-key on another index.

    HA_NOT_DELETE_WITH_CACHE:
    Seems to be an old MyISAM feature that is no longer used. No handler
    has it defined but it is checked in init_read_record.
    Further investigation needed.
    (No handler defines it)

    HA_NO_PREFIX_CHAR_KEYS:
    Indexes on prefixes of character fields is not allowed.
1067
    (Federated)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

    HA_CAN_FULLTEXT:
    Does the storage engine support fulltext indexes
    The partition handler will start by not supporting fulltext indexes.
    (MyISAM)

    HA_CAN_SQL_HANDLER:
    Can the HANDLER interface in the MySQL API be used towards this
    storage engine.
    (MyISAM, InnoDB)

    HA_NO_AUTO_INCREMENT:
    Set if the storage engine does not support auto increment fields.
    (Currently not set by any handler)

    HA_HAS_CHECKSUM:
    Special MyISAM feature. Has special SQL support in CREATE TABLE.
    No special handling needed by partition handler.
    (MyISAM)

    HA_FILE_BASED:
    Should file names always be in lower case (used by engines
    that map table names to file names.
    Since partition handler has a local file this flag is set.
1092
    (Federated, MyISAM)
1093 1094 1095

    HA_CAN_BIT_FIELD:
    Is the storage engine capable of handling bit fields?
1096
    (MyISAM)
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

    HA_NEED_READ_RANGE_BUFFER:
    Is Read Multi-Range supported => need multi read range buffer
    This parameter specifies whether a buffer for read multi range
    is needed by the handler. Whether the handler supports this
    feature or not is dependent of whether the handler implements
    read_multi_range* calls or not. The only handler currently
    supporting this feature is NDB so the partition handler need
    not handle this call. There are methods in handler.cc that will
    transfer those calls into index_read and other calls in the
    index scan module.
1108
    (No handler defines it)
1109 1110 1111 1112 1113 1114 1115 1116 1117

    HA_PRIMARY_KEY_REQUIRED_FOR_POSITION:
    Does the storage engine need a PK for position?
    (InnoDB)

    HA_FILE_BASED is always set for partition handler since we use a
    special file for handling names of partitions, engine types.
    HA_REC_NOT_IN_SEQ is always set for partition handler since we cannot
    guarantee that the records will be returned in sequence.
1118
    HA_DUPLICATE_POS,
1119 1120 1121
    HA_CAN_INSERT_DELAYED, HA_PRIMARY_KEY_REQUIRED_FOR_POSITION is disabled
    until further investigated.
  */
1122
  virtual Table_flags table_flags() const;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

  /*
    This is a bitmap of flags that says how the storage engine
    implements indexes. The current index flags are documented in
    handler.h. If you do not implement indexes, just return zero
    here.

    part is the key part to check. First key part is 0
    If all_parts it's set, MySQL want to know the flags for the combined
    index up to and including 'part'.

    HA_READ_NEXT:
    Does the index support read next, this is assumed in the server
    code and never checked so all indexes must support this.
    Note that the handler can be used even if it doesn't have any index.
1138
    (HEAP, MyISAM, Federated, InnoDB)
1139 1140 1141

    HA_READ_PREV:
    Can the index be used to scan backwards.
1142
    (HEAP, MyISAM, InnoDB)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

    HA_READ_ORDER:
    Can the index deliver its record in index order. Typically true for
    all ordered indexes and not true for hash indexes.
    In first step this is not true for partition handler until a merge
    sort has been implemented in partition handler.
    Used to set keymap part_of_sortkey
    This keymap is only used to find indexes usable for resolving an ORDER BY
    in the query. Thus in most cases index_read will work just fine without
    order in result production. When this flag is set it is however safe to
    order all output started by index_read since most engines do this. With
    read_multi_range calls there is a specific flag setting order or not
    order so in those cases ordering of index output can be avoided.
1156
    (InnoDB, HEAP, MyISAM)
1157 1158 1159 1160 1161 1162

    HA_READ_RANGE:
    Specify whether index can handle ranges, typically true for all
    ordered indexes and not true for hash indexes.
    Used by optimiser to check if ranges (as key >= 5) can be optimised
    by index.
1163
    (InnoDB, MyISAM, HEAP)
1164 1165 1166 1167

    HA_ONLY_WHOLE_INDEX:
    Can't use part key searches. This is typically true for hash indexes
    and typically not true for ordered indexes.
1168
    (Federated, HEAP)
1169 1170 1171 1172 1173 1174 1175 1176 1177

