GLPK.py 4.59 KB
Newer Older
Jean-Paul Smets's avatar
Jean-Paul Smets committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
##############################################################################
#
# Copyright (c) 2003 Nexedi SARL and Contributors. All Rights Reserved.
#                    Yoshinori Okuji <yo@nexedi.com>
#
# WARNING: This program as such is intended to be used by professional
# programmers who take the whole responsability of assessing all potential
# consequences resulting from its eventual inadequacies and bugs
# End users who are looking for a ready-to-use solution with commercial
# garantees and support are strongly adviced to contract a Free Software
# Service Company
#
# This program is Free Software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#
##############################################################################

from Numeric import *

MODEL_HEAD = """
/* The number of samples.  */
param n, integer, > 0;

/* The number of resources.  */
param d, integer, > 0;

/* The set of samples.  */
set S := 1..n;

/* The set of resources.  */
set R := 1..d;

/* The query.  */
param q{i in R};

/* The samples.  */
param s{j in S, i in R};

/* The normal vector of a hyperplane.  */
var z{i in R};

/* The origin of a hyperplane.  */
var z0;

#display q;
#display s;

/* The objective.  */
maximize obj: sum {i in R} (z[i] * q[i]) - z0;

/* Constraints.  */
subject to c{j in S}: sum{i in R} (z[i] * s[j,i]) - z0, <= 0;
subject to c0: sum {i in R} (z[i] * q[i]) - z0, <= 1;

data;
"""

MODEL_TAIL="""
end;
"""

def writeModelFile(file, matrix, point):
    """
    Write an LP problem in MathProg.
    """
    n = shape(matrix)[0]
    d = shape(matrix)[1]
    
    file.write(MODEL_HEAD)
    file.write("param n := %d;\n" % n)
    file.write("param d := %d;\n" % d)
    
    file.write("param s\n:\t")
    def insertTab(x,y): return str(x)+"\t"+str(y)
    file.write(reduce(insertTab, range(1,d+1)))
    file.write("\t:=\n")
    for i in range(n):
        file.write(repr(i+1))
        file.write(reduce(insertTab, matrix[i], ""))
        file.write("\n")
    file.write(";\n")
        
    file.write("param q := ")
    def insertComma(x,y): return str(x)+','+str(y)
    def flatten(x): return str(x[0])+' '+str(x[1])
    file.write(reduce(insertComma,
                      map(flatten, map(None, range(1,d+1), point))))
    file.write(";\n")
    
    file.write(MODEL_TAIL)
    
def getOptimalValue(file):
    """
    Solve an LP problem described in MathProg language, and return
    the result of its objective function.
    This version uses GNU Linear Programming Kit.
    """
    import glpk
    lp = glpk.glp_lpx_read_model(file, None, None)
    try:
        glpk.glp_lpx_set_int_parm(lp, glpk.LPX_K_PRICE, 1)
        glpk.glp_lpx_set_int_parm(lp, glpk.LPX_K_PRESOL, 1)
        glpk.glp_lpx_set_int_parm(lp, glpk.LPX_K_BRANCH, 2)
        glpk.glp_lpx_set_int_parm(lp, glpk.LPX_K_BTRACK, 2)
        glpk.glp_lpx_set_real_parm(lp, glpk.LPX_K_TMLIM, 2000) # XXX
        ret = glpk.glp_lpx_simplex(lp)
        if ret != glpk.LPX_E_OK:
            raise RuntimeError, "The simplex method of GLPK failed"
        return glpk.glp_lpx_get_obj_val(lp)
    finally:
        glpk.glp_lpx_delete_prob(lp)

def solve(matrix, point):
    """
    Check if a point is inside a convex hull specified by a matrix.
    """
    import tempfile
    import os
    if shape(point)[0] != shape(matrix)[1]:
        raise TypeError, "The argument 'point' has a different number of dimensions from the capacity"
    mod_name = tempfile.mktemp(suffix='.mod')
    mod = file(mod_name, 'w')
    try:
        writeModelFile(mod, matrix, point)
        mod.close()
        obj = getOptimalValue(mod_name)
    finally:
        os.remove(mod_name)
    return obj <= 0

# This is a test.
if __name__ == '__main__':
    m = array([[ 0, 1, 2, 3, 4, 5],
               [10,11,12,13,14,15],
               [20,21,22,23,24,25],
               [30,31,32,33,34,35],
               [40,41,42,43,44,45],
               [50,51,52,53,54,55],
               [60,61,62,63,64,65],
               [70,71,72,73,74,75]])
    print m
    
    p = ([1,2,3,4,5,6])
    print p
    
    print solve(m, p)