    HA_KEYREAD_ONLY:
    Does the storage engine support index-only scans on this index.
    Enables use of HA_EXTRA_KEYREAD and HA_EXTRA_NO_KEYREAD
    Used to set key_map keys_for_keyread and to check in optimiser for
    index-only scans.  When doing a read under HA_EXTRA_KEYREAD the handler
    only have to fill in the columns the key covers. If
    HA_PRIMARY_KEY_IN_READ_INDEX is set then also the PRIMARY KEY columns
    must be updated in the row.
1178
    (InnoDB, MyISAM)
1179 1180 1181
  */
  virtual ulong index_flags(uint inx, uint part, bool all_parts) const
  {
1182 1183 1184 1185
    /*
      The following code is not safe if you are using different
      storage engines or different index types per partition.
    */
1186 1187 1188
    return m_file[0]->index_flags(inx, part, all_parts);
  }

1189 1190 1191 1192
  /**
    wrapper function for handlerton alter_table_flags, since
    the ha_partition_hton cannot know all its capabilities
  */
1193
  virtual alter_table_operations alter_table_flags(alter_table_operations flags);
1194 1195 1196 1197 1198 1199
  /*
    unireg.cc will call the following to make sure that the storage engine
    can handle the data it is about to send.

    The maximum supported values is the minimum of all handlers in the table
  */
1200
  uint min_of_the_max_uint(uint (handler::*operator_func)(void) const) const;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
  virtual uint max_supported_record_length() const;
  virtual uint max_supported_keys() const;
  virtual uint max_supported_key_parts() const;
  virtual uint max_supported_key_length() const;
  virtual uint max_supported_key_part_length() const;
  virtual uint min_record_length(uint options) const;

  /*
    Primary key is clustered can only be true if all underlying handlers have
    this feature.
  */
  virtual bool primary_key_is_clustered()
  { return m_pkey_is_clustered; }

  /*
    -------------------------------------------------------------------------
    MODULE compare records
    -------------------------------------------------------------------------
    cmp_ref checks if two references are the same. For most handlers this is
    a simple memcmp of the reference. However some handlers use primary key
    as reference and this can be the same even if memcmp says they are
    different. This is due to character sets and end spaces and so forth.
    For the partition handler the reference is first two bytes providing the
    partition identity of the referred record and then the reference of the
    underlying handler.
    Thus cmp_ref for the partition handler always returns FALSE for records
    not in the same partition and uses cmp_ref on the underlying handler
    to check whether the rest of the reference part is also the same.
    -------------------------------------------------------------------------
  */
1231
  virtual int cmp_ref(const uchar * ref1, const uchar * ref2);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  /*
    -------------------------------------------------------------------------
    MODULE auto increment
    -------------------------------------------------------------------------
    This module is used to handle the support of auto increments.

    This variable in the handler is used as part of the handler interface
    It is maintained by the parent handler object and should not be
    touched by child handler objects (see handler.cc for its use).

    auto_increment_column_changed
     -------------------------------------------------------------------------
  */
1245 1246
  virtual bool need_info_for_auto_inc();
  virtual bool can_use_for_auto_inc_init();
1247 1248 1249 1250 1251
  virtual void get_auto_increment(ulonglong offset, ulonglong increment,
                                  ulonglong nb_desired_values,
                                  ulonglong *first_value,
                                  ulonglong *nb_reserved_values);
  virtual void release_auto_increment();
1252 1253
private:
  virtual int reset_auto_increment(ulonglong value);
1254
  void update_next_auto_inc_val();
1255 1256 1257 1258 1259
  virtual void lock_auto_increment()
  {
    /* lock already taken */
    if (auto_increment_safe_stmt_log_lock)
      return;
1260
    if (table_share->tmp_table == NO_TMP_TABLE)
1261
    {
1262
      part_share->lock_auto_inc();
1263 1264
      DBUG_ASSERT(!auto_increment_lock);
      auto_increment_lock= TRUE;
1265 1266 1267 1268 1269 1270 1271 1272 1273
    }
  }
  virtual void unlock_auto_increment()
  {
    /*
      If auto_increment_safe_stmt_log_lock is true, we have to keep the lock.
      It will be set to false and thus unlocked at the end of the statement by
      ha_partition::release_auto_increment.
    */
1274
    if (auto_increment_lock && !auto_increment_safe_stmt_log_lock)
1275 1276
    {
      auto_increment_lock= FALSE;
1277
      part_share->unlock_auto_inc();
1278 1279
    }
  }
1280
  virtual void set_auto_increment_if_higher(Field *field)
1281
  {
1282 1283
    ulonglong nr= (((Field_num*) field)->unsigned_flag ||
                   field->val_int() > 0) ? field->val_int() : 0;
1284
    lock_auto_increment();
1285 1286
    DBUG_ASSERT(part_share->auto_inc_initialized ||
                !can_use_for_auto_inc_init());
1287
    /* must check when the mutex is taken */
1288 1289
    if (nr >= part_share->next_auto_inc_val)
      part_share->next_auto_inc_val= nr + 1;
1290 1291 1292 1293
    unlock_auto_increment();
  }

public:
1294 1295 1296

  /*
     -------------------------------------------------------------------------
1297
     MODULE initialize handler for HANDLER call
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
     -------------------------------------------------------------------------
     This method is a special InnoDB method called before a HANDLER query.
     -------------------------------------------------------------------------
  */
  virtual void init_table_handle_for_HANDLER();

  /*
    The remainder of this file defines the handler methods not implemented
    by the partition handler
  */

  /*
    -------------------------------------------------------------------------
    MODULE foreign key support
    -------------------------------------------------------------------------
    The following methods are used to implement foreign keys as supported by
    InnoDB. Implement this ??
    get_foreign_key_create_info is used by SHOW CREATE TABLE to get a textual
    description of how the CREATE TABLE part to define FOREIGN KEY's is done.
    free_foreign_key_create_info is used to free the memory area that provided
    this description.
unknown's avatar
unknown committed
1319 1320
    can_switch_engines checks if it is ok to switch to a new engine based on
    the foreign key info in the table.
1321 1322 1323 1324 1325 1326 1327 1328 1329
    -------------------------------------------------------------------------

    virtual char* get_foreign_key_create_info()
    virtual void free_foreign_key_create_info(char* str)

    virtual int get_foreign_key_list(THD *thd,
    List<FOREIGN_KEY_INFO> *f_key_list)
    virtual uint referenced_by_foreign_key()
  */
unknown's avatar
unknown committed
1330
    virtual bool can_switch_engines();
1331 1332 1333 1334 1335
  /*
    -------------------------------------------------------------------------
    MODULE fulltext index
    -------------------------------------------------------------------------
  */
1336 1337 1338 1339 1340 1341 1342 1343
    void ft_close_search(FT_INFO *handler);
    virtual int ft_init();
    virtual int pre_ft_init();
    virtual void ft_end();
    virtual int pre_ft_end();
    virtual FT_INFO *ft_init_ext(uint flags, uint inx, String *key);
    virtual int ft_read(uchar *buf);
    virtual int pre_ft_read(bool use_parallel);
1344 1345 1346 1347 1348 1349 1350

  /*
     -------------------------------------------------------------------------
     MODULE restart full table scan at position (MyISAM)
     -------------------------------------------------------------------------
     The following method is only used by MyISAM when used as
     temporary tables in a join.
1351
     virtual int restart_rnd_next(uchar *buf, uchar *pos);
1352 1353 1354 1355
  */

  /*
    -------------------------------------------------------------------------
1356
    MODULE in-place ALTER TABLE
1357
    -------------------------------------------------------------------------
1358
    These methods are in the handler interface. (used by innodb-plugin)
1359
    They are used for in-place alter table:
1360 1361
    -------------------------------------------------------------------------
  */
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    virtual enum_alter_inplace_result
      check_if_supported_inplace_alter(TABLE *altered_table,
                                       Alter_inplace_info *ha_alter_info);
    virtual bool prepare_inplace_alter_table(TABLE *altered_table,
                                             Alter_inplace_info *ha_alter_info);
    virtual bool inplace_alter_table(TABLE *altered_table,
                                     Alter_inplace_info *ha_alter_info);
    virtual bool commit_inplace_alter_table(TABLE *altered_table,
                                            Alter_inplace_info *ha_alter_info,
                                            bool commit);
    virtual void notify_table_changed();
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

  /*
    -------------------------------------------------------------------------
    MODULE tablespace support
    -------------------------------------------------------------------------
    Admin of table spaces is not applicable to the partition handler (InnoDB)
    This means that the following method is not implemented:
    -------------------------------------------------------------------------
    virtual int discard_or_import_tablespace(my_bool discard)
  */

  /*
    -------------------------------------------------------------------------
    MODULE admin MyISAM
    -------------------------------------------------------------------------
unknown's avatar
unknown committed
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

    -------------------------------------------------------------------------
      OPTIMIZE TABLE, CHECK TABLE, ANALYZE TABLE and REPAIR TABLE are
      mapped to a routine that handles looping over a given set of
      partitions and those routines send a flag indicating to execute on
      all partitions.
    -------------------------------------------------------------------------
  */
    virtual int optimize(THD* thd, HA_CHECK_OPT *check_opt);
    virtual int analyze(THD* thd, HA_CHECK_OPT *check_opt);
    virtual int check(THD* thd, HA_CHECK_OPT *check_opt);
    virtual int repair(THD* thd, HA_CHECK_OPT *check_opt);
1400
    virtual bool check_and_repair(THD *thd);
1401
    virtual bool auto_repair(int error) const;
1402
    virtual bool is_crashed() const;
1403
    virtual int check_for_upgrade(HA_CHECK_OPT *check_opt);
unknown's avatar
unknown committed
1404

1405 1406 1407 1408 1409 1410 1411
  /*
    -------------------------------------------------------------------------
    MODULE condition pushdown
    -------------------------------------------------------------------------
  */
    virtual const COND *cond_push(const COND *cond);
    virtual void cond_pop();
Monty's avatar
Monty committed
1412
    virtual void clear_top_table_fields();
1413
    virtual int info_push(uint info_type, void *info);
1414

unknown's avatar
unknown committed
1415
    private:
1416
    int handle_opt_partitions(THD *thd, HA_CHECK_OPT *check_opt, uint flags);
1417 1418 1419 1420 1421 1422 1423 1424
    int handle_opt_part(THD *thd, HA_CHECK_OPT *check_opt, uint part_id,
                        uint flag);
    /**
      Check if the rows are placed in the correct partition.  If the given
      argument is true, then move the rows to the correct partition.
    */
    int check_misplaced_rows(uint read_part_id, bool repair);
    void append_row_to_str(String &str);
unknown's avatar
unknown committed
1425
    public:
1426

unknown's avatar
unknown committed
1427 1428
  /*
    -------------------------------------------------------------------------
1429 1430 1431 1432 1433 1434 1435 1436
    Admin commands not supported currently (almost purely MyISAM routines)
    This means that the following methods are not implemented:
    -------------------------------------------------------------------------

    virtual int backup(TD* thd, HA_CHECK_OPT *check_opt);
    virtual int restore(THD* thd, HA_CHECK_OPT *check_opt);
    virtual int dump(THD* thd, int fd = -1);
    virtual int net_read_dump(NET* net);
1437
  */
1438
    virtual uint checksum() const;
1439 1440 1441
  /* Enabled keycache for performance reasons, WL#4571 */
    virtual int assign_to_keycache(THD* thd, HA_CHECK_OPT *check_opt);
    virtual int preload_keys(THD* thd, HA_CHECK_OPT* check_opt);
1442
    virtual TABLE_LIST *get_next_global_for_child();
1443

1444
  /*
1445 1446 1447
    -------------------------------------------------------------------------
    MODULE enable/disable indexes
    -------------------------------------------------------------------------
1448
    Enable/Disable Indexes are only supported by HEAP and MyISAM.
1449
    -------------------------------------------------------------------------
1450
  */
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    virtual int disable_indexes(uint mode);
    virtual int enable_indexes(uint mode);
    virtual int indexes_are_disabled(void);

  /*
    -------------------------------------------------------------------------
    MODULE append_create_info
    -------------------------------------------------------------------------
    append_create_info is only used by MyISAM MERGE tables and the partition
    handler will not support this handler as underlying handler.
    Implement this??
    -------------------------------------------------------------------------
    virtual void append_create_info(String *packet)
  */
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

  /*
    the following heavily relies on the fact that all partitions
    are in the same storage engine.

    When this limitation is lifted, the following hack should go away,
    and a proper interface for engines needs to be introduced:

      an PARTITION_SHARE structure that has a pointer to the TABLE_SHARE.
      is given to engines everywhere where TABLE_SHARE is used now
      has members like option_struct, ha_data
      perhaps TABLE needs to be split the same way too...

    this can also be done before partition will support a mix of engines,
    but preferably together with other incompatible API changes.
  */
  virtual handlerton *partition_ht() const
  {
    handlerton *h= m_file[0]->ht;
1484
    for (uint i=1; i < m_tot_parts; i++)
1485 1486 1487
      DBUG_ASSERT(h == m_file[i]->ht);
    return h;
  }
1488

1489
  ha_rows part_records(void *_part_elem)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  {
    partition_element *part_elem= reinterpret_cast<partition_element *>(_part_elem);
    DBUG_ASSERT(m_part_info);
    uint32 sub_factor= m_part_info->num_subparts ? m_part_info->num_subparts : 1;
    uint32 part_id= part_elem->id * sub_factor;
    uint32 part_id_end= part_id + sub_factor;
    DBUG_ASSERT(part_id_end <= m_tot_parts);
    ha_rows part_recs= 0;
    for (; part_id < part_id_end; ++part_id)
    {
      handler *file= m_file[part_id];
      DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id));
1502
      file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK | HA_STATUS_OPEN);
1503 1504 1505 1506 1507
      part_recs+= file->stats.records;
    }
    return part_recs;
  }

1508
  friend int cmp_key_rowid_part_id(void *ptr, uchar *ref1, uchar *ref2);
1509
  friend int cmp_key_part_id(void *key_p, uchar *ref1, uchar *ref2);
1510
};
1511
#endif /* HA_PARTITION_INCLUDED